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Abstract: Recent years have seen deep learning (DL) architectures being leveraged for learning the
nonlinear relationships across the parameters in seismic inversion problems in order to better analyse
the subsurface, such as improved velocity model building (VMB). In this study, we focus on deep-
learning-based inversion (DLI) for velocity model building, leveraging on a conditional generative
adversarial network (PIX2PIX) with ResNet-9 as generator, as well as a comprehensive mathematical
methodology for generating samples of multi-stratified heterogeneous velocity models for training
the DLI architecture. We demonstrate that the proposed architecture can achieve state-of-the-art
performance in reconstructing velocity models using only one seismic shot, thus reducing cost and
computational complexity. We also demonstrate that the proposed solution is generalisable across
linear multi-layer models, curved or folded structures, structures with salt bodies as well as higher-
resolution structures built from geological images through quantitative and qualitative evaluation.

Keywords: full waveform inversion (FWI); deep learning-based inversion (DLI); velocity model
building (VMB); deep neural networks (DNNs); seismic inversion

1. Introduction

Seismic inversion plays a decisive role in the study of the underground structure of
Earth, be it investigations at the near surface or greater depths. Subsurface exploration over
a large area is traditionally achieved through the generation of artificial energy sources on
the ground surface, within boreholes, or through a combination of the two, in parallel with
placed sensors that record the generated seismic waves that travel through the Earth (i.e.,
seismic data). Surface seismic surveys, due to their relatively low cost, are often adopted
for near-surface exploration (depths < 1 km). Geophysical methods, in general, are used
for site characterisation, hydrocarbon exploration, and analysis of natural earthquakes or
human-induced seismicity [1], leading to association with many branches of structural [2–4],
industrial [5–7] and seismological analysis or research [8].

The aim of seismic methods is to reveal unknown physical properties of the subsurface
geomaterial, such as density, shear and compressive velocity, by analysing the propagation
of seismic waves (reflected, refracted or surface waves) through the Earth. Seismic methods
for Earth modelling, like most geophysical methods, have as their main objective, to derive
both quantitative and qualitative conclusions about the structure of the Earth through the
use of sensor measurements. This structure is represented by physical quantities, such as
density ρ, longitudinal wave velocity Vp and transverse wave velocity Vs, which are usually
described by a finite number of parameters or by a finite set of functions [9]. Often, only a
2D model of one or a few of these attributes is constructed, with the acoustic longitudinal
wave velocity model building (VMB) being the most popular [10]. VMB is critical for the
characterisation of subsurface material, i.e., each material has its own Vp ranging from
0.40–2.50 km/s in ordinary soils (sand, clay) to greater than 2.00 km/s for rocky soils [11].
VMB is also important for seismic and microseismic event analysis and specifically for
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source-localisation algorithms [12]. Furthermore, precise prediction of earthquake source
parameters is one of the most significant tasks in modern seismology for analysing fault
systems and tectonic processes [8,13].

A widely adopted approach for geophysical inversion is full waveform inversion
(FWI) [14], as it enables high-resolution imaging in complex sets [15,16] that can be used
in multiple applications and, unlike conventional seismic methods that use only a small
part of the wavefield, takes advantage of the full content of the seismic record. The key
challenge of FWI is that the parameters that compose the forward physical problem are
complex and non-linear, which means that the solution to the inverse problem cannot be
approached analytically and needs to be solved with iterative approximations. Despite the
complex mathematics behind FWI, of which VMB is a subset, FWI offers the most accurate
way of creating velocity images of the subsurface. FWI [17,18] aims, through iterative steps,
to perform non-linear inversion to reveal a subsurface model by minimising the difference
between recorded data that were acquired in a seismic survey (real measured data recorded
by placed equipment/recorded shots) and synthetic data (shots which are calculated for
an adopted hypothetical model of the subsurface). In each iteration, the initially adopted
Earth model is adjusted and produces new synthetic data until the difference between
the recorded and synthetic shots is minimised. This iterative calculation takes place if the
velocity image of the subsurface is required to be produced from known recorded shots.
If the opposite is needed (given the velocity model to define the wavefield), the procedure
is a forward solution of the wave equation and is thus not iterative. Figure 1 summarises
the forward and inverse problems. The prediction of the Earth model is limited by the
initial choice of the model at the start of the iterative process. Additionally, current seismic
sensors are usually high pass, limited to above 3 Hz, and therefore, recordings suffer from
lack of low-frequency measurements [19]. This makes it harder to achieve convergence
to a local minimum due to the cycle skipping problem, and in combination with the
strong dependence of the method on a successful starting velocity model, it degrades the
effectiveness of the method.

Figure 1. True 2D velocity model (left); seismic shot (middle); predicted 2D velocity model (right).
The forward problem leads to modelled seismic data, by solving the wave equation when the velocity
model is given, while the inverse seismic problem leads to a predicted velocity model when the
recorded shot is given. The major advantage behind the deep learning solution for the inverse
problem is that the networks can learn the non-linear relationship of the parameters by being trained
on pairs created from the forward solution.

FWI solutions were introduced in the 1980s [20,21], but major improvements in com-
putational performance have highlighted FWI and have made it more feasible as a compu-
tational tool [22], even for 3D reconstruction [23,24]. Furthermore, the high computational
performance provided by the graphical computing units (GPUs) that have taken place in
the last few years have provided the ability to perform seismic inversion with advanced
machine learning (i.e., deep learning) on large and highly complex datasets, gaining signifi-
cant benefits over physics-based FWI. The major advantage is that the deep learning (DL)
networks provide quite stable predictions for the velocity model, while they can learn the
non-linear relationships by being trained on pairs obtained from the forward solution of
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the wave equation, which is relatively easy to solve. After the training process, a nonlinear
map, relating the system parameters, is created, which is then used for solving the inverse
problem. In DL-based inversion (DLI) methods, it is possible to learn the low-frequency
content from simulated data or from prior information data to thus overcome the obstacle
of missing frequencies in the seismic recording, which is the main problem in the practical
application of seismic inversion [25]. In parallel, various studies [25,26] have shown that
DLI models can demonstrate better performance compared to FWI solutions. However, DLI
requires training on thousands of representative velocity models, which are significantly
difficult to generate. At the same time, in the current literature, it is hard to find methods
for the massive generation of pragmatic training models or available code as well as for
the evaluation of the performance of DLI architectures for data resulting from a variety
of construction techniques for the models. For example, the current literature is missing
evaluations of performance of examined DLI architectures simultaneously for horizontally
homogeneous, folded, and salt datasets together with models created directly from geo-
logical images presenting rich information- granularity or models that take advantage of
geometries seen in real geological layers, all integrated within a mathematical framework.

Although FWI is the most effective approach for reconstructing strongly heterogeneous
subsurface velocity models, for multi-source modelling, FWI is computationally intensive,
while DLI also requires the wavefield of each model to be derived from a separate forward
solution, in turn increasing the computational cost of training deep networks since it has
to be repeated thousands of times. With regard to the selected number of shots, which is
an absolutely decisive parameter of vertical cost increase, studies have shown that only a
few shots are required for constraining the acoustic VP model very well, especially for the
case of near-surface FWI [27]. Other studies with the aim of reducing this computational
cost have examined new methods that have been extended beyond conventional FWI by
simulating super-shots with the use of simultaneous encoded sources through the linear
combination of all simulated shots. In other words, simultaneous sources are activated at
the same time along a geological section in order to be summed and to create super-shot
gathers, thus reducing the required number of individual simulations. The problem in this
case is that simultaneous sources introduce cross-talk artifact noise in the final image due
to interference among the individual sources within a super-shot, and thus, attempts have
been made in order to balance this disadvantage either by assigning random weights to
the source wavefields [28], or by resampling source positions in every iteration during the
computation process [29]. Unlike FWI, DLI methods do not require any starting models
or many simulating sources to accurately perform seismic inversion, and they are less
sensitive to reflections from the borders of the physical models, which usually lead to poor
FWI results that are less sensitive to missing low frequencies [25] and are not prone to the
cycle-skipping problem [10]. Once the DLI model is trained, then the estimation runs in
just a few seconds.

Therefore, the two key challenges in the adoption and evaluation of DLI solutions are a
standardised approach to generate representative Earth models, for training and testing and
reducing the need for multiple-sourced simulation, and hence computational complexity,
for accurate subsurface reconstruction. In this study, in order to address the aforementioned
challenges and more specifically in order to ensure the high performance of the network
for the minimum amount of possible seismic sources and to provide a clear velocity
modelling methodology, we introduce a complete mathematical framework for constructing
representative velocity models and then use it for the training and testing of two distinct DL
architectures: the PIX2PIX conditional generative adversarial network, originally proposed
for image-to-image translation [30], and the fully convolutional velocity model building
(FCNVMB), proposed for VMB [25]. For the sake of completeness, we include the prediction
of the acoustic velocity Vp model via FWI. The value of a robust approach to generate
training and test sets is demonstrated via the DLI architecture performance. The results
highlight that PIX2PIX consistently provides a stable solution with variations in datasets
unlike FCNVMB, indicating PiX2PIX’s superior replicability performance. Additionally,
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computational complexity is evaluated for consistency of performance using one source.
Again, PIX2PIX provided consistent performance across a range of datasets with one source,
unlike FCNVMB. The contributions of this paper can be summarised as follows:

• We define a multi-component and easy-to-use mathematical approach for generating
representative samples of multi-stratified velocity models that can be used to train
DLI for VMB models, resulting in linear models and models with folds (Section 3.1) as
well as models with salt bodies (Section 3.2).

• We define an autonomous method for generating velocity models directly through
processing pixel intensities of geological images that present stratified layers with
application of elastic displacements (Section 3.3).

• We propose a PIX2PIX conditional generative adversarial network (cGAN)-based
architecture for DLI, using the ResNet-9 architecture as a generator that achieves
stable solutions, with low variability in performance, when simulating only a single
shot per model (Section 3.4).

• Demonstration of the generalisability of the proposed solution across all proposed
velocity models via the commonly used peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) performance metrics as well as visual quality of the
reconstructed velocity images, noting clear demarcation across stratifications and
minimising artifacts (Section 4)

• Benchmarking against FWI, PIX2PIX with the original U-Net architecture and FCN-
VMB of [25], also based on the U-Net architecture, with a single shot (Section 4).

• Rigorous evaluation of the model across all proposed velocity models, both qualita-
tively and quantitatively (Section 4).

• Release of a comprehensive dataset (DOI: https://doi.org/10.15129/d49bcfc6-7bd0-4
50c-9734-cf89403ef9c0, accessed on 12 April 2023) of a velocity model and wavefield
pairs for all five proposed multi-stratified velocity models, comprising linear, folded,
salt bodies and direct Earth-model-generated images.

This paper is organised as follows. We first provide a detailed literature review on data-
driven VMB in Section 2, to position our contributions with respect to the state of the
art. This is followed by the proposed methodology in Section 3, both for generating
representative samples of multi-stratified velocity models with elastic displacements as well
as for adapting PIX2PIX GAN and FCNVMB architectures for 1D and 2D heterogeneous
acoustic VMB. The performance of the proposed methodology for VMB, benchmarked
on a minimum number of seismic sources, is presented in Section 4, before we conclude
the paper.

2. Deep-Learning-Based Inversion for Velocity Model Building

This section first reviews DLI approaches, focusing on those developed for solving
the VMB problem, which have emerged recently. In particular, we identify the types of DL
architectures attempted, the types of datasets on which performance has been evaluated
and the number of shots used for each simulation. Then, a review of the approaches used
by these architectures to synthesise velocity models is provided.

2.1. DL Approaches for VMB

A comparative study for VMB between a convolutional neural network (CNN), a re-
current neural network (RNN), a long short-term memory (LSTM) and a gated recurrent
unit (GRU), was presented in [10]. A total of 12,000 velocity models were used with
4–8 background subsurface layers in velocity intervals of 2.00–4.00 km/s out of which
9000 contained salt bodies in velocity intervals of 4.45–4.55 km/s with varying shape and
position. The associated seismic gather was produced for 3 shots and 51 receivers, while the
data were split with 9600 velocity models for training and 2400 for testing. The results of
this comparison showed that the CNN architecture required 7,182,728 learnable parameters,
which was 4.61 times more than the RNN architecture, 2.50 times more than the GRU
architecture and 2.03 times more than the LSTM architecture. The RNN was the least

https://doi.org/10.15129/d49bcfc6-7bd0-450c-9734-cf89403ef9c0
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complex in terms of parameters, but the GRU and LSTM models demonstrated the best
performance with a PSNR of 30.58 dB and SSIM of 0.8515.

A fully convolutional network, named FCNVMB, uses an encoder–decoder architec-
ture for acoustic VMB directly from raw seismic data [25]. The encoder adopts a modified
U-Net architecture, synthesised by ten 2D convolutional layers, while the decoder is struc-
tured by eight 2D convolutional layers connected with the corresponding deconvolutional
layers. Two types of velocity datasets are used, both containing salt bodies. The first
simulated dataset contained 5–12 layers with background velocity ranging from 2.00 to
4.00 km/s, with one salt body having a constant velocity value of 4.50 km/s and com-
prising 1600 models. The second dataset was simulated from the Society of Exploration
Geophysicists (SEG) salt model with more complex backgrounds and velocity values that
ranged from 1.50 to 4.48 km/s, and included 130 models. The test sets for the two cases
were 100 and 10, respectively. In total, 29 shots were generated with 301 receivers. Through
a comparative analysis of 1, 13, 21, 27, 29 shots, it was shown that the network achieved
a more stable performance for a forward solution of 29 shots for each individual velocity
model. After 100 epochs, an approximate PSNR of 23 dB and maximum SSIM of 0.38
was obtained with 29 shots. FCNVMB slightly outperforms FWI in some cases. In the
reconstructed Earth models, FCNVMB properly positions the salt body but in many images
wrongly predicts the geometrical boundaries.

A generative adversarial network (GAN) architecture, VelocityGAN, is proposed for
VMB from seismograms [26] and comprises an encoder–decoder of five convolutional
layers for the generator and a CNN architecture of five convolutional blocks, a global
average pooling and fully connected layers for the discriminator. The loss function used
for the discriminator is a Wesserstein loss with gradient penalty while for the generator
is a combination of adversarial loss and image content loss based on mean absolute error
(MAE) and mean squared error (MSE). Curved velocity models of varying layer angles and
thicknesses were used, while velocity images also included faults. Testing was carried out
on 50,000 acoustic models, with 3 shots per model and 32 receivers, with a split ratio of 7:2:1
for training:testing:validation. The model outperformed FWI, demonstrating that in order
for the FWI to reach comparable performance, extra information from the seismic data is
needed, requiring 32 simulation shots. The network was trained on models containing
one fault and was tested on models with zero or two faults included. The obtained MAE
was 75.85 for the 1-Fault CurvedData, but did not transfer well to the 0-Fault and 2-Fault
CurvedData datasets with MAEs of 154.1138 and 242.33, respectively. SeismInvNet [31] is
an encoder–decoder architecture for VMB which was originally evaluated on subsurface
acoustic reconstruction through 12,000 (10,000 training, 1000 validation, 1000 testing) veloc-
ity models with 20 shots and 100 receivers, containing only curved layered structures and
their corresponding synthetic seismic data pairs and achieved an SSIM of 0.95338 and MAE
of 0.014962, compared to another encoder–decoder architecture named InversionNet [32]
which achieved an SSIM of 0.824075 and MAE of 0.039713. An improved SeismInvNet
was proposed [33] for a curved layer structure, fault and salt body models, resulting in the
generation of 18,000 models (in a split ratio 10:1:1 for train:validation:test) for 20 seismic
shots and 32 receivers. The obtained SSIMs for the curved layer structure, fault and salt
body models were 0.905838, 0.844608, 0.893321, respectively, while the equivalent MAE
results were 0.014703, 0.021852, 0.017017, respectively.

The PIX2PIX conditional GAN, with U-Net256 for the generator and PatchGAN for
the discriminator, with the original architecture of [30], was demonstrated for DLI for
marine seismic data [34], tested on two datasets. The first category of pairs comprised
single-channel seismic images with the corresponding velocity images, while the second
category included three-channel images synthesised by a post-stack seismic image, an aver-
age tomographic velocity and a two-way time grid, resulting in 2800 models split 20:8 for
training:testing. The results indicated the superiority of the second set, quantified in terms
of SSIM providing an average value of 0.994, and the generated velocity was visually iden-
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tical to the ground truth, demonstrating that the geological structures were incorporated
into the GAN velocity model. Visual analysis of the single set showed poor results.

In summary, a range of DL architectures have been demonstrated to work well for
acoustic VMB with PSNR in the range 23–30 dB and SSIM in the range 0.8–0.99. However,
these architectures all needed training on many thousands (1600–50,000) of synthetic data
pairs, comprising salt bodies and heterogeneous models with faults, with the requirement of
simulating 3 to 32 seismic shots per velocity model in order to achieve the aforementioned
performance. This entails a significant computational cost for the procedure. Since previous
studies have extensively compared DLI approaches with FWI and established that FWI
required multiple sources in order to meet the performance of DLI, in this study, we will
not repeat comparative FWI experiments for multiple shots but will focus on comparing
the performance of proposed and benchmark DLI approaches for single-shot simulation,
as well as include FWI performance for single shots in qualitative performance analyses,
purely for the sake of completeness.

GAN-based architectures have recently become popular in subsurface reconstruction
tasks because they enable the production of realistic and high-quality synthetic images
through the competitive work of two networks, the generator and the discriminator [35].
For this reason, in order to evaluate performance with a minimum possible demand
for synthetic simulations, we leverage upon the PIX2PIX architecture, with a Resnet-
9 generator with performance evaluated for a range of heterogeneous multi-stratified
velocity images created through variate techniques and for a limited number of training
data (only 1000 training models) with a minimum number of associated seismic sources,
i.e., single-shot simulation, and 301 receivers (one receiver for every 10 meters). We
benchmark our results against the PIX2PIX image-to-image architecture, with the UNet-
based generator and the UNet-based FCNVMB architecture. The U-Net architecture has
previously demonstrated excellent performance in predicting solutions for spatiotemporal
partial differential equations [36].

2.2. Data Generation for Training of Deep Learning-Based Inversion

Due to the limited availability of publicly accessed velocity models, most current
seismic deep learning inversion studies either adopt simplistic assumptions for the synthetic
velocity models or are based on heterogeneous models, occasionally with salt bodies but
without presenting a specific methodology for construction. To the best of our knowledge,
OpenFWI [37], Marmoussi [38], SEG BP models [39], SEAM (not freely publicly available)
and SEG/EAGE salt and overthrust models are able to provide complex heterogeneous
velocity models for testing and training. OpenFWI, an open-access dataset providing
thousands of models, has been used for several DLI architectures, but without presenting
the feature of salt bodies or taking into account the information from geological images or
pixel intensities. Additionally, none of the aforementioned models have the flexibility to be
modified to enable the generation of more custom velocity images to map any subsurface
under investigation. Therefore, such public datasets cannot generate the thousands of
distinct velocity models of one or more specific structures that are needed for training DLI
for VMB models. To address the flexibility of generating custom datasets, there have been
a number of recent attempts at generating training and testing sets of different types of
structures for DLI models. These are summarised next.

A mathematical methodology for building compressional wave synthetic data such as
dense-layer (curved)/fault/salt body velocity models, without much effort is proposed
in [33], where mathematical steps for building curved velocity layers are provided as well
as how to introduce faults and salt bodies. However, this paper does not present an exact
methodology for simulating the influence of the upward movement of a salt body on the
upper layers, instead setting random Gaussian curves for this purpose.

Another mathematical framework through which various complex velocity models
with common geological structures such as folding layers, faults and salt bodies can be
automatically generated is proposed in [40], where it is concluded (not demonstrated)
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that the simulation functions could be replaced by actual geometrical data obtained from
outcrops to simulate more realistic Earth models with stratifications. Images containing
daily objects of no geological significance, such as animals, toys, vehicles, and houses
from the COCO dataset [41] were used to generate velocity models in [42] for training the
network. Whilst these natural images may be rich in structure and detail and hence produce
detailed seismic data structures in forward modelling that may enhance the generalisation
ability of the network during training, performance was average when tested on real
geological models. In the presented cases, the main velocity body was formatted, but the
total image was abstractedly predicted to miss a lot of structural information, resulting
in poorer performance on such geological datasets. We suppose that this is because the
natural images chosen were not representative of Earth images, which should better reflect
geological subsurface information. Therefore, we propose to generate synthetic models
based on true subsurface geological structures.

2.3. Summary of Contributions beyond State of the Art

The current data-driven VMB approaches are limited in that the results need addi-
tional information from the velocity models, as the networks require a number of simulated
multiple shots per velocity model in order to achieve stable performance on variations in
subsurface reconstruction images, further increasing the already many thousands of Earth
models that are needed to train the networks. Additionally, most approaches have only
been designed and validated on models that adopt simplistic assumptions for horizon-
tal homogeneity or on complex 2D heterogeneous models without presenting a specific
methodology for constructing the velocity array. Whilst there have been initial attempts
to generate models from natural images, none have attempted to exploit images that
present geometry from real geological layers combined with a mathematical methodology
as one unit velocity building tool. In addition, no study has attempted to validate the
data-driven VMB performance on velocity models with a large range of Earth structures in
order to evaluate the stability of the prediction under a changing structural basis for the
Earth model.

This paper attempts to address these gaps by first proposing a mathematical frame-
work for generating simple 2D heterogeneous models (linear and curved/folded layers),
models with salt bodies interacting with layers whose geometries are found on geological
images and finally models that present high granularity, generated directly from geological
images to be more representative of the real subsurface. Furthermore, we demonstrate the
stability of performance across variations in stratifications for all five types of synthetic im-
ages using two types of state-of-the-art DL architectures for VMB, namely FCNVMB of [25]
and the PIX2PIX conditional GAN network. Unlike in [34], where UNet was proposed
for the generator and PatchGAN for the discriminator, we show that ResNet with nine
residual blocks for the generator can lead to high performance predictions for the seismic
inversion problem, against the most restrictive but cost-effective choice of simulating with
one seismic source and using only 1000 models for the training set. Finally, we evaluate the
generalisability of the data-driven VMB solution by simultaneously training and testing on
models that were built on a different structural basis.

3. Methodology for Generating Synthetic Velocity Models and DLI architectures
for VMB

In this section, a framework for the generation of synthetic 1D and 2D heterogeneous
velocity models is presented, either relying solely on a mathematical procedure to model
various geological structures or on processing a small amount of geological images. The aim
is to provide representative synthetic data that can be used to train the DL solver for VMB.
In this study, all simulations are carried out at a maximum depth of two kilometres, but it
is also possible to use parts of the proposed framework for customised modelling in the
near surface. We generate five synthetic datasets that differ in complexity of the generation
procedures, in requirements of a geological image example, and in type of geological
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structures that they model. In Section 4, we will compare the results on the unseen portion
of real test dataset, obtained after training the networks with each of these five datasets.

Section 3.1 presents the mathematical formulation for the LINEAR 1D heterogeneous
velocity model and the non-linear 2D heterogeneous FOLD velocity model, both generated
without any image examples. Section 3.2 describes a 2D heterogeneous model, termed
SALT, generated by mathematical manipulation of the geometries on a geological image,
while Section 3.3 describes 2D heterogeneous models, termed IMAGE1 and IMAGE2,
generated by mathematical manipulation of pixel intensities of the available geological
images. When the velocity model generation is completed, the corresponding seismic shots
are generated from the solution of the wave equation, as described in Section 3.4.1, and the
training of the network takes place.

3.1. Proposed Methodology for Multilayered Structures with 1D and 2D Heterogeneous
Velocity Models

First, we focus on generating two multilayered velocity models of varying thickness
without any image samples. The first model is a simple linear model that presents horizontal
homogeneity, while the second more complex model provides 2D heterogeneity simulating
folded systems, as shown in Figure 2.

Figure 2. Characteristic properties of a folded structure. A fold can be characterised as cylindrical if
it presents a straight hinge line or noncylindrical if not (left), and symmetrical if the two sides of the
hinge are identical to each other (upper right) or nonsymmetrical (lower right).

Let nx and nz ∈ Z+ denote, respectively, the horizontal and vertical number of points
of the elastic 2D grid plane. The proposed multilayer 1D heterogeneous subsurface image
is generated as per Equation (1):

fl(x) = al x + bl , (1)

where x ≤ nx, and fl(x) ≤ nz, l = 1, 2, . . . indexes the ground layer, x is the horizontal
coordinate, al is the inclination coefficient of the l-th layer, and bl is the constant value
reflecting the thickness of the layer. By setting al = 0, we generate the first dataset, which is
horizontally homogeneous with a number of horizontal layers. We will refer to this dataset
as the LINEAR dataset.

Although very simple to generate, the LINEAR dataset does not capture characteristics
of the folded structures.

Folded structures can be found in the subsurface as a stack of curved layers that
present waviness. Under continuous processes, this curvature is changing through applied
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deformation that creates natural folded systems. These structures are of great importance
for geologists or petroleum engineers since they contain important information about
Earth’s tectonic processes or oil deposits and are connected to physical and chemical
deformation procedures. Structural geologists have made a number of classifications of the
folded structures according to the geometry of the fold, such as the characterisation of a
symmetric fold when one side of the hinge is a mirror of the other side and the limbs have
exactly the same length and anti-symmetric fold or cylindrical fold when the hinge line
is a straight line parallel to the fold axis and noncylindrical fold (Figure 2). To introduce
the characteristics of the folded structures such as waviness, next we use the sinusoidal
function sl(x) = Asin(wx), where w = 2π

T , T is the wave period and A the amplitude.
To simulate the asymmetry that folds may present, we generate a function composition (◦)
between sl(x) and hl(x) = wx + sin(wx)/n, where n 6= 0 is a real number that introduces
asymmetry. Finally, in order to rotate this waviness according to the orientation of the
initial linear velocity model, we add the function fl(x) leading to:

Tl(x) = (sl ◦ hl)(x) + fl(x), (2)

where x ≤ nx, and Tl(x) ≤ nz, l = 1, 2, . . . indexes the ground layer, and x is the horizontal
coordinate. Equation (2) represents a non-linear shape function across horizontal coordinate
x for the layers l that capture the waviness and asymmetry of the folded structures. Figure 3
shows examples of Tl(x) for several values of n. The function is close to a sinusoidal
function for n = 10. Unique velocity models (referred to as FOLD dataset) that present 2D
non-linear heterogeneity, according to Equation (2), are generated by varying each of the
five parameters of the model, namely, layer thicknesses (bl), inclination angle (al), waviness
amplitude (A), period (Tl), and asymmetry (n), one at the time. Namely, the velocity values
are assigned between two successive layers according to the following equation:

V(i, j) = vl−1, j = 1, . . . , xmax, i = b(Tl−1(j))c . . . b(Tl(j))c, (3)

where vl is the velocity value of the l-th layer, picked from the interval [1.50, 4.00 km/s],
making sure that the velocity increases with the depth; l = 2, . . . denotes the current layer,
and xmax ≤ nx is the domain of the shape function generated from Equation (2) along the
horizontal x axis.

Figure 3. Example plots of function Tl(x) = Asin[wx + sin(wx)/n] + al x + bl for various values of n,
where X axis shows values of x and Y-axis shows values of corresponding Tl . For n = 10, the function
is close to the sinusoidal function, while for other values, such as 1.30, the function is asymmetric.



Remote Sens. 2023, 15, 2901 10 of 29

3.2. Models Generated Using Pixel Positions and Salt Dome Upward Movement

Another geological structure of interest is the salt dome. Most geologists today believe
that salt structures have resulted from plastic deformation of some existing soil layers or
layers of salt of sedimentary origin. Salt structures exhibit upward movement, partly due
to the difference in density between the salt layer and the overlying strata, although it
is not clear whether the presence of some transverse compressing confinement stress is
always required. Due to frictional forces, salt domes at the first stages of their development
are most often circular in shape or are generally elliptical. Some of the salt masses are
cylindrical, but downward enlargement is common, and most of the domes have the form
of a truncated cone while the upper surface of the salt in most domes is flat or slightly
convex upwards [43]. To improve the two velocity models described in the previous
subsection towards capturing more complex geological structures, such as the salt dome,
in this subsection, we propose a new type of model that is based on manipulating an
existing geological image. Let N and M denote, respectively, the horizontal and vertical
number of pixels in an image. For each image and each layer, m pairs of pixel positions,
as (row, column) or (il , jl), are selected randomly from the regions along the length of the
curves/edges in the image. Each selected pixel location (i, j) is scaled by the dimension of
the 2D grid of interest, (nx × nz, nx ≤ N, nz ≤ M) as:

x1 z1
. .
. .
. .

xm zm


m×2

=


j1 nx

N i1 nz
M

. .

. .

. .
jm nx

N im
nz
M


m×2

(4)

This way, each of the m pixel pairs (il , jl), il ≤ M, jl ≤ N is mapped into a coordinate
(xl , zl), xl ≤ nx, zl ≤ nz. Subsequently, the shape functions that describe the geometry of
the layers are approximated according to the following equation:

fl(x) =
n

∑
k=0

akxk, (5)

where n is the degree of the polynomial function, and l indexes the constructed layer.
Coefficients ak are estimated using the m selected pairs of image pixel positions through
solving the following equation for a:

xT
coordxcoorda = xT

coordzcoord (6)

where:

xcoord =


1 x1 . xn

1
. . . .
. . . .
. . . .
1 xm . xn

m


m×(n+1)

, zcoord =


z1
.
.
.

zm


m

, a =


a0
.
.
.

an


n+1

(7)

During the construction process, small smooth thickness variation of the background
layers are preformed, as shown in Figure 4, so that all generated velocity models are unique.
Velocity values belonging to the desired interval are assigned according to Equation (3) by
substituting Tl(x) with fl(x) obtained by Equation (5).

The procedure described next, through Equations (8)–(14), is used to optionally model
the upward intrusion of salt structures in any velocity model.
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Figure 4. Shape functions from stratified geometries found on geological images. The vertical z
coordinate of the points is slightly varied in iterative steps, and shape functions (Equation (5)) are
calculated repeatedly in order to introduce small geometric variations.

First, we describe mathematically how we simulate the interaction between the salt
dome and the existing geological layers, due to its upward movement, with simple relations
derived from differential geometry. The points of the induced salt dome are assumed to
belong to the 1D Gaussian function as in prior work [33,40] in order to model the geological
structures described above for a circular horizontal section and a vertical section of a
truncated cone with a convex upward upper surface. To simulate the variation of thickness
along the layer as the dome rises up, a reduction factor for every affected layer l is defined
as pl =

th
tl

in the interval [0.25, 0.7], where th represents the thickness at the point of the
highest curvature, and tl is the thickness at the boundaries of the layer (as shown in Figure 2,
upper right side). To simplify exposition, we assume that only two layers are affected by the
upward intrusion of the salt dome. For the first layer affected mostly by the movement of
the dome, pl is heuristically set to 0.67, while for the second layer, pl is set to 0.29. The salt
dome’s shape is then represented by:

q(x) =
A

σ
√

2π
e−0.5[(x−xins)/σ]2 (8)

and for the interaction with the upper layers, the next equation is used separately for every
affected layer, incorporating the reduction factor pl for the thickness variation calculated as:

nl(x) = plq(x) (9)

where:

• A is the amplitude of the moving salt dome;
• xins is the insertion point and centre of the dome;
• σ is the dome shape parameter.

To approximate the impact of the vertical upward intrusion of the salt body on the
layer, the vector P = (x, z) containing all the horizontal and vertical points of the affected
layer is transformed to P′ = (x

′
, z
′
) by the component addition of the displacement vector

T= (α, γ), that is,
x
′
= x + α, z

′
= z + γ, where z = fl(x) as defined in Equation (5) for x ∈ [0, nx],

nx ∈ Z+.
In order to obtain the components of the displacement vector, we transform the

positions from the general structural system x− z to the local system t− n, where t is a
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tangential and n a normal axis to the layer’s shape function at point C. For the triangle ABC
in Figure 5, which shows a vertical upward intrusion of a salt body, it can be observed that:

ÂCB = t̂Cx (10a)

ϕ̂ = atan(dz/dx) (10b)

ds = (dx2 + dz2)1/2 = dx(1 + (dz/dx)2)1/2. (10c)

By integrating both sides of Equation (10c) over the interval [x1, x2] along the x axis, as in
Figure 5, we calculate the length on the layer along the tangential axis as follows:

sx1x2 =
∫ x2

x1

(1 + (dz/dx)2)1/2dx. (11)

By substituting x = sx1x2 into Equation (9), we calculate the distance (AC) (Figure 5):

(AC) = nl(sx1x2) =
pl A

σ
√

2π
e−0.5[(

∫ x2
x1

(1+(dz/dx)2)1/2dx−xins ]/σ)2
. (12)

Furthermore, looking at the left side of Figure 5, BC and AB distances can be calculated as:

γ = (BC) = nl(sx1x2)cos(ϕ̂) (13a)

α = (AB) = nl(sx1x2)sin(ϕ̂). (13b)

Finally, we obtain:

x′ = x + nl(sx1x2)sin(ϕ̂) (14a)

z′ = z + nl(sx1x2)cos(ϕ̂). (14b)

Figure 5. Vertical upward intrusion of a salt body. The axis Ct is tangential to the layer’s shape
function, while Cn axis is the normal at point C. The salt dome’s shape is presented as an 1D Gaussian
function which is a 2D vertical section of the imaginary 3D salt dome.

The dataset, which we refer to as SALT, is generated as per the above procedure to
simulate the interaction of the upward movement with the two deepest layers whose
shape function was generated according to the previous steps (Equations (5) and (6)) from
the geological images. In parallel, small changes in the pixel positions were introduced,
and the shape functions of the background layers were calculated iteratively according
to Equation (5) so that thickness variation of the background layers can take place to
generate a variety of image examples. At the same time, the training dataset was separated
into three parts where the velocity range of the background layers was defined to belong
to the three following intervals [1.5, 2.9], [1.8, 4.2], and [1.5, 4.0], while the salt dome
whose amplitude and shape is varying maintained a constant velocity of 4.50 km/s in all
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simulations. The results of this simulation process for the SALT dataset can be seen in
Section 4.3.

3.3. Proposed Methodology for Direct Earth Model Generation from Pixel Intensities

Next, we describe the final proposed method to generate training velocity model
samples using geological images of stratified content. The method ensures, on the one
hand, that the velocities extracted from the pixel intensities present the maximum value at
the greatest depth of the stratified image, and on the other hand, that the values fall within
the desired interval denoted by [VL, VU] km/s. The following steps are used to generate
this dataset:

• Generate thickness variations in the geological images with elastic displacements
picked from Gaussian distribution and applied to the four corners of the image and in
the centre so that a variety of geometrical complexities is introduced (see Figure 6).

• Transform each three-channel RGB image into a single-channel greyscale image
to make a 1:1 map between luminance and velocity value. Then, apply a Gaus-
sian blur filter to achieve smoother velocity transition between the layers and to avoid
sharp edges between the layers.

• Resize the images to nx × nz, and let p(i, j) be the image pixel, where i = 0, . . . , nz,
j = 0, . . . , nx.

• To ensure that the bounds of the interval are used as velocity values as well, we
calculate the maximum and the minimum pixel intensity, denoted as pmax and pmin,
respectively, and then transform pixel p(i, j) to pixel a(i, j) as follows:

a(i, j) =

{
1− p(i,j)−pmin

255 , p(i, j) < pmax−pmin
2

pmax−p(i,j)
255 , p(i, j) ≥ pmax−pmin

2

• Define velocity array V with pixels V(i, j) at the position (i, j) according to:

V(i, j) = [1− a(i, j)]VL + a(i, j)VU . (15)

To ensure that the velocity model will have an increase in velocity with the chosen
subsurface depth, whole images or parts of images that present stratified layers with colour
grading are selected. When pixel intensities at the bottom layers of the grayscale image
part are darker than the upper layers, Equation (15) is used, but when the bottom layers
are lighter, we swap VL and VU .

Two distinct datasets are generated using the aforementioned approach, termed IM-
AGE1 and IMAGE2, with geometrical variations after the application of elastic displace-
ments according to Gaussian distribution and velocity variation with different interval
bounds VL = 1.5, 1.8, 1.5 km/s and VU = 3.5, 3.8 and 4.3 km/s. IMAGE1 presents a less het-
erogeneous subsurface compared to IMAGE2 that models intensive heterogeneity, as shown
in Figure 6, where the top row shows two example samples from IMAGE1 and the bottom
row shows two example samples from IMAGE2. For the IMAGE1 examples the velocity
bounds are VL = 1.5 and VU = 3.5, VL = 1.8 and VU = 3.8 km/s, while for the IMAGE2
examples, the velocity bounds are VL = 1.5 and VU = 3.5, VL = 1.5 and VU = 4.3 km/s.

3.4. PIX2PIX for Data-Driven VMB

In this section, we first describe how the five distinct seismic datasets (inputs) gener-
ated as per the proposed methodology are split into training and test sets for input into the
DL architecture, as well as the velocity models (targets). Second, the PIX2PIX architecture
hyperparameters for both the U-Net256 and ResNet-9 generator implementations, as well
as the PatchGAN implementation for the discriminator and FCVMB DL solutions are
presented. Finally, the performance metrics are described.
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Figure 6. Models generated from pixel intensities of the used geological images. Geometrical variation
is added through the application of elastic displacements according to Gaussian distribution, while
velocity variation is added through the change in interval boundaries VL, VU in Equation (15).

The original PIX2PIX architecture of [30] was demonstrated for the VMB problem
with promising results on marine seismic data in [34]. For the seismic inversion problem,
the function of a cGAN involves two deep networks: the generator and the discrimina-
tor. The generator under the control of the discriminator tries to learn a relationship in
order to implement the prediction of the inverted velocity model and not to be rejected
by the discriminator, which provides an extra benefit over the fully connected network
architectures. Compared to a basic cGAN that creates images constrained according to
a class vector, PIX2PIX is conditioned to the full content of one image without additive
input noise [44]. The original network’s generator uses the U-Net256 architecture, which
adopts skip connections between the downsampling convolution branch and the upsam-
pling deconvolution branch while the discriminator’s architecture uses a patch with size
70 × 70 for the output, and all the responses from the convolutions are averaged. Although
the U-Net256 implementation provides great results, in this study, we propose instead to
use ResNet-9 for the generator. This is because ResNet-9 has previously demonstrated
excellent performance in the computer vision field [45] and in cases of special medical
datasets such as fundus images, where eye vessel networks were given as input, such as
the seismic shots in the case of FWI [46].

3.4.1. Datasets

Five core training datasets were generated as follows: LINEAR as described in
Section 3.1, FOLD as described in Section 3.1, SALT as described in Section 3.2, and IM-
AGE1 and IMAGE2 as both described in Section 3.3. In order to evaluate the generalisation
of the DLI for VMB models for the above five datasets, we created three additional datasets.
SYNTH1 comprised an equal proportion of the more popular velocity models seen in the
literature of 333 samples from each of the LINEAR, FOLDED and SALT models for training.
SYNTH2 comprised an equal proportion of 500 samples, each from the highly granular and
more geologically complex IMAGE1 and IMAGE2 datasets for training. Finally, to evaluate
the generalisability of DLI for VMB for all five proposed velocity models, the SYNTH3
dataset was created that comprised 200 samples each from all five proposed models. All
the datasets created were split into the ratio 4:1:1 for the training, testing and validation
samples, namely 1000 images for training, 250 images for validation and 250 images for
testing. All pairs were created as a solution of the constant density acoustic wave equation
in the time domain, as shown in Equation (16), for a Ricker source and receivers and
grid points with physical parameters that can be seen in Table 1. We hypothesised that
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the boundary conditions do not influence the performance of the DLI for VMB model,
and we verify this by having two sizes for damping absorbing boundary layers of 100
(11 grid points) and 600 m (61 grid points), referred to as Boundary Conditions (BC) 1 and
2, respectively. The respective seismic shots are shown in Figure 7. Every simulation starts
at time t = 0 to 2001 milliseconds. The velocity values increase with depth intervals [1.50,
4.50] km/s in steps of at least 0.20 km/s as we go deeper, up to 2 km.

S =
∂2u
∂t2 − c2∇2u (16)

where:

• u, is the displacement field;
• c, is the P-wave velocity field;
• S, is the source function.

Table 1. Finite difference modelling in the time domain and the forward-solver’s parameters.

HOR.GRID VER.GRID BC1 BC2 Spacing Sources Frequency Receivers Simulation

301 points 201 points 11 points 61 points 10 m 1 10 Hz 301 2 s

All the corresponding seismic shots are generated through Devito [47], which is a
domain-specific language for implementing high-performance, finite-difference, partial
differential equation solvers.

Figure 7. Seismic shots for BC1 with the size of the absorbing boundary layer equal to 11 grid points
on the left and improved BC2 as per Table 1, with the absorbing boundary layer size equal to 61 grid
points on the right.

Each set contains a feature that makes it stand out from the rest, while all datasets
consist of three to eight layers with or without the addition of a salt structure. The LINEAR
dataset contains linear stratification representing the case of 1D heterogeneity. To compen-
sate for the simplistic presentation of the layers that remains horizontally homogeneous
in this set, a stronger simultaneous variation in thicknesses was introduced in both the
upper and lower layers compared to the other sets. In the LINEAR dataset, the models
consist of velocity values in the range [1.50, 4.00 km/s]. The FOLD dataset introduces
curvature to the layer boundaries, while the inclination, the thickness and the asymmetry
also vary. The SALT dataset contains a salt structure of a constant velocity of 4.50 km/s,
while the shape of the layers presented is derived from real images. The SALT models are
simulated as follows: a thickness variation was applied as well as a variation-of-velocity
value for the background layers, in parallel with application of the upward movement
of salt bodies which have varying characteristics of amplitude and shape and calculation
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of the interaction between them and the upper layers. The IMAGE1 dataset comprises
velocities extracted from the fluctuating pixel intensities found in an image with mild 2D
heterogeneity in the geological strata depicted, while the IMAGE2 dataset derives from
an image with intense 2D heterogeneity. The velocity in IMAGE1 and IMAGE2 ranges in
the interval [1.5, 4.3] km/s. The images that were used for velocity extraction were firstly
elastically distorted with Gaussian distribution via the python AUGMENTOR, which is
a library designed for image augmentation for machine learning purposes [48,49]. More
specifically, for the images of the IMAGE1 dataset, a 3 × 3 grid with elastic movements of
probability 1 and magnitude of 45 was applied, focused on the centre of the image and in
all four corners. For IMAGE2, all the distortions were focused on the center of the image
and have a magnitude of 90.

The models from the LINEAR dataset exhibit 1D heterogeneity and are the simplest
compared to all the others examined in this study. In order to balance the lower level
of structural complexity for this particular dataset, we incorporated strong variation in
the thickness of the layers between the several velocity models to increase the variability
and thus the difficulty of prediction. The models from the FOLD dataset present intense
2D heterogeneity induced by the use of the coefficient n in hl(x) (see Equation (2)), which
introduces asymmetry by inclination of the layers and by the waviness of the sinusoidal
function, and they are clearly more complex than the LINEAR velocity models. The models
from the SALT dataset also present lower geometrical complexity than the FOLD dataset,
focused both on the interaction region due to the upward movement of the salt dome and
on the simultaneous geometrical change of the background layers. The characteristic which
further differentiates this dataset compared to the previous two is that small variability
is also introduced in velocity ranges of the background layers, and thus, the velocities
assigned to the background layers whose geometries also slightly vary do not remain
constant across the 1000 training models. Velocity models belonging to datasets IMAGE1
and IMAGE2 also exhibit mild geometrical variation combined with variation in terms of
velocity, also introduced between layers, similar to the SALT dataset. From a design point
of view, the LINEAR and FOLD datasets introduce a stronger variety of change in geometry,
while the remaining three datasets (SALT, IMAGE1 and IMAGE2) present a combination
of milder geometric variety among the models and are combined with variability in the
velocities which are assigned between the successive layers. In addition, the IMAGE1 and
IMAGE2 datasets are differentiated from all the others because they are created through
Equation (15), and thus, they present a granular look which appears because the velocity
value changes from position to position within the same layer.

In addition to creating the Earth models of the eight datasets that were used for testing
the prediction capability of the DLI architectures, blurred velocity models were also created
with mathematical convolution of a Gaussian kernel, with the testing velocity arrays to be
used as a starting model (can be seen in Section 4.3) for FWI, which adopted an adjoint-
state-based gradient-descent method for the experiment, which was implemented through
Devito in 25 iterative steps. For fair comparison with the DLI models, the simulation of the
FWI was performed for a single source and lasted only a few seconds, while the dimensions
of the grid and all the parameters of the physical problem were the same as those previously
described in Table 1 for the forward modelling, to enable like-for-like benchmarking.

3.4.2. DLI for VMB Architecture Parameters

The five datasets were used for training and testing FCNVMB and PIX2PIX with the U-
Net256 and ResNet-9 architectures. Seismic shots are input into FCNVMB with the velocity
models as the target. Velocity models are arrays with dimension [201, 301], corresponding
to a 2 km deep and 3 km long section with grid spacing of 10 m. Synthetic seismic shots
are arrays with dimension [2001, 301], which represent 2001 ms over a distance of 3 km,
as we are using surface receivers. Inputs to the PIX2PIX are two images, one for the velocity
model and one for the seismic shot, each with dimension 256 × 256. Each image pair is
combined into one image with size 512 × 256, while the direction for the training and the
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testing phase is set from B to A, which means that the input of the seismic shot (B) to the
target velocity model (A) is the same as in the FWI problem.

The values of the hyperparameters chosen for the DLI approaches in our experiments
are the same as reported by [30] for both the U-Net256 and ResNet-9 generators of PIX2PIX
and [25] for the benchmark FCNVMB, except for the learning rate, number of epochs, and
the batch size, which are highly dataset-dependent and which are reported in Table 2. As is
common practice, following heuristic evaluation using various hyperparameter values, we
found that for the datasets examined in this manuscript, the reported hyperparameters in
Table 2 are the ones that lead to the best performance (best predictions, less artifacts) of
the DLI models. For PIX2PIX (U-Net256 and ResNet-9), the hyperparameter λ, which is
a weighting regularisation factor in the L1 loss, was set to 100, and hyperparameter β1
for the Adam optimiser was set to 0.5, as per default. Both architectures use the Adam
optimiser, while FCNVMB uses an MSE loss function and PIX2PIX a conditional GAN loss
with an L1 term added that penalizes the distance between ground truth and synthetic
outputs that match the input or not. After PIX2PIX initialisation, the PIX2PIX with ResNet-9
required 11,383,000 learnable parameters, while the original PIX2PIX with U-NET256 required
54,414,000. Thus, PIX2PIX with ResNet-9 is less complex, in terms of memory requirements,
than PIX2PIX with U-Net256. For indicative purposes, for the stated training and test numbers
of samples in Section 3.4.1 for the SALT dataset, for PIX2PIX with U-Net256, this is equivalent
to 9.4 GB on a disk, whereas for PIX2PIX with ResNet-9, the memory requirement is only
2.3 GB. The equivalent memory requirement for FCNVMB is relatively lightweight at 621.3 MB.
The equivalent indicative training and testing times for both PIX2PIX generators and FCNVMB
are shown in Table 2. As observed, for the same number of images (250), the testing time
for FWI is considerably higher than the DLI models but is on par with the total training and
testing times of the DLI models. However, DLI models only need to be trained once for
a particular subsurface structure, but they require a comprehensive dataset. The training
and test times for ResNet-9 are slightly higher than those of U-Net256. Since the memory
requirements for PIX2PIX with U-Net256 are significantly larger than those of PIX2PIX with
ResNet-9, despite the slightly lower training and test times for the respective models, we
conclude that PIX2PIX with U-Net256 is more complex overall than PIX2PIX with ResNet-9.

Table 2. Network hyperparameters and training time on a GPU NVIDIA RTX A4000.

Network L.RATE Epochs Batch Size Training (min) Testing (s)

PIX2PIX (U-Net256) 2× 10−4 200 1 158’ 11.36 s
PIX2PIX (ResNet-9) 2× 10−4 200 1 173’ 13.23 s

FCNVMB 10−3 100 10 108’ 16.07 s
FWI - - - - 12,500 s

4. Experimental Results

In this section, we evaluate the performance of the proposed PIX2PIX with ResNet-9,
benchmarked against the original PIX2PIX with U-Net256 and FCNVMB DL architectures,
for each of the five proposed datasets (LINEAR, FOLD, SALT, IMAGE1 and IMAGE2)
and the three SYNTH1, SYNTH2 and SYNTH3 datasets for the purpose of generalisability.
In these cases, the DL architectures are trained on one dataset and are tested on an unseen
portion of the same dataset. Evaluation is carried out through both quantitative and
qualitative analyses. The quantitative analysis is based on the image quality metrics PSNR
and SSIM, while the qualitative analysis is based on the characteristics of the predicted
images and through the local SSIM maps which highlight the mispredicted zones.

4.1. Quantitative Evaluation Image Metrics: PSNR and SSIM

The metrics used for the quantitative comparison between the ground truth velocity
images and the predicted images are PSNR and SSIM. PSNR is a quality image metric
(expressed in dB); the larger its value, the better the quality of the predicted image being
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considered, and it is defined as a relation between the maximum pixel intensity and the
sum of squared differences of the pixel intensities of the predicted and the reference image:

PSNR = 20 log10(
MAX√

MSE
) (17)

where MAX is the maximum pixel intensity value of the image, and MSE is the mean
squared error between the ground truth image x and the predicted image x̂ for the height A
(number of pixels) and width B (number of pixels) of the compared images, calculated as:

MSE =
ΣA

i=1ΣB
j=1[x(i, j)− x̂(i, j)]2

AB
. (18)

SSIM, on the other hand, is a quality metric that is a function of structural correlation
s, luminance distortion l and contrast distortion c [50]:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
, (19)

where µ and σ represent the mean and the variance of each image, σxx̂ is the covariance
of x and x̂, and c1 = (0.01L)2, c2 = (0.03L)2 are two variables that stabilise the division
with a zero denominator. L is the dynamic range of the pixel intensities which equals
2bpp − 1, where bpp are the bits used per pixel. SSIM is calculated for the entire image area.
Additionally, a local SSIM value can be calculated for every pixel of the image and can be
presented in a local SSIM map, such that the blurry regions of the predicted images are
highlighted. The dark pixels in the local SSIM map indicate the blurry regions, while the
bright ones represent regions that are less affected by blurring.

All metrics in the current study as well as the local SSIM maps were implemented via
the following Matlab v. R2022b (9.13.0.2049777) functions: (1) ssimval for the SSIM value of
the total image and ssimmap for the SSIM value per pixel as:

[ssimval, ssimmap] = ssim(predictedImage, re f erenceImage)

and (2) PSNR as:

peaksnr = psnr(predictedImage, re f erenceImage)

4.2. Quantitative Results

Tables 3 and 4 present mean PSNR values and mean SSIM values for each dataset for
both PIX2PIX generator implementations (original U-Net256 and proposed ResNet-9) and
FCNVMB for BC1 and BC2, respectively. Standard deviations are also calculated to indicate
the stability of performance.

Table 3 shows that PIX2PIX in general has better PSNR performance than FCNVMB.
Additionally, PIX2PIX shows stability in predicting the velocity model among various
datasets which are based on a different structural methodology, as reflected in the signifi-
cantly smaller velocity fluctuations in relation to the average value of PSNR. Figure 8 shows
the change in PSNR values for PIX2PIX(ResNet-9) and FCNVMB for 250 testing models
for IMAGE2 (on the left side of the diagram) and FOLD (on the right side of the diagram)
datasets. The PSNR values for the FCNVMB network are in blue colour and show a strong
fluctuation around the mean value, which is represented through a black line. The standard
deviation for the particular dataset is expressed as the distance between the yellow line
and the black line. For PIX2PIX, the PSNR values can be seen in green color and fluctuate
less around the black line, which represents the mean value. The red lines represent the
standard deviation of PSNRs for PIX2PIX.
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Table 3. Results in terms of mean PSNR and SSIM with standard deviation values for PIX2PIX and
FCNVMB averaged over 250 models for BC1 with 11 grid points of damping boundary layer. The 1st
column contains the name of the examined dataset, the 2nd the adopted image metric (mean values),
the 3rd and 4th column the results for PIX2PIX with U-Net256 and ResNet-9 for the generator, and
the 5th column the results for FCNVMB. The best performance for each dataset is highlighted in bold.

DATASET METRIC PIX2PIX PIX2PIX FCNVMB
(U-Net256) (ResNet-9)

LINEAR PSNR 23.85 ± 3.51 24.72 ± 3.27 24.62 ± 2.49
SSIM 0.99 ± 0.008 0.99 ± 0.005 0.98 ± 0.014

FOLD PSNR 21.14 ± 1.89 23.15 ± 2.26 21.02 ± 4.42
SSIM 0.97 ± 0.015 0.98 ± 0.012 0.95 ± 0.055

SALT PSNR 23.64 ± 2.24 26.90 ± 1.92 14.85 ± 5.29
SSIM 0.98 ± 0.009 0.99 ± 0.003 0.81 ± 0.146

IMAGE1 PSNR 29.04 ± 1.71 27.11 ± 0.97 17.34 ± 1.40
SSIM 0.99 ± 0.002 0.99 ± 0.002 0.94 ± 0.019

IMAGE2 PSNR 24.55 ± 1.27 22.59 ± 1.27 15.76 ± 2.76
SSIM 0.98 ± 0.006 0.97 ± 0.011 0.91 ± 0.050

SYNTH1 PSNR 22.46 ± 2.59 23.84 ± 2.26 19.61 ± 2.86
SSIM 0.97 ± 0.013 0.98 ± 0.008 0.95 ± 0.036

SYNTH2 PSNR 25.36 ± 2.01 22.35 ± 1.13 15.25 ± 2.26
SSIM 0.98 ± 0.007 0.98 ± 0.008 0.90 ± 0.053

SYNTH3 PSNR 23.26 ± 2.42 22.59 ± 2.48 13.99 ± 2.51
SSIM 0.98 ± 0.011 0.98 ± 0.011 0.84 ± 0.074

Table 4. Results in terms of mean PSNR and SSIM with standard deviation values for PIX2PIX and
FCNVMB averaged over 250 models for BC2 with 61 grid points of damping boundary layer. The 1st
column contains the name of the examined dataset, the 2nd the adopted image metric (mean values),
the 3rd and 4th column the results for PIX2PIX with U-Net256 and ResNet-9 for the generator, and
the 5th column the results for FCNVMB. The best performance for each dataset is highlighted in bold.

DATASET METRIC PIX2PIX PIX2PIX FCNVMB
(U-Net256) (ResNet-9)

LINEAR PSNR 28.19 ± 4.99 23.08 ± 1.85 27.47 ± 2.99
SSIM 0.99 ± 0.003 0.99 ± 0.004 0.99 ± 0.006

FOLD PSNR 20.77 ± 1.53 22.48 ± 2.16 21.08 ± 4.20
SSIM 0.96 ± 0.012 0.97 ± 0.012 0.95 ± 0.063

SALT PSNR 23.59 ± 3.44 25.78 ± 1.75 13.79 ± 5.04
SSIM 0.97 ± 0.027 0.99 ± 0.004 0.77 ± 0.144

IMAGE1 PSNR 27.84 ± 2.75 24.14 ± 0.87 16.69 ± 4.00
SSIM 0.96 ± 0.012 0.99 ± 0.003 0.91 ± 0.052

IMAGE2 PSNR 21.98 ± 0.80 21.45 ± 1.38 18.31 ± 2.16
SSIM 0.97 ± 0.004 0.97 ± 0.010 0.94 ± 0.030

We hypothesised that DLI based on image pairs is not affected by boundary conditions.
Comparing Table 4 with Table 3, it can be observed that the DLI models are not sensitive
to changing the width of the absorbing boundary condition for all datasets, with only
small variations in PSNR and SSIM for all datasets. We note that FCNVMB, which is based
on learning non-linearity through mapping the values of the velocity models to values
in the seismic shot (not image pairs such as PIX2PIX). slightly improves its performance
for LINEAR and IMAGE2 datasets due to the reduced reflections, while the image-to-
image PIX2PIX-based DLI models are mostly unaffected except for an increase in PSNR
performance for the LINEAR dataset. The results overall do not differ significantly, and
hence, we can conclude that the proposed DLI based on PIX2PIX with the ResNet-9
generator is not very sensitive to the effects of reflections from the boundaries.
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Figure 8. PSNR series (green for PIX2PIX (ResNet-9), blue for FCNVMB), meanPSNR (black lines)
and meanPSNR ± std plots (yellow line for FCNVMB, red line for PIX2PIX) based on 250 predictions
by PIX2PIX and FCNVMB. Results for IMAGE2 dataset are shown on the left. PIX2PIX (ResNet-9)
exhibits a more consistent behaviour across various models with completely different characteristics.
FOLD dataset results are shown on the right where the intensive instability of FCNVMB dominates
the chart.

There is a noticeable drop in PSNR performance for FCNVMB as the velocity models
increase in complexity—FCNVMB performs on par with PIX2PIX for the LINEAR models
only, but its performance drops considerably for the other four more complex velocity
models. On the other hand, PIX2PIX exhibits a more consistent behaviour which does not
degrade across the datasets.

The SALT, IMAGE1 and IMAGE2 velocity models differ from LINEAR and FOLD
models, as in addition to geometric variability, they also present variability in the velocity
values assigned between the layers across the various velocity models on the dataset. In ad-
dition, IMAGE1 and IMAGE2 differ from the other three because they do not maintain a
constant velocity across every layer of the velocity model. Thus, when intense geometrical
variation takes place, PIX2PIX (LINEAR, FOLD) achieves similar or better performance
compared to FCNVMB. When less intense geometrical variability is induced but velocity
also varies, then PIX2PIX provides much better performance than FCNVMB. As we can
observe in Tables 3 and 4, PIX2PIX can better handle the velocity variation than the geomet-
rical variation, while FCNVMB does the opposite, and in all cases, PIX2PIX presents the
best performance. Except for the most simplistic LINEAR model where all DLI for VMB
models have similar SSIM, PIX2PIX also outperforms FCNVMB in terms of SSIM.

Quantitative metrics from Tables 3 and 4 clearly indicate that the PIX2PIX architectures
consistently outperform the FCNVMB architecture for the DLI for VMB problem, under the
same conditions. The PIX2PIX with ResNet-9 as the generator outperforms the PIX2PIX
with U-Net256 as the generator for the FOLD and SALT datasets in terms of PSNR. This is
also observed in the SYNTH1 dataset, which comprises models from these three datasets.
On the other hand, the PIX2PIX with U-Net256 outperforms the PIX2PIX with ResNet-9
for the IMAGE1 and IMAGE2 datasets, as also observed in the SYNTH2 dataset. This
relative PSNR performance is expected because U-Net256 has a more complex learning
architecture than ResNet-9 and can hence better learn and distinguish the high granularity
features of the IMAGE datasets. SSIM performance is consistently the best for all datasets
with the proposed PIX2PIX architecture and the ResNet-9 generator. In general, ResNet
networks tend to provide better colour rendering and more vibrant colours, as seen by the
slightly better performance for the LINEAR, FOLD, SALT and SYNTH1 datasets. U-Net
tends to be able to retrieve lost pixel information and provides more realistic images with
higher pixel variation, as observed by the relatively better performance over ResNet-9
for datasets containing the IMAGE1 and IMAGE2 structures. However, when trading off
complexity and performance, as demonstrated by SYNTH3 where the PSNR performance is
similar for both U-Net256 and ResNet-9, we conclude that the PIX2PIX with ResNet-9 is the
preferred approach for data-driven VMB. both PIX2PIX architectures have similar stability
of performance as observed by the standard deviation of both the PSNR and SSIM metrics.
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In addition to the image quality metrics, the training loss curves over time for the
ResNet-9 and U-Net256 models are presented to further quantify the performance and
to demonstrate successful learning. We show the discriminator loss on fake and real
images as well as the generator loss. As can be observed in Figure 9, the generator loss
GL1 (red curve), which is related to the quality of the produced image itself, converges
to a stable average. The discriminator losses also reach convergence, as seen from the
Dreal(blue) and D f ake(green) curves. The simplest LINEAR dataset is stable from the start.
The MSE training loss curves for the FCNVMB benchmark, shown in Figure 10 for the
IMAGE1 and IMAGE2 datasets, take longer to converge compared to the other simpler
datasets. The training loss curves are in line with those of [25]. Finally, Figure 11 shows
the convergence curves for LINEAR, FOLD, SALT, IMAGE1 and IMAGE2 for the FWI
method. As expected, the method does not converge for the single shot except for the case
of IMAGE2.

Figure 9. Cont.
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Figure 9. Train loss over time for PIX2PIX DLI architectures with ResNet-9 and UNet-256 generators,
on the left and right, respectively, for the datasets, from top row to bottom: LINEAR, FOLD, SALT,
IMAGE1 and IMAGE2. The red line shows the generator loss, while the blue and green lines represent
the discriminator loss for real and fake images, respectively.

Figure 10. Cont.
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Figure 10. MSE training loss curves for FCNVMB model for the LINEAR, FOLD, SALT, IMAGE1 and
IMAGE2 datasets.

Figure 11. FWI convergence curves for all corresponding FWI models of the last column of Figure 12.
From left to right, respectively, and from top row to bottom: FOLD, IMAGE1, FOLD, SALT, IMAGE2,
FOLD and LINEAR (as seen on last column in Figure 12 from first to last row). The vertical axis of
the plots expresses the misfit value of the function Phi subjected to minimisation through iterative
cycles. All plots were obtained by Devito.
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4.3. Qualitative Results

The qualitative performance analysis for DLI architectures was performed via visual
observation of predicted velocity model images in relation to the corresponding ground
truth. Additionally, a local SSIM map illustrates all blurry points of the velocity model that
were predicted, and points that differed compared to the ground truth model were shown
as dark pixels. Thus, by looking at the dark pixels, the human eye can more easily focus and
identify the weaknesses of each prediction. Figure 12 shows the ground truth, predicted
PIX2PIX (ResNet-9) BC1 experiment and predicted FCNVMB velocity model images, in the
first, second and third columns, respectively. The fourth and fifth columns show the local
SSIM maps for the predicted PIX2PIX(ResNet-9) BC1 experiment and FCNVMB velocity
model images, respectively. The sixth column shows the starting model for FWI, and the
seventh column shows the inverse velocity model image calculated from FWI.

Figure 12. Predicted Earth models from PIX2PIX (ResNet-9), FCNVMB and FWI method (2nd
column, 3rd and 7th row, respectively). FOLD (1st, 3rd, 6th rows), IMAGE1 (2nd row), SALT (4th
row), LINEAR (7th row) and IMAGE2 (5th row) datasets can be seen in this Figure. Smoothed starting
models (6th column) of the ground truth (GT) images (1st column) were used for full waveform
inversion iterations (7th column). Local SSIM maps for PIX2PIX(ResNet-9) and FCNVMB can be seen
in the 4th and 5th columns. The horizontal and vertical axes of the velocity models shown in this
Figure are both in km. All velocity models are 3 km across and 2 km deep, while velocity values in all
plots are in km/s.
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For the least complex LINEAR dataset (7th row), compared to the ground truth,
for most of the test models, both PIX2PIX and FCNVMB slightly mispredicted some of the
layer thicknesses but generally made excellent predictions. As can be seen in the 7th row,
4th column, the small misprediction regarding the thickness of some layers by PIX2PIX is
identified as a black horizontal line in the local SSIM map. The same can be seen on the 5th
column for FCNVMB. FWI led to poor inversion results and convergence for the single-shot
simulation, and as we can observe among most of the cases on the 7th column, it generally
failed to accurately capture several layers and, most of the time, the deepest ones.

For the FOLD dataset, PIX2PIX mispredicted the deepest layer but generally provided
a good result, while FCNVMB failed to accurately predict parts of the shape of the bottom
layers, as observed in Figure 12 (1st, 3rd, and 6th rows). The local SSIM maps show the
differentiation in the predicted layers’ thicknesses for both networks. In addition, for the
prediction of FCNVMB, where a blurred zone occurred at the right bottom side of the
model (1st row) and at the middle (3rd row), the local SSIM maps highlighted the position
with grey pixels for both cases. The FWI failed to identify the two upper zones, which are
predicted as one unit zone, but also the deepest bottom layer.

For the SALT dataset, as shown in Figure 12 (4th row), PIX2PIX more accurately
predicted the shape of the dome and the interacting zone (2nd column), as we can also
observe through the lighter pixels in the local SSIM map (4th column). On the other hand,
FCNVMB did not accurately predict the dome’s shape or the interacting zone, as observed
in the 3rd and 5th columns. This is why the local SSIM map for the FCNVMB captures the
difference in the height of the dome. The FWI again failed to predict the deepest zone and
to differentiate the upper two layers.

For IMAGE1, as observed in Figure 12 (2nd row), unlike PIX2PIX, FCNVMB missed the
velocity range (3rd column), as can be also seen in local SSIM map as darker pixels across
the entire surface of the Local SSIM map (5th column). The FWI performed very accurately
for this dataset, providing comparable prediction to the DLI methods and capturing the
velocity interval more accurately than FCNVMB. For IMAGE2, unlike PIX2PIX, FCNVMB
made an incorrect velocity prediction for a small area centred at mid-depth of the model,
Figure 12 (5th row, 3rd column), which can also be seen in the Local SSIM map as darker
pixels (5th row, 5th column). The FWI performed again very accurately for the IMAGE2
dataset, providing comparable qualitative results to the DLI-methods.

Overall, PIX2PIX consistently outperformed FCNVMB and FWI, as observed by the
well-defined (non-blurry with no artifacts or shape distortion) layer predictions in the veloc-
ity model and less dark pixelations on the local SSIM maps in the 4th and 5th columns. This
observation aligns well with the observations made previously with the quantitative PSNR
and SSIM metrics. In Figure 13, we attempted to compare the relative performance of the
three DLI architectures with BC1 experiments for the SYNTH3 dataset by visual observation
of the predicted models vs. the ground truth and the local SSIM maps. During quantitative
performance analysis, we observed that PIX2PIX with ResNet-9 outperformed PIX2PIX
with U-Net256 for the LINEAR, FOLD and SALT datasets. This can be explained by the
distinct artifacts observed in the 2nd column for the first three rows of Figure 13, compared
to the 3rd column. Similarly, as observed in the local SSIM maps, there are more dark
contours in the 4th column compared to the 5th column for ResNet-9. On the other hand,
during quantitative analysis, we observed that PIX2PIX with U-Net256 slightly outper-
formed PIX2PIX with ResNet-9 for the IMAGE1 and IMAGE2 datasets. As observed in
Figure 13 in the 3rd and 4th rows, there is almost no visual difference between the predicted
models in the 2nd and 3rd columns compared to the ground truth. This is also observed in
the equivalent local SSIM maps. This reinforces our earlier conclusion that the proposed
PIX2PIX with ResNet-9 is the best approach for DLI for VMB for the full range of velocity
models when taking into account quantitative and qualitative performance evaluation,
with the additional advantage that ResNet-9 is less complex than the U-Net256 architecture.
Finally, as seen in the 4th column of Figure 13, FCNVMB does not achieve a comparable per-
formance, since the predictions cannot accurately capture either the subsurface geometry
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or the velocity range of the ground truth images, depending on the case. At the same time,
the more heavily shaded areas that can be seen in the last column of Figure 13 compared to
the 5th column of Figure 12 for the individual datasets (LINEAR, FOLD, SALT, IMAGE1
and IMAGE2) highlight the significant drop in performance regarding the predictions of
the network for the SYNTH3 dataset.

Figure 13. Predicted velocity models from SYNTH3 dataset for each of the five proposed datasets,
showing an example for LINEAR (1st row), FOLD (2nd row), SALT (3rd row), IMAGE1 (4th row)
and IMAGE2 (5th row). The 1st column shows the ground truth image, 2nd and 3rd columns show
PIX2PIX with U-Net256 and ResNet-9, 4th column shows FCNVMB, and the 5th and 6th and 7th
columns show the local SSIM maps for PIX2PIX with U-Net256, ResNet-9 and FCNVMB, respectively,
against the ground truth (GT). The horizontal and vertical axes of the velocity models shown in this
Figure are in km. All velocity models are 3 km long and 2 km deep, while the velocity values in all
plots are in km/s.

5. Conclusions

In this paper, we proposed a complete methodology for synthetic generation of veloc-
ity models to enable the rigorous evaluation of deep-learning-based inversion for velocity
model building via the custom generation of velocity models with various layers of com-
plexity, allowing for folds, curvatures and salt bodies with multi-layer stratifications as well
as more granular velocities with finer multi-layer stratifications, derived from geological
images. The construction methodology that was proposed provides a variety of tools for
simulating models, as it allows for the use of mathematical methodology with the paral-
lel utilisation of geological images. We also adopted the PIX2PIX conditional generative
adversarial network and proposed the less complex ResNet-9 architecture as a generator
instead of the original U-Net256 architecture. The aim was to obtain competitive results
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for seismic inversion, under a limited number of associated sources for a small training
dataset. Rigorous quantitative and qualitative evaluations though PSNR and SSIM metrics
as well as local SSIM maps highlight the ability of PIX2PIX with ResNet-9 to lead to the
most robust and stable solutions with only a single-shot simulation, as well as the best per-
formance overall compared to the benchmarked PIX2PIX with the UNet-256 generator and
the state-of-the-art FCNVMB architecture, designed specifically for velocity model building.
Our proposed methodology is suitable for training DLI solutions, such as in [33,40], and
for closing the existing gaps in the literature for improving DLI. The extension of our
methodology to 3D modelling as well as the introduction of features for geological faults
will be included in future works, where we will test the method on more complex datasets
such as the Marmousi model.
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RNN Recurrent Neural Network
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GRU Gated Recurrent Unit
GPU Graphical Processing Unit
MAE Mean Absolute Error
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PSNR Peak Signal to Noise Ratio
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