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Abstract: Ship classification technology using synthetic aperture radar (SAR) has become a research
hotspot. Many deep-learning-based methods have been proposed with handcrafted models or using
transplanted computer vision networks. However, most of these methods are designed for graphics
processing unit (GPU) platforms, leading to limited scope for application. This paper proposes
a novel mini-size searched convolutional Metaformer (SCM) for classifying SAR ships. Firstly, a
network architecture searching (NAS) algorithm with progressive data augmentation is proposed
to find an efficient baseline convolutional network. Then, a transformer classifier is employed to
improve the spatial awareness capability. Moreover, a ConvFormer cell is proposed by filling the
searched normal convolutional cell into a Metaformer block. This novel cell architecture further
improves the feature-extracting capability. Experimental results obtained show that the proposed
SCM provides the best accuracy with only 0.46× 106 weights, achieving a good trade-off between
performance and model size.

Keywords: synthetic aperture radar; ship classification; deep learning; transformer; network
architecture searching

1. Introduction

With the increasing number of ships on the oceans, efficient classification of ships has
become vital [1,2]. Synthetic aperture radar (SAR) is a popular type of positive detection
equipment used in modern ocean surveillance. SAR can work in all weathers and at all
times [3]; thus, ship classification with SAR images has become a research hotspot in
remote sensing.

Traditional SAR ship classification methods depend on feature extraction and classifi-
cation using manual design, including support vector machine (SVM) [4], decision tree [5],
random forest [6], Bayesian classifier [7], Adaboost [8], etc. However, these methods
require large amounts of time and labor regarding their design, testing, analysis, and verifi-
cation. The robustness and accuracy of these methods may significantly decrease in actual
application scenarios with complex ship shapes, high sea conditions, and low image quality.

Recently, deep learning has achieved many excellent results in several fields of com-
puter vision, including image processing [9,10] and pattern recognition [11,12]. Many
studies have been conducted on applying deep learning to SAR ship classification. Com-
pared to conventional methods, convolutional neural network (CNN)-based methods result
in a remarkable boost in accuracy. Based on advanced training technologies, suitable natural
optical image object classification models can operate SAR ship classification tasks [13–15].
For high accuracy, another more common method is to manually design networks for SAR
data [16,17]. Furthermore, traditional features, such as histograms of oriented gradients
(HOGs) and polarization coherence, can be integrated into neural networks to further
improve performance [18,19].

Review of existing SAR ship classification networks suggests that most of the networks
that are transplanted from computer vision or that are handcrafted have unsatisfactory
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accuracies on SAR data or have an unfeasible model size for embedded devices. To further
improve efficiency, a novel searched convolutional Metaformer (SCM) is proposed for SAR
ship classification in this paper. The design of the SCM starts from a baseline network
searched in a small SAR ship dataset. We improve the network architecture searching
(NAS) algorithm. Considering the mobile and embedded platforms used in SAR tasks that
require a high prediction efficiency, we improve the baseline network with transformer
encoders and efficient convolutional cells. The SCM achieves a good trade-off between
performance and computational complexity with a very small size.

Partial channel connection differentiable architecture searching (PC-DARTS) [20] treats
the search as a bi-level optimization problem and updates the target network architecture
by gradient descent [21]. The target network produced by the original PC-DARTS contains
too many weight-free operations, which leads to low feature extraction capability. After an
analysis of the involved SAR ship dataset, the small number of available samples, the poor
quality of the SAR images, and the high similarity of the different ship categories result
in the super net learning little about the features. Weight-free operations have a very
high probability to be chosen at the early stage of searching. This problem is unsolvable
automatically even at the end of searching, which leads to a target network with poor per-
formance. Hence, progressive data augmentation partial channel connection differentiable
architecture searching (PDA-PC-DARTS) is proposed to obtain a target network with strong
feature excretion capability on a small size SAR ship dataset with poor image quality. This
paper employs data augmentation and progressive learning to divide the whole search
into three stages. A different data augmentation policy is assigned to a searching stage,
so the target architecture is optimized progressively. The data augmentation can expand
sample diversity. Progressive learning enhances the gradient learning of the super-net and
architecture parameters. Our target network searching in the low-quality small-size SAR
ship dataset shows improved performance.

Obviously, the performance of the target network has a great deal of room for further
improvement. Networking scaling is the most common way to improve the performance
of a searched network architecture. However, network scaling substantially increases the
number of weights and computational operations. Considering the application scenario of
SAR ship classification using mobile or embedded devices, we have to give up network
scaling and choose an efficient way to improve performance. The convolutional operations
and classifier in the target network are updated. The basic blocks of convolutional oper-
ations used in NAS are switched from depth-wise separable convolution (DSCONV) to
the EfficientNet version inverted residual block (MBCONV) [22], which can improve the
efficiency and accuracy. A transformer classifier is connected to the searched cells, which
contributes to a searched convolutional transformer (SCT). The searched cells play the
role of tokenizers instead of common simple tokenizers, such as a single fully connected
layer [23] or stacked vanilla convolution layers [24]. The searched CNN has the advantage
of processing two-dimensional data and the transformer classifier provides better learning
capability. The SCT can combine the advantages of both parts and improve the performance
of ship classification.

A transformer has a higher computational complexity than a CNN. Usually, transformer–
CNN mixed networks in computer vision employ many transformer-based operations as
the main computational module, which results in high computational complexity. In our
approach, the performance of the CNN part on SAR ship data is guaranteed by NAS. Hence,
the CNN is the main part in the proposed network. We only use two transformer encoders
as an additional module and maintain the computational complexity of the whole network
at a low level.

Then, following the concept of a Metaformer [25] and modern CNNs, a ConvFormer
cell is proposed as the novel cell architecture. Studies have found that transformers have
advantages for both self-attention and architecture. Hence, we convert a searched convo-
lutional cell into a Metaformer block by referring to the transformer encoder architecture.
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The token mixer in the ConvFormer cell is searched from the SAR ship dataset. Hence,
the ConvFormer cell has a strong feature extraction ability on SAR ships.

SCM is a combination of SCT and ConvFormer cells. The experimental results on the
OpenSARShip dataset show that SCM achieves 82.06% accuracy with 81.46× 106 multiply-
accumulate operations (MAdds). Compared with existing handcrafted learning-based
methods and networks from computer vision, SCM outperforms them by 3% in accuracy
and reaches a state-of-the-art level. To verify the generalization capability of the searched
architecture, we train the proposed network on a more challenging classification task from
the FUSARship dataset without prior research, resulting in a good performance of 63.90%.
SCM only has 0.46× 106 weights. In addition, the searching and training of SCM can be
operated with only a single RTX3060.

We summarize the main contributions of the paper as follows:

1. A novel mixture network, SCM, is proposed for SAR ship classification. This network
is built with the help of NAS and a transformer, which have the characteristics of high
accuracy and small model size.

2. PDA-PC-DARTS is proposed to explore a high-performance target network in the
poor quality, small sample number SAR ship dataset.

3. For searching, DSCONV is replaced with MBCONV to achieve better efficiency.
4. SCT is proposed by combining NAS, CNN, and a transformer, which improves the

classification accuracy.
5. A novel cell architecture is proposed to further enhance the accuracy by filling a

searched node into a Metaformer block.

The rest of this paper is organized as follows: Section 2 reviews related work. In
Section 3, the SCM is described in detail. Section 4 describes the experiments. The results
and ablation studies are described in Section 5. A discussion is provided in Section 6.
Section 7 concludes the paper.

2. Related Work
2.1. CNN-Based SAR Ship Classification

In contrast to natural optical image object classification, samples of SAR ship clas-
sification show many special features, such as single channel, low quality, and simple
background. CNN-based SAR ship classification methods have two main aspects: improv-
ing computer vision networks on SAR ship data and designing networks for SAR ship data.
Table 1 summarizes some published CNN-based SAR ship classification methods.

Directly applying computer vision models to SAR ship data can give unsatisfactory
results. Improving the adaptability of computer vision models on SAR data is the key to the
first approach. A SAR ship classification method based on transfer learning was presented,
where some layers of the visual geometry group network (VGGNet) pretrained on the Ima-
geNet dataset, which is a popular public natural optical image object classification dataset,
were retrained on SAR data [13]. VGGNet has a large mode size and high computational
complexity because it was designed for optical object classification, which is a very difficult
task in computer vision. A hybrid channel feature loss was designed to improve the train-
ing of ship SAR images [14]. This dual-polarization classification method also employed
VGGNet and achieved good accuracy. The model size and computational complexity of this
method are much larger than many methods using networks designed for SAR ship data.
Thanks to the development of deep learning, a dual-polarization classification method
based on mini-hourglass region extraction and a dual-channel efficient fusion network has
achieved good accuracy with moderate computational complexity [15]. Many advanced
technologies based on deep learning have been integrated into this method, which has
boosted its efficiency. However, the core of this method is EfficientNet, whose target plat-
form is a desktop. Compared with some networks designed for SAR aiming at mobile or
embedded platforms, this method has relatively higher computational complexity.
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Networks designed for SAR ship data are different to networks designed for computer
vision. A sequential CNN for high-resolution SAR ship images has been designed, includ-
ing ten convolutional layers and three fully connected layers [16]. Experimental results on
the dataset obtained from the Gaofen-3 satellite showed that this CNN had good accuracy
over many ship categories. However, this method has very higher computational com-
plexity compared to VGGNet-based methods. Furthermore, the number of weights in this
method is not suitable for embedded devices. Traditionally handcrafted feature extraction
can be integrated into neural networks. A combination of HOGs, principal component
analysis (PCA), spatial attention, and a CNN was proposed and referred to as the network
with HOG feature fusion (HOG-ShipCLSNet) [18]. This method contains two data flows.
For one data flow, the features in HOGs are extracted by PCA. For the other data flow,
convolutional layers with spatial attention are used to extract features from the original
SAR image at different scales. Concatenated feature vectors from the two flows are fed to a
linear classifier. Compared with other CNN-based SAR ship classification methods, HOG-
ShipCLSNet has low computational complexity and high performance. Two disadvantages
of this method are the large model size and the need for many additional computations
outside of the neural network. A dual-polarization SAR ship classification network was
constructed with a channel-wise attention fusion module, a squeeze-and-excitation (SE)
module, and a Laplacian feature pyramid [19]. This squeeze-and-excitation Laplacian
pyramid network was dubbed "SE-LPN-DPFF". The dual-polarization SAR images and the
polarization coherence are the inputs. This method shows good performance and depends
largely on dual-polarization with a large prediction latency. Many SAR products do not
provide dual-polarization. Single-polarization-based methods can work on dual polar-
ization data with simple fusion. Hence, compared to single-polarization-based methods,
SE-LPN-DPFF has limited scope for application.

Table 1. Summary of CNN-based SAR ship classification methods.

Method
Use

Traditional
Feature

Network Architecture
Designed for
SAR Ships

Model Size Computational
Complexity

Dual-Polarization
Only

Finetuned
VGGNet [13] × × Large High ×

VGGNet With
Hybrid Channel
Feature Loss [14]

× × Large High
√

Mini Hourglass
Region Extraction
and Dual-Channel

Efficient Fusion
Network [15]

× × Moderate Moderate
√

Plain CNN [16] ×
√

Large High ×
HOG-

ShipCLSNet [18]
√ √

Large Low ×

SE-LPN-DPFF [19]
√ √ √

2.2. Network Architecture Searching

NAS is a kind of algorithm that automatically designs network architectures for
predefined purposes. A manually designed network architecture always requires a long
development period with low labor efficiency. Furthermore, unnecessary interventions
from involved researchers may damage these handcrafted networks.

Hence, to improve upon manually designed networks, NAS has become one of the
most important research areas in computer science. NAS algorithms can be divided
into three main categories reflecting their different approaches to exploring the searching
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space: reinforcement-learning-based searching, evolutionary-based searching, and gradient-
based searching.

Reinforcement-learning-based searching is the most important area to date and has
had a remarkable impact on all NAS algorithms. An outside meta-controller is defined to
generate the network architectures. The controller is taught to act following predefined
goals through the use of reinforcement learning. Application of the concept of a node
cell prevents unfinishable search with an exaggerated large searching space for the whole
network [26]. The target network can be built with several stacked searched cells sharing
the same prediction graph, which means the output of searching changes from a whole
network to a few cells, significantly reducing the computational complexity. Weight-
sharing searching significantly reduces the time consumption for searching [27]. Clearing
trained weights is forbidden, which eliminates the time used to retrain from scratch at the
evaluation stage.

Evolutionary-based searching focuses on applying evolutionary algorithms and ge-
netic operations on network architectures with predefined targets. With the help of en-
coding technology, neural networks can be presented as architecture gene queries [28].
Furthermore, some network architectures for special uses, such as resisting noise [29], can
be found with this approach.

Gradient-based searching was established based on converting architecture searching
into an optimization problem and achieves excellent searching efficiency. Differentiable
architecture searching (DARTS) was the first gradient-based searching algorithm [21].
Searching is defined as a bi-level optimization problem which finds the target network
by applying gradient descent. In the meantime, both node cell searching and weights
sharing are utilized. All candidate operations are packaged into a super-net and can be
trained together, which significantly decreases the search time. However, DARTS still
has server-level hardware requirements and can be criticized for filling many weight-
free operations in target networks. PC-DARTS is a personal-computer-level NAS [20].
Randomly sampled channels can effectively reduce the computational complexity and
memory occupation, while the hit rates of weight-free operations with constant output are
decreased to a moderate state.

2.3. Efficient Convolutional Blocks

Due to popular modern CNNs being built with convolutional blocks, many researchers
are working on modifying convolutional blocks to improve the efficiency of CNNs. Re-
lated studies are being conducted on pure convolutional blocks and additional module-
equipped blocks.

An efficient pure convolutional block usually contains one or several convolutional
layers, activations, normalizations, and shortcut connections. DSCONV is a well-known
efficient convolutional block, where a normal convolution is replaced by a depth-wise
convolution and a point-wise convolution [30]. DSCONV has an advantage in having very
low computational complexity and has become a pioneer for the implementation of CNNs
in mobile devices. In depth-wise convolution, each kernel is only connected to an input
channel. Point-wise convolution can be considered as a normal convolution whose kernel
size is set as 1. However, when the number of input channels is small, the performance
of DSCONV is significantly reduced. MobileNetv2 version MBCONV has an inverted
residual architecture to alleviate this problem [31]. This architecture first expands the
dimension of the feature maps with a point-wise convolution. After computing the depth-
wise convolution, the dimension is projected back with another point-wise convolution.
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The second approach towards creating efficient convolutional blocks is by inserting
additional modules into blocks to improve the performance with a small cost in compu-
tational complexity. Inserting the SE module into the residual blocks can significantly
improve accuracy [32]. An SE module contains two fully connected layers and one global
average pooling layer. After processing of an SE module, the key channels are enhanced,
which can be considered as a kind of channel-level attention. Based on MobileNetv2,
an improved version of MBCONV, that contains the SE module and uses Swish for activa-
tion, is the basic block of EfficientNet [22]. With the help of NAS, EfficientNet achieves a
good trade-off between computational complexity and performance. However, the model
size and computational complexity of the smallest member of the EfficientNet family is
unaffordable for most embedded devices because EfficientNet is designed for middle- and
large-sized devices.

2.4. Networks Related to Transformers

After the great success of transformer-based models in natural optical image classi-
fication and detection, researchers are increasingly working with transformers on two-
dimensional data. The three main types of networks related to transformers can be summa-
rized as transformer-based networks, CNN–transformer mixed networks, and Metaformer-
based networks.

Transformer-based networks use self-attention to process features. Vision trans-
former (ViT) is one of the pioneers in this approach [23]. An image is divided into
286 (14× 14) patches of 16× 16 pixels. After tokenization and positional embedding,
tokens are fed into stacked transformer encoders. The Hierarchical Vision transformer
using Shifted Windows (Swin) uses cross-attention to achieve CNN-like multi-level
feature extraction and provides multi-scale feature maps [33]. Self-attention involves
processing the features within its receptive field and sensing the whole feature map
with slicing windows, which decreases the computational complexity.

Some studies on integrating CNNs and transformers have revealed that mixture
networks exhibit advantages from both sides. CoAtNet-equipped MBCONV blocks and
transformer encoders exhibit more powerful performance on some small-size datasets,
indicating that CNNs and transformers exhibit differences in learning capability and
generalization capability [34].

The compact convolutional transformer (CCT) is aimed at lightweight model appli-
cations [24]. A classic CNN with several normal convolutional layers and max pooling
layers is used as a tokenizer, which can efficiently extract features and reduce some of
the requirements for transformer parts regarding feature extraction. The CCT outper-
forms most transformer-based networks and other mixed networks in model size and
computational complexity.

Metaformer-based networks focus on the characteristics of the transformer encoder
architecture and use other operations to act as token-mixers instead of self-attention. Pool-
former uses average pooling, which has no weights, as the token-mixer [25]. Compared to
transformer-based networks with multi-head self-attention, Poolformer has much lower
computational complexity. Another Metaformer uses multilayer perceptron (MLP) as the
token-mixer and achieves acceptable results on image classification tasks [35]. Although a
gap in performance between this method and the most advanced CNNs can be observed,
its special architecture can significantly help future investigations into interactions in a
neural network. Figure 1 displays the general concept of the Metaformer block and the
architecture of the transformer encoder and poolformer block.
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Figure 1. Architecture of a Metaformer block and its specific applications.

2.5. SAR Image

Radars transmit modulated radio signals and receive the reflected signals from objects
to detect targets, which is very different from cameras, which use natural light or infrared
radiation [36]. The wavelength of the radio frequency signal and the polarization processes
of radar can affect the SAR images produced. In addition, SAR technology itself and the
ocean also present problems for the SAR imaging of ships.

Radar detection waves are able to penetrate, which allows SAR to operate in all
weathers. Different wavelengths have different penetration distances, which could affect
SAR images. The X-band has a wavelength of three centimeters (cm), the C-band has a
wavelength of 6 cm, the L-band has a wavelength of 24 cm, and the P-band has a wavelength
of 65 cm. Usually, a signal in the C-band can only penetrate the upper levels of a forest’s
canopy and can show much roughness scattering combined with some volume scattering.
A signal in the P-band or L-band could result in more volume scattering and double-bounce
scattering [37]. The C-band has been widely applied in many SAR-equipped satellites, such
as Sentinel-1 and Gaofen-3.
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Different polarization processes show different features in the resultant SAR images.
When describing radar polarization processes, the letters H and V stand for horizontal and
vertical polarization, respectively. The transmitter and receiver of a radar may employ
polarization processes; hence, the complete polarization process of an SAR image can be
described in two letters. VV polarization means both the transmitter and receiver use
vertical polarization. This polarization can be more easily influenced by sea clutter. If the
transmitter and receiver are set with different polarization processes, VH or HV will be
used. These polarizations are susceptible to volume scattering. HH polarization has a
stronger double-bounce [37].

SAR images of the sea do not show distance distortion, which is common in optical
images, but other problems remain. Geometric distortion can be generated in SAR images
by deviation of the detecting geometry, refraction, turbulence, etc. Many SAR detectors are
present in high-speed aircraft or where the target is moving rapidly [38]. The relative speed
leads to range migration [39]. In addition, speckle noise is generated by the SAR imaging
technology itself and is unavoidable in SAR images [40].

3. Searched Convolutional Metaformer

Convolutional cells and a transformer classifier are integrated together in the proposed
network for SAR ship classification. The overall architecture of the SCM is shown in
Figure 2 and Table 2. The SCM contains four searched convolutional cells, two proposed
ConvFormer cells, and one transformer classifier. To achieve a small model size and low
computational complexity, a very small number of initial channels is selected and the sizes
of the feature maps are reduced many times in the SCM.

In this section, convolutional cells are introduced, with details covered including
cell architectures, updated basic blocks, and the proposed searching algorithm which is
designed for SAR data. Then, the transformer classifier and proposed ConvFormer cell
are described.

Table 2. Details of the SCM network architecture.

Name Type Input(s) Input Shape(s) Output Shape

Stem Normal Convolution SAR Image 1× 100× 100 12× 48× 48

Cell1 Normal Cell #1 Stem #1 12× 48× 48 16× 48× 48#2 Stem #2 12× 48× 48

Cell2 Reduction Cell #1 Stem #1 12× 48× 48 32× 24× 24#2 Cell1 #2 16× 48× 48

Cell3 Reduction Cell #1 Cell1 #1 16× 48× 48 64× 12× 12#2 Cell2 #2 32× 24× 24

Cell4 Normal Cell #1 Cell2 #1 32× 24× 24 64× 12× 12#2 Cell3 #2 64× 12× 12

Cell5 ConvFormer Cell #1 Cell3 #1 64× 12× 12 64× 12× 12#2 Cell4 #2 64× 12× 12

Cell6 ConvFormer Cell #1 Cell4 #1 64× 12× 12 64× 12× 12#2 Cell5 #2 64× 12× 12

Transformer Compact Transformer Cell6 64× 12× 12 3Classifier Classifier
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Figure 2. Overall network architecture of the SCM.

3.1. Efficient Convolutional Cells

The efficient convolutional cells in this paper include normal cells and reduction
cells, which are shown in Figure 3. A normal cell is constructed with five efficient
5× 5 convolutional operations, two efficient 5 × 5 dilated convolutional operations,
and one efficient 3× 3 convolutional operation. A reduction cell contains four efficient
5× 5 convolutional operations, two efficient reduction 5× 5 convolutional operations,
one efficient 3× 3 convolutional operation, and one efficient reduction 3× 3 convolu-
tional operation. All the efficient operations use MBCONV as the basic block instead of
DSCONV from DARTS and PC-DARTS. The type and the connections of each operation
in our efficient convolutional cells are determined by the proposed PDA-PC-DARTS.

Progressive Network Architecture Searching

Inspired by studies about progressive learning and data augmentation [41], PDA-PC-
DARTS is proposed based on PC-DARTS. The search is divided into three stages with
different data augmentation policies, which makes the super-net learn better with low-
quality SAR ship data. The convolutional cells in the SCM are obtained with the help
of PDA-PC-DARTS.

Original PC-DARTS divides the training set into two parts equally. One part is
used to train the super-net and the other is used to optimize the architecture parameters.
Meanwhile, only a moderate data augmentation policy is employed during the entire
search. As a result, weight-free operations, such as pooling, are highly likely to be selected
in SAR ship data. The target network is unable to produce a satisfactory performance.

In this paper, more complex data augmentation policies are used. In addition, both
super-net training and architecture parameter searching are conducted on the whole train-
ing set, which can improve the data utilization rate and the search performance. Following
the concept of progressive learning, PDA-PC-DARTS lets the super-net learn small-size
images with weak transformations at the beginning stage. Then, large images with a strong
data augmentation policy are used in training. Considering the characteristics of SAR im-
ages, the search progress contains three stages where data augmentation technologies are
used to change the difficulty of learning and increase the variety of data. Hence, the super-
net in PDA-PC-DARTS can learn more about samples and produces a target network with
better performance. The data augmentation policy in each stage is shown below:
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In the first stage, the size of the input images is 76× 76, obtained by center cropping
and Bicubic. The first stage consists of 12 epochs.

In the second stage, the size of the input images is 84 × 84, obtained by random
cropping and use of Bicubic. Additional sample transformation methods include random
horizontal flipping and cutout [42]. The second stage consists of 12 epochs.

In the third stage, the size of the input images is 100 × 100, obtained by random
cropping. Additional sample transformation methods include random horizontal flipping,
vertical flipping, rotation, and cutout. The third stage consists of 36 epochs.

Figure 4 demonstrates the different outputs with all three data augmentation policies
used in the different searching stages. Notice that human eyes are not sensitive to dark
pixels in the original SAR images. For a better viewing experience, a row of enlarged
images with increased lightness is shown in Figure 4.

Figure 3. Architectures of searched cells. Efficient convolutional and dilated convolutional operations
do not change the shape of feature maps. Efficient reduction convolutional operations reduce the
height and width of feature maps by half.
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Figure 4. Demonstration of different data augmentation policies.

The mixture operation used in PDA-PC-DARTS is the same as the original random
partial connection mixture operation in PC-DARTS, which ensures very low computational
complexity and high memory efficiency. Taking the information propagating from node i
to node j as an example, the mixture operation fi,j(.) is shown below:

fi,j(xi; Si,j) = ∑
o∈O

exp{αo
i,j}

∑o′∈O exp{αo′
i,j}

o(Si,j × xi) + (1− Si,j)× xi (1)

where O is the predefined searching space, o(.) is the candidate operation, xi is the output
of node i, αo

i,j is the weight for choosing the candidate operation o(.), and Si,j are randomly
sampled channels.

Random sampling can directly reduce the consumption of computational resources
and memory, but the search progress is highly likely to be unstable. Similarly, we apply the
solution from PC-DARTS. Edge normalization is used to stabilize searching. The output of
node j in the search with edge normalization can be described as:

xj = ∑
i<j

exp{βi,j}
∑i′<j exp{βi′ ,j}

fi,j(xi ;Si,j)
(2)

where βi,j is the edge normalization coefficient.

3.2. Efficient Convolutional Operations

DSCONV has the advantage of low computational complexity, but low accuracy
performance can be observed when a small channel number is set. Recently, research
on efficient networks has shown the EfficientNet version MBCONV has strong feature
extraction and generalization capability [22,24]. To achieve better performance, we replace
DSCONV with the EfficientNet version MBCONV as the basic block of candidate operations.
The architecture of the EfficientNet version MBCONV block is represented in Figure 5.
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Figure 5. Architecture of EfficientNet version MBCONV block.

Each operation in the SCM consists of one or two stacked MBCONV blocks. To ensure
the search space meets the requirements, our replacement keeps the features of the original
candidate operations. The hyperparameters of the first depth-wise convolution in each
of our efficient operations, such as the kernel size and dilation, are kept the same as the
original operations. The details of the updated operation are shown in Table 3.

Table 3. Configuration of efficient convolutional operations.

Original Operation Efficient Operation Original Block(s) Updated Block(s) Hyperparameters of Depth-Wise Convolution(s)

Conv 3× 3 Efficient 2× DSCONV 2×MBCONV #1 Kernel 3× 3, Stride 1, Dilation 1
Conv 3× 3 #2 Kernel 3× 3, Stride 1, Dilation 1

Conv 5× 5 Efficient 2× DSCONV 2×MBCONV #1 Kernel 5× 5, Stride 1, Dilation 1
Conv 5× 5 #2 Kernel 5× 5, Stride 1, Dilation 1

Dil_Conv 3× 3 Efficient DSCONV MBCONV Kernel 3× 3, Stride 1, Dilation 2Dil_Conv 3× 3

Dil_Conv 5× 5 Efficient DSCONV MBCONV Kernel 5× 5, Stride 1, Dilation 2Dil_Conv 5× 5

Reduction Efficient Reduction 2× DSCONV 2×MBCONV #1 Kernel 3× 3, Stride 2, Dilation 1
Conv 3× 3 Conv 3× 3 #2 Kernel 3× 3, Stride 1, Dilation 1

Reduction Efficient Reduction 2× DSCONV 2×MBCONV #1 Kernel 5× 5, Stride 2, Dilation 1
Conv 5× 5 Conv 5× 5 #2 Kernel 5× 5, Stride 1, Dilation 1

Reduction Efficient Reduction DSCONV MBCONV Kernel 3× 3, Stride 2, Dilation 2Dil_Conv 3× 3 Dil_Conv 3× 3

Reduction Efficient Reduction DSCONV MBCONV Kernel 5× 5, Stride 2, Dilation 2Dil_Conv 5× 5 Dil_Conv 5× 5

Similar to DSCONV, point-wise convolution and depth-wise convolution play impor-
tant roles in MBCONV. Point-wise convolution is a normal convolution with a kernel size
of 1. Furthermore, depth-wise convolution is a modified convolution where each channel is
connected to only one input channel. The equations of normal convolution and depth-wise
convolution are shown below:

CONVCout(In) = BCout +
Cin−1

∑
k=0

Wk
Cout

⊗
Ink (3)

DWCONVCin(In) = BCin + WCin

⊗
InCin (4)

where W is the weight, B is the bias, In is the input, and C indicates the number of channels.
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A novel activation, Swish, is equipped in the EfficientNet version MBCONV. This
function is obtained with the help of exhaustive and reinforcement-learning-based auto-
matic search techniques and is characterized by smoothing, the first derivative, and non-
monotonicity [43]. The computation of Swish is as follows:

Swish = In× Sigmoid(In) (5)

3.3. Transformer Classifier

Some studies have shown that combining a transformer and a CNN together is benefi-
cial to tasks with two-dimensional data. To enhance the learning capability, the compact
transformer classifier from CCT [24] is used as the classifier in the SCM.

The transformer classifier of the SCM only contains two transformer encoders. Firstly,
convolution shows more advantages than transformer blocks in a small-size two-dimensional
dataset. Secondly, the transformer encoder suffers more from overfitting and usually has
higher computational complexity [34]. Lastly, the searched convolutional cells already have
strong feature extraction capability in SAR ship images, and adding a small number of
self-attention-based modules can help obtain improved learning capability. We believe that
the ratio of convolutional operations to transformer blocks in the SCM leads to a better
trade-off between accuracy and computational complexity. The classifier used in the SCM
is shown in Figure 6, including one trainable positional embedding, two staked transformer
encoders, one sequence pooling, and one fully connected layer.

Figure 6. Architecture of the transformer classifier.

Our transformer classifier assigns a positional vector to each pixel of the input feature
maps and processes information at the spatial level with transformer encoders. One multi-
head self-attention mechanism, two normalizations, two residual connections, and two
fully connected layers can be found in a transformer encoder. The multi-head self-attention
mechanism can be thought of as the parallel computing of several self-attentions with a
concatenated and transformed output, which can be calculated as:

MultiHead(Q, K, V) = [head1, head2, . . . , headh]W0 (6)

headl = So f tmax(
QlKl

T
√

dk
)Vl (7)

Ql = InWQ
l (8)

Kl = InWK
l (9)
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Vl = InWV
l (10)

3.4. ConvFormer

Inspired by recent studies on network architecture [25], a novel cell, the ConvFormer
cell, is proposed in this paper. The searched convolutional cells show higher power feature
extraction capability than some simple layers or weight-free operations, such as MLP and
pooling. Following the concept of a Metaformer, enhancement of the node cell architecture
can further improve the performance of the SCM.

The ConvFormer Cell is designed by filling a Metaformer block. The searched efficient
convolutional cell is used as the token mixer, which can combine the advantages of both
NAS and Metaformer. The architecture of our proposed ConvFormer cell is shown in
Figure 7. This cell adds two residual connections, two group normalization layers [44],
and two fully connected layers activated by GeLu [45]. Notice that the residual connection
requires that both inputs share the same shape. Hence, the token mixer in a ConvFormer
cell is only a normal cell.

Figure 7. Architecture of the ConvFormer cell.

Metaformer networks with simple token mixers usually require a large number of
Metaformer blocks to ensure satisfactory performance, which leads to a large model size.
The performance of the SCM is guaranteed by searched convolutional cells. A very small
number of ConvFormer cells is used in the SCM to obtain a small model. Furthermore,
the SCM does not require an additional patch embedding module, the function of which
can be replaced by convolutional operations. As a result, considering the trade-off between
computational complexity and performance, we build an SCM with six cells by appending
two ConvFormer cells to four stacked efficient convolutional cells. The channel number
and type of each efficient convolutional cell are set according to the rules of DARTS.

4. Experiments

A series of experiments were conducted on the OpenSARShip dataset and FUSARShip
to verify the superiority of the proposed SCM. A personal computer with an Intel core
i5-11600 CPU, 16 G memory, and only a single RTX 3060 was used. The main software
environment was an Ubuntu20.04 LTS operating system and the Pytorch framework [46]
with the compute unified device architecture (CUDA) toolkit.
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4.1. Datasets
4.1.1. OpenSARShip

OpenSARShip is an open-access dataset that has been widely used in many SAR
studies [47]. A total of 11,346 SAR ship images from the ground range detected mode or
the single look complex mode are contained in OpenSARShip. The size of a category in
this dataset is distributed over a wide range. The single look complex mode provides both
VV and VH data for a target with good range resolution. Bulk carriers, container ships,
and tankers are selected to construct the classification task. The involved categories include
approximately 80% of international routes [48].

To avoid the long tail problem, we follow the rule of HOG-ShipCLSNet [18] to take
70% of the least sample number in all three categories as the uniform number of the training
targets for each category. Furthermore, the remainder of the targets are put into the test set.
VV and VH data of the same target are treated as two samples and put in the same set. The
sample number of each category is shown in Table 4; some samples are shown in Figure 8.

Table 4. Sample numbers of each category in the three-category classification task from OpenSARShip.

Ship Category VH Samples VV Samples Training Samples Test Samples

Bulk Carrier 333 333 338 328
Container Ship 573 573 338 808

Tanker 242 242 338 146

 
VH 

 
VH 

 
VH 

 
VV 

 
VV 

 
VV 

Bulk Carrier Cargo Tanker 

Figure 8. SAR ship samples in the three-category classification task from OpenSARShip. The targets
in a column are the same.

4.1.2. FUSARShip

FUSARShip is another open-access dataset for SAR research and is built with the
Gaofen-3 civil C-band fully polarimetric spaceborne SAR and related ship automatic
identification systems [16]. Ships, non-ship targets, land, sea clutters, and false alarms
are contained in this dataset. Although the number of ship categories in FUSARShip is
large, the data sizes of the categories are much more unbalanced. A classification task is
built with the bulk carriers, fishing ships, cargoes, and tankers, including both onshore and
offshore scenarios.
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Similarly, 70% of the least sample number in all four categories is set as the uniform
number of training targets for each category. Moreover, the sample numbers of the cargo
and fishing categories are much larger than the other categories. The testing sample number
of each category is set to be the same as the third sample number in the involved cate-
gories. The sample number of each category is shown in Table 5; some samples are shown
in Figure 9.

Table 5. Sample numbers of each category in the four-category classification task from FUSARShip.

Ship Category Total Samples Training Samples Test Samples

Bulk Carrier 274 174 100
Fishing 787 174 100
Cargo 1735 174 100
Tanker 248 174 74

Figure 9. SAR ship samples in the four-category classification task from FUSARShip.

4.2. Data Preprocessing

OpenSARShip provides processed Uint8 images with different image shapes. To
reduce the distortion effect of resizing, samples over 128× 128 are center-cropped into
112× 112. Meanwhile, samples smaller than 112× 112 are resized to 112× 112 by Bicubic.
Different sample shapes are made uniform to 100× 100 with cropping. In detail, random
and center cropping are used in training and testing, respectively.

The samples from FUSARShip share the same image shape of 512 × 512. Hence,
samples are first resized to 128× 128. Then, cropping is used to create images with a size
of 100× 100.

4.3. Architecture Searching

The convolutional cells in the SCM are searched in the three-category classification
task from OpenSARShip with the proposed PDA-PC-DARTS. The search is operated with
a batch size of 32. The SGD optimizer [49] is used to update the super-net and architecture
parameters. The learning rate is set with an initial value of 0.04 and a final value of 0.001.
The cosine annealing scheduler changes the learning rate during training following the
equation shown below:

ηt = ηmin +
1
2
(ηmax − ηmin)(1 + cos(

Tcur

Tmax
)) (11)

where ηt is the current learning rate, ηmax is the max learning rate, ηmin is the final learning
rate, and Tcur and Tmax indicate the current epoch and final epoch, respectively.

4.4. Network Training

To improve learning with a small number of available samples, the SCM is trained
with data augmentation and multi-task learning technologies.

Data augmentation can significantly increase the variety of samples and has been
proven to improve the learning of SAR data [18]. The applied transformations in the SCM
training policy include random cropping, flipping, and cutout.
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Usually, transformer encoders require a large amount of training data to obtain sat-
isfactory learning, which has led to it being referred to as “data hungry”. To reduce this
phenomenon in training with the small SAR dataset, this paper takes an approach based on
multitask learning to improve performance [50]. The loss in training the SCM is the sum of
the distance loss and cross-entropy. To calculate the distance loss, a pair of patches from the
last transformer encoder are randomly picked up. An MLP is used to output the distance
between the patches. The L1 loss of the outputted value and the real value is the result of
the distance loss. The equation for the distance loss is shown below:

Ldr = ∑
s∈B

E(pi1,j1,pi2,j2) Gs [|(tdh, tdv)
T − (ddh, ddv)

T |1] (12)

where B is the mini-batch with N samples, s is a sample in B, (pi1,j1, pi2,j2) is a pair of patches
randomly picked from the last transformer encoder, ddh and ddv indicate the predicated
distance horizontally and vertically, respectively, and tdh and tdv are the true distances.

Cross-entropy is the most common classification loss and can be calculated as follows:

Lce = −
1
N ∑

s∈B
log

exp(y(s,labels))

∑M
m exp(ys,m)

(13)

where M is the total number of categories, N is the total number of samples, labels is the
true category of sample s, and ys,m indicates the probability of a category produced by
the network.

The training of the SCM consists of 600 epochs with a batch size of 32. The weights in
the SCM are updated by the SGD optimizer. The cosine annealing scheduler with an initial
value of 0.0025 and a final value of 0 is employed during training.

5. Results
5.1. Comparison with CNN-Based SAR Ship Classification Methods

The results of the SCM on the three-category classification task from OpenSARShip
are shown in Table 6. For comparison, four other SAR ship classification methods are listed
together, including the finetuned VGGNet [13], the plain CNN [16], the group squeeze exci-
tation sparsely connected CNN (GSESCNNs) [17], and HOG-ShipCLSNet [18]. Additional
computations outside of the neural networks are necessary in HOG-ShipCLSNet.

Table 6. Results of the three-category classification task from OpenSARShip.

Method Precision Accuracy MAdds Weights

Finetuned VGGNet [13] 58.72% 69.27% 13.84× 109 15.52× 106

Plain CNN [16] 69.44% 67.41% 2.17× 109 47.44× 106

GSESCNNs [17] 69.56% 74.98% — —

HOG-ShipCLSNet [18] 72.42% 78.15% 89.46× 106
65.11× 106

(Not including HOG and PCA)
SCM (ours) 77.74% 82.06% 81.46× 106 0.46× 106

As shown in Table 6, our proposed SCM achieves the best accuracy, 82.06%, and out-
performs all listed single-polarization and dual-polarization methods. Moreover, the SCM
has the smallest model size and lowest computational complexity. The results of the SCM
regarding the number of weights and MAdds are 0.46× 106 and 81.46× 106, respectively,
which means the SCM is very efficient in computation and storage.

Table 7 displays the classification confusion matrix for the SCM on the three-category
classification task from OpenSARShip, indicating that the majority of samples can be
correctly predicted. However, the recall of each category is imbalanced; tankers and bulk
carriers have the highest and lowest values, respectively. Many other CNN-based SAR
networks have reported similar results [15,16,18,19]. The main confusion can be found
between container ships and bulk carriers. These two categories have many similarities,
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and the quality of samples is poor. Furthermore, the number of samples in the different
categories in the test set is imbalanced.

Table 7. Confusion matrix of SCM on the three-category classification task from OpenSARShip.

Bulk Carrier Container Ship Tanker

Bulk Carrier 75.61% 20.73% 3.66%
Container Ship 12.50% 82.80% 4.70%

Tanker 2.05% 5.48% 92.47%

5.2. Comparison with Efficient Networks from Computer Vision

To further verify the efficiency of the SCM, four famous light computation models
from computer vision are used for comparison. The models used for comparison are the
18-layer residual net(ResNet-18) [51], MobileNetv2 [31], ViT_tiny [23], and CCT_722 [24].
ResNet-18 is a popular small-size general network that has been widely applied in many
fields. MobileNetv2 is designed for mobile devices and is widely applied in light computa-
tion tasks. ViT_tiny is the first model ranked by computational complexity in the vision
transformer family. CCT_772 is a tiny mixture network dedicated to datasets with a small
sample size.

As the results of the three-category classification task from OpenSARShip depicted in
Table 8 show, the SCM outperforms MobileNetv2 by over 15%. Furthermore, the compu-
tational complexity of the SCM is slightly higher than MobileNetv2. Moreover, the SCM
requires far fewer weights than the other listed models. In detail, the storage space of the
proposed SCM is less than a quarter of MobileNetv2, which is the second-smallest model
in the list.

Table 8. Comparison with light computation networks on the three-category classification task
from OpenSARShip.

Method Precision Accuracy MAdds Weights

ResNet-18 [51] 69.40% 74.64% 333.10× 106 11.18× 106

MobileNetv2 [31] 61.80% 65.83% 56.65× 106 2.23× 106

ViT_tiny [23] 46.10% 64.35% 208.03× 106 5.49× 106

CCT_722 [24] 72.29% 75.66% 274.07× 106 4.51× 106

SCM (ours) 77.74% 82.06% 81.46× 106 0.46× 106

5.3. Results on Dual-Polarization

The SCM can also operate dual-polarization classification with high accuracy. The
results of the SCM with decision fusion on the three category dual-polarization classification
task from OpenSARShip dataset are shown in Table 9. Three CNN-based dual-polarization
SAR ship classification methods are listed together for comparison, including the VGGNet
with hybrid channel feature loss [14], the Mini Hourglass Region Extraction and Dual-
Channel Efficient Fusion Network [15], and SE-LPN-DPFF [19]. SE-LPN-DPFF requires
additional computation outside of the neural networks. Dual-polarization classification
takes both VV and VH data together as inputs to predict a target. The decision fusion used
in the SCM is very simple without additional weights. The SCM outputs two results based
on VV and VH, respectively. If the results are different, the result with a higher confidence
level will be the final output of the SCM.
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Table 9. Results of the three-category dual-polarization classification task from OpenSARShip.

Method Precision Accuracy MAdds Weights

VGGNet With Hybrid Channel 74.05% 77.41% 27.68× 109 15.01× 106
Feature Loss [14]

Mini Hourglass Region
71.50% 75.44% ≥369.93× 106

7.45× 106Extraction and Dual-Channel (Dynamic)Efficient Fusion Network [15]
SE-LPN-DPFF [19] 76.45% 79.25% — —

SCM with decision fusion (ours) 80.36% 83.78% 162.92× 106 0.46× 106

5.4. Results of Generalization Capability

The computer vision networks compared in Section 5.2 are designed with ImageNet
or CIFAR datasets and are well known for their strong generalization capabilities. To
verify the generalization capability of the proposed method, the SCM is trained on the
four-category classification task from FUSARShip with the architecture seached in the
three-category classification from OpenSARShip. Considering the application requirement
for computational complexity, the results of the compared computer vision networks are
obtained using the same data processing of the SCM and are shown in Table 10. Although
the task difficulty has increased, the SCM still has the best accuracy in the list.

Table 10. Comparison of light computation networks on the four-category classification task
from FUSARShip.

Method Precision Accuracy MAdds Weights

ResNet-18 [51] 64.12% 60.16% 333.10× 106 11.18× 106

MobileNetv2 [31] 59.35% 60.43% 56.65× 106 2.23× 106

ViT_tiny [23] 60.76% 58.29% 208.03× 106 5.49× 106

CCT_722 [24] 57.31% 57.75% 274.07× 106 4.51× 106

SCM(ours) 61.95% 63.90% 81.46× 106 0.46× 106

Table 11 displays the classification confusion matrix for the SCM on the four-category
classification task from FUSARShip. SCM can effectively classify bulk carriers and fishing
and cargo ships. The tanker category is identified with a low recall and is easily misclas-
sified as another category. We analyzed the confusion matrices of the tested computer
vision networks and obtained similar results. The following reason may explain the poor
performance in this category. Data processing may remove much information on the tanker
category. This work focuses on network architecture; hence, we do not apply additional
training methods for small training sets or imbalanced test sets. Many onshore images of
tankers can be found in the dataset, which may further decrease the learning. Similarly,
no background processing is employed in our method. Lastly, the tanker category in
FUSARShip is built with over ten subcategories, including asphalt bitumen, gas, chemical,
and crude oil tankers, among others. Some subcategories have strong differences.

Table 11. Confusion matrix of the SCM on the four-category classification task from FUSARShip.

Bulk Carrier Fishing Cargo Tanker

Bulk Carrier 68.00% 7.00% 8.00% 17.00%
Fishing 3.00% 70.00% 13.00% 14.00%
Cargo 2.00% 10.00% 76.00% 12.00%
Tanker 21.62% 21.62% 22.97% 33.78%

5.5. Ablation Study

A series of ablation experiments were conducted with the three-category clas-
sification task from OpenSARShip to confirm the positive effect of each proposed
improvement in the SCM. For fairness, all networks used were trained with the same
script covering data augmentation, the optimizer, and the learning rate. Table 12 dis-
plays the overall results—the conclusion can be drawn that each improvement results
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in an accuracy increase. In the cell type column, N and R indicate a searched normal
cell and a reduction cell, respectively, and C represents the proposed ConvFormer cell.
The details of each improvement can be seen in Sections 5.5.1–5.5.4.

Table 12. Results of each improvement in the SCM.

Method Cell Type Accuracy

PC-DARTS [20] NNRNRN 75.66%(Baseline)

+PDA NNRNRN 80.11%

+PDA NNRNRN 80.50%
+MBCONV

+PDA
NNRNRN 81.59%+MBCONV

+Transformer Classifier

+PDA

NRRNCC 82.06%+MBCONV
+Transformer Classifier

+ConvFormer Cell

5.5.1. Progressing Network Architecture Searching

Table 13 shows the ablation study on the proposed PDA-PC-DARTS. In this exper-
iment, other improvements, the efficient blocks, the transformer classifier, and the Con-
vFormer cell are used in a target network searched by the original PC-DARTS. As can be
seen, employing PDA-PC-DARTS for searching results in higher accuracy. This is because
the original PC-DARTS fills its target network with a lot of weight-free operations, leading
to weak feature extraction capability.

Table 13. Effectiveness of progressive searching.

Searching Algorithm Accuracy

PDA-PC-DARTS 82.06%
PC-DARTS [20] 80.81%

5.5.2. MBCONV Block

Table 14 shows the ablation study on replacing DSCONV blocks with MBCONV blocks.
A target network based on DSCONV is searched by PDA-PC-DATRS. Then, the transformer
classifier and ConvFormer cells are appended under the rule mentioned in Section 3.
MBCONV has a stronger feature extraction capability and produces higher accuracy.

Table 14. Comparison of DSCONV and MBCONV.

Basic Block Accuracy

MBCONV 82.06%
DSCONV 79.41%

5.5.3. Compact Transformer Classifier

Table 15 shows the results of the ablation study on the transformer classifier. A popular
linear classifier with global average pooling is listed for comparison. The spatial awareness
and learning capability of the transformer classifier boost the performance.

Table 15. Comparison of classifiers.

Classifier Accuracy

Compact transformer classifier 82.06%
Linear classifier 78.39%
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5.5.4. ConvFormer

Table 16 shows the results of the ablation study on the proposed ConvFormer Cell.
Firstly, we replace the ConvFormer cells with normal cells to build an SCT. As discussed
in Section 3.4, the SCM does not follow the rule of DARTS to assign the type of each cell.
Hence, another SCT is built with the DARTS rule. From Table 16, changing the assignment
of cells has a negative effect. However, the ConvFormer cell has more advantages to make
up for this negative effect drop and achieves the best accuracy in the table.

Table 16. Comparison of different arrangement of cells.

Network Cell Type Accuracy

SCM NRRNCC 82.06%
SCT_1 NRRNNN 81.27%
SCT_2 NNRNRN 81.59%

6. Discussion
6.1. Practical Application Scenario

To meet the increasing requirements for ocean surveillance, increasingly more SAR-
equipped small aircraft, such as satellites, balloons and drones, are deployed for large area
detection and monitoring. Considering security and their energy consumption, application-
specific integrated circuit (ASIC) solutions are more suitable for these small aircraft. How-
ever, ASIC platforms have many strict requirements for neural networks, especially for
model size. Using external memory leads to a large latency in data input/output. The
proposed network has the advantages of small model size with good trade-off between
accuracy and computational complexity. ASIC implementation can be more flexible than
for a CUDA graphics processing unit (GPU), which means ASIC is recommended for the
complex prediction graph of the proposed network.

6.2. Trade-Off between Accuracy, Number of Weights, and Computational Complexity

Compared with many state-of-the-art SAR classification methods, the proposed SCM
has relatively much smaller computational complexity. The proposed network achieves a
good trade-off between accuracy and computational complexity. However, we admit that
the computational complexity of SCM is slightly higher than MobileNetv2. The efficiency
operations, node style prediction graph, ConvFormer cells, and transformer classifier mean
that SCM has better accuracy with many small operators. Each small operator is computed
with the total feature maps, which leads to increased complexity. To outperform networks
for mobile devices both on computational complexity and performance, the operations
and cells in the SCM should be further optimized with advanced methods, such as fusion
of operators.

6.3. Adaptability of the ConvFormer Cell

As we described, only normal cells can be used to build ConvFormer cells which are
appended to the DARTS cells. The ablation study showed that breaking the DARTS rule to
assign convolutional cells is not recommended. It would be meaningful to design novel
ConvFormer cells which contain both normal-type and reduction-type cells. In addition,
replacing all DARTS cells with ConvFormer cells should be considered.

6.4. Imbalance of Performance over Different Categories

The proposed method has high average accuracy, but the performance of each category
is imbalanced. Furthermore, the performance changes in different radar production and
application scenarios. Offshore scenarios have higher accuracy than onshore scenarios.
This work focuses on network architecture and does not consider additional methods for
small training sets and unbalanced test sets. Meanwhile, preprocessing the background
may improve the performance of some categories of ships. To obtain better performance of
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the SCM over more categories and application scenarios, some special preprocessing and
training methods should be studied in future work.

7. Conclusions

In this paper, a searched convolutional Metaformer, SCM, is proposed to classify SAR
ship images. Firstly, PDA-PC-DARTS, which is designed for SAR datasets with a small
data size, is proposed. Cells with strong feature extraction capability can be searched
by PDA-PC-DARTS. Secondly, the basic block of operations used in NAS was changed
from DSCONV to MBCONV, which results in better accuracy. At the same time, NAS,
a CNN, and the transformer are integrated to further improve the learning capability by
employing the transformer classifier. In addition, a ConvFormer cell is proposed to further
increase the accuracy. The experimental results show that the SCM has many advantages.
On the performance side, the SCM achieves state-of-the-art accuracy. Moreover, both the
computational complexity and the number of weights of the SCM are very low.
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