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Abstract: The new Construction 4.0 paradigm takes advantage of existing technologies. In this scope,
the development and application of image-based methods for evaluating and monitoring the state of
conservation of buildings has shown significant growth, including support for maintenance plans.
Recently, powerful algorithms have been applied to automatically evaluate the state of conservation
of buildings using deep learning frameworks, which are utilised as a black-box approach. The
large amount of data required for training, the difficulty in generalising, and the lack of parameters
to assess the quality of the results often make it difficult for non-experts to evaluate them. For
several applications and scenarios, simple and more intuitive image-based approaches can be applied
to support building inspections. This paper presents the StainView, which is a fast and reliable
method. The method is based on the classification of the mosaic image, computed from a systematic
acquisition, and allows one to (i) map stains in facades; (ii) locate critical areas; (iii) identify materials;
(iv) characterise colours; and (v) produce detailed and comprehensive maps of results. The method
was validated in three identical buildings in Bairro de Alvalade, in Lisbon, Portugal, that present
different levels of degradation. The comparison with visual inspection demonstrates that StainView
enables the automatic location and mapping of critical areas with high efficiency, proving to be a
useful tool for building inspection: differences were of approximately 5% for the facade with the
worst and average state of conservation, however, the values deteriorate for the facade under good
conditions, reaching the double of percentage. In terms of processing speed, StainView allows a
facade mapping that is 8-12 times faster, and this difference tends to grow with the number of
evaluated facades.

Keywords: image classification; facade coating; colour analysis; stains; automatic mapping

1. Introduction

The construction sector is undergoing a paradigm shift in the scope of the emerging
Construction 4.0 revolution. This implies strengthening collaborations between different
areas of knowledge, as well as increasing the scope of their applications. Such collabora-
tions have been taking advantage of image-based methods to improve the inspection of
buildings, showing excellent reactions from research communities and inspection teams in
the field. The evaluation and monitoring of the state of conservation of buildings has shown
significant growth not only in the field of preserving vestiges of architectural heritage but
also monitor and maintain contemporary constructions and structures [1,2]. This is entirely
in line with the new Construction 4.0 paradigm, which can benefit the areas of intelligent
design, construction, and maintenance. The ongoing transformation is also based on the
integration of intelligent algorithms, computer vision, and robotic systems, among other
technologies [3,4]. The development of digital imaging and hardware systems enables
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innovative computer vision solutions, which are useful for supporting the inspection of
buildings facades. These portable and non-invasive approaches, based on hardware (digital
cameras and computers) and algorithms for computer vision, are being used and replacing
traditional methods. Solutions based on the analysis of multi-spectral images, including in-
formation from outside of the visible electromagnetic spectrum such as near-infrared (NIR),
were developed for the mapping of materials and anomalies [5]. The latest improvements
also comprise hyperspectral image analysis or image clustering leveraged by HSV (hue,
saturation, and value) colour space to detect biological colonisation, which may also be
used for colour characterisation and variation assessment on the surfaces [6-8].

Lately, the accessibility of powerful machine learning and deep learning frameworks
promotes their application in building inspection [9,10]. The problems of such image-
based approaches are related with the models training, mainly in the case of complex
backgrounds. The presence of multiple and combined materials and anomalies are difficult
to model, since these are too broad to be included in datasets, e.g., the presence of moisture
stains, efflorescence, biological colonisation, detachment, among other usual anomalies on
building facades. The automatic classification of facades is also influenced by natural and
dynamic light conditions. In addition, all external elements and equipment, such as air
conditioning devices and other facilities or trees, leads to a more complex image classifi-
cation and requires a comprehensive analysis. Deep learning applications, which mostly
work as black-box, also require large and labelled datasets for training and validation,
restraining their application to datasets within the training samples’ characteristics, i.e.,
these are often difficult to generalize to unseen complex backgrounds and cannot extend
the limits of validation beyond the training dataset [11]. The widespread use of commercial
robotic platforms, such as unmanned aerial vehicles (UAVs), fosters new approaches to
data collection [12]. Nevertheless, the automation of data acquisition and processing is still
under development, with the aim of becoming a user-friendly tool for building inspection.
At present, all the technology referred to herein are usually difficult to use by non-experts
in computer vision. In that sense, the development of image-based solutions that are simple
to apply and accessible represents a significant contribution to the construction sector, and
a gateway to generalising their use in practice.

A fast, accessible, and reliable method for mapping stains in facades is presented
herein. This method, called StainView, is based on the classification of images obtained
from a systematic acquisition procedure to detect and map pathologies on building facades,
by: (i) mapping stains in facades; (ii) locating critical areas with a high probability of
containing damages; (iii) detecting and separating materials; (iv) characterising colours;
and (v) producing a detailed and comprehensive maps of results. The StainView can
support the inspection or be used as a complement or even a substitute method to reach a
digital map of stains. Regarding other image-based solutions, StainView is a minimalist
approach that mimics the visual inspection based on the perception of colour differences,
dispensing complex algorithms with a high computational cost. Thus, it results in a user-
friendly and easily understandable procedure for non-experts in computer vision, such as
inspectors who perform the visual inspections of buildings.

The proposed method was validated onsite by applying it to three identical buildings
in the Bairro de Alvalade, in Lisbon, Portugal. The facades of the three buildings present
different degradation levels. The results were confronted with traditional visual inspections
and reveal that StainView enables the automatic location and mapping of anomalies with
high efficiency allowing one to conduct a reliable evaluation; reduce the inspection time,
and decrease the possibility of human error. On the other hand, the pixel-wise classification
performed derives from a reference area selected by the user and, in the current version,
does not allow one to classify and relate the stains to different levels of damage.

2. Method StainView

The StainView takes advantage of classifying images, at the pixel level, based on
the HSV (hue, saturation, and value) and CIELab colour spaces. In the first case for
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colour characterisation and, in the second case, to perform a detailed evaluation of colour
differences (hereinafter AE). In addition, a structured image survey is carried out for the
automatic generation of high-resolution image mosaics of the facades. The main steps of
the proposed method are shown in (Figure 1):

Colour
Calibration

d =

Figure 1. Main steps of the method StainView.

1.  Image acquisition

The automatic image acquisition of facades is performed with an high-resolution
camera mounted on a robotic platforms to capture a structured dataset in a pre-defined
order, e.g., top-bottom, and left-right. The images are acquired with off-the-shelf cameras
on the visible light spectrum. The robotic platform may be terrestrial or aerial, for example
using a pan-tilt robotic head or a unmanned aerial vehicles (UAV) to enable automatic
surveying. A colour calibration board must be used if colour characterisation is a goal.
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2. Built mosaic image

Generate mosaics from the structured dataset using specific software for these opera-
tions. The stitching software must be tunned to accept the structured dataset, with respect
to the sequence of images set in the acquisition plan (step 1).

3. Image pre-processing

Convert the mosaic to HSV and CIELab colour systems [13]. This conversion is
performed automatically, and it is necessary to save the mosaic in both colour systems for
colour characterisation and colour difference measurement.

4.  Colour characterisation

The colour is characterised in the HSV colour system after properly corrected with a
colour calibration board. Firstly, the image is colour calibrated using a calibration chart.
The software automatically detects the measured colours in the image. Then, a correlation
matrix is calculated to minimise the differences between the measured colours and the
known colours of the chart. This transformation is then applied to the entire image to
analyse. The colour measurement is performed on the corrected image within a user-
selected area.

5. Mask cladding

Produce a mask to remove the non-cladding areas based on a threshold. This value
is set by the user based on the live visualisation of the image. The user should select a
region of interest (ROI) that encompasses the multiple materials of the facade, in addition
to cladding, to ensure a more accurate adjustment.

6. Mapping stains

Process the mosaic and build maps of the stains over the image of the facade. The
images are processed using the three CIELab channels and the colour difference, AE, is
computed. The user can define the AE value used as a threshold by the method. The
AE values are discretised and analysed according to Standard EN 15886:2010 [14], which
establishes the level of colour changes that are perceptible by the human eye.

For mapping and analysing the results, it is important to consider the reference values
for AE. As a general guide, the values shown in Table 1 were considered [15]. Furthermore,
the just noticeable differences (JNDs), i.e., the threshold from which the colour differences
are perceptible by the human eye, are also taken into account, considering AE = 2.3 as
the JND [8].

Table 1. General guide for AE perception (adopted from [15]).

AE Perception
<1.0 Not perceptible by human eyes.
1-2 Perceptible upon close observation.
2-10 Perceptible at a glance.
11-49 Colours are more similar than opposite.
100 Colours are exact opposites.

The method was evaluated by comparing the maps obtained with the maps resulting
from the visual inspection, computing: (i) the percentage of stains, considered as critical
and possible damage areas; and (ii) the Interception over Union (IoU), i.e., the degree of
overlap between both maps computed according to Equation (1), as well as plotting those
differences (Figure 2).

Area of Overlap

ToU = Area of Union

ey
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Figure 2. Interception over Union (IoU).

3. The Case of Bairro de Alvalade in Lisbon, Portugal
3.1. Scope and Location

The masterplan for the Alvalade neighbourhood was elaborated in the 1940s by the
architect Faria da Costa and was developed as part of the urban expansion policies of
the city of Lisbon and the promotion of new housing areas [16]. The Alvalade neighbour-
hood was designed to cover a vast area of approximately 250 hectares, intended to house
45,000 inhabitants, taking the coexistence of different social categories as a structuring
principle [17]. To significantly increase the amount of social housing, the previous model of
single-family housing was replaced by collective housing, with a maximum of four floors
to avoid the placement of elevators, according to a left/right typology [17]. The proposed
method was applied to the facades of three identical buildings built in 1948 in Alvalade, in
the low-rent housing area named Bairro das Caixas. A large-scale construction program of
economic income houses started between 1947 and 1956. The case studies belong to Cell
I and were built in 1948. They are in Joao Lucio St. (the front facades of buildings No. 4,
No. 7, and No. 9), a dead-end street with a parking line for vehicles and abundant vegeta-
tion (i.e., trees and shrubs) that grows in the front gardens of each private property [17].
According to the Koppen—Geiger classification, Lisbon has a hot-summer Mediterranean
climate. In the last 20 years (1998-2018), the mean annual and minimum-maximum mean
temperatures were, respectively, 13.6 °C and 21.8 °C, the minimum relative humidity was
47.6%, maximum relative humidity was 85.4% and the average rainfall rate was 66.6 mm,
according to the records of the meteorological station situated in Lat: 38°46’N; Lon:09°08W;
Alt.:104 m, from Instituto Portugués do Mar e da Atmosfera (IPMA) [18]. The orientation
of the street—east/west—favours the growth of vegetation, and all kinds of biological
organisms, as evidenced by the high degree of soil moisture and indirect sunlight in the
front gardens [19,20]. The front facades of properties No. 7 and No. 9 do not receive the
direct incidence of solar radiation at any time due to their northward orientation (Figure 3).

3.2. Area of Study and Anomalies

These case study facades present a main central entrance to six dwellings, a central
core of vertical communication, fourteen windows, and four balconies with locksmith, a
large cornice of ceramic tiles, wiring for electrical installations, and external air conditioning
equipment fixed to the facade (Figure 4). The main materials used in the cladding of the
facades are red brick glazed, a 50 cm high plinth made of cement mortar, and current
renderings with yellow pigments (reference colour, according to measurements taken in
situ). The construction of these buildings was based on modular coordination principles.
As stated in the Regulamento Geral de Construgao Urbana [21], all the dwellings had
reinforced concrete slabs on the floors of the kitchens and bathrooms, while the rest
were built with wooden beams and Portuguese floors. Additionally, the introduction
of reinforced concrete beams on all floors on the facades is noteworthy.
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Figure 3. General overview of the Alvalade neighbourhood at Lisbon, Portugal, and the locations of
the three identical buildings (4, 7, and 9) (taken from Google Earth).

(b)

Figure 4. Three facades analysed in Joao Ltcio street in Bairro de Alvalade, Lisbon: (a) building
No. 4; (b) building No. 7; and (c) building No. 9.

The three facades were built more than 50 years ago, and a progressive state of
degradation is evidenced from worst to best, i.e., from Facade No. 4 to Facade No. 9,
respectively, in Figure 4. Facade No. 4 presents the worst state of conservation, since
it is the only one without a maintenance intervention. Despite its current appearance,
this facade is the one that has been under better “in situ” preservation conditions thanks
to the direct sunlight due to its southward orientation. On the contrary, Facade No. 9
(with a northward orientation) was recently renovated, presenting fewer anomalies, and
it is considered the reference to be used for the comparison. The anomalies considered
in this work were the stains—superficial dirt, runoff, raising damps, thermophoresis,
biological growth, corrosion stains, and graffiti—mainly originating from the moisture
and the relatively humid conditions in this area of the city. As shown in Figure 5, the
cladding does not present the original colour in all facades, and lighter and darker areas
can be found.
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Figure 5. Example of the state of degradation of the cladding on facade No. 7: location and zoomed
area for (a) salts; (b) presence of superficial dirt; and (c) biological colonisation.

3.3. Built Mosaic Image

The automatic and structured image acquisition of the facades was carried out using
a camera Nikon D810 equipped with a lens with a focal length of 50 mm, allowing to
acquire images of 7369 x 4912 pixels. The camera was mounted on a GigaPan robotic head
for structured acquisition. This set-up allowed to capture a set of images of a selected
scene with a pre-define path to build high-resolution mosaics of the facades (Figure 6).
The ortho-mosaic of each facade was built in post-processing procedures using the Image
Composition Editor version X from Microsoft Research [22].

Figure 6. Image acquisition: (a) set-up; and (b) mosaic of images acquired.

3.4. Colour Evaluation

The chromatic characterisation of each facade can be also computed by applying
image processing techniques. This allows a larger and continuous evaluation due to the
high discretisation achieved at the pixel level, on the contrary to the single point and
discreet characterisation computed with traditional instruments such as the colorimeter.
A classic ColorChecker board was used and placed in the field of view (FOV) for colour
calibration, (Figure 7a). The images are processed to set values in the three HSV and CIELab
channels [13,23]. In the case of HSV, the colour is characterised based on three parameters,
namely hue (H), saturation (S), and value (V) or brightness: (i) ‘H’ indicates the pure colour,
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(a)

excluding white or black and with maximum saturation and brightness. Thus, this enables
us to distinguish pure colours for values between 0° and 360°, for example, 0° or 360°
represents red, 60° represents yellow, 120° represents green, and 240° represents blue;
(if) ‘S’ represents colour purity, ranging from 0%, which signifies the absence of colour to
100%, which signifies the full colour saturation; and (iii) “V’ ranges between dark and light,
with 0% standing for black and 100% for white (Figure 7b). Briefly, the HSV colour space
is quantified by an angle, and variations of shades and tones for each colour are reached
by adjusting the brightness and/or saturation [8,24]. In the CIELAB (Lab), L* expresses
the brightness in a white-black axis, and 4 and b are the parameters of chromaticity that
represent variation between the four unique colours of human vision, where a represents
the green-red trend and b represents the blue-yellow trend (Figure 7b). Furthermore, the
CIELab space is also used to measure colour differences (AE), and several classifications
were defined to evaluate these differences, namely, whether the values are perceptible to
the human eye [8]. All algortithms were implementd in Matlab [25].

HSV
Y
1200 0°/360°
= |
N\ »4
2400
270°— | — 900
e Z *
1
180°
% black S
CIELab

white | white

_y+b

+a

Laom

g black 0 black

(b)

Figure 7. Colour characterisation: (a) ColorChecker; and (b) HSV and CIELab colour system.

3.5. Mapping Stains

The automatic mapping of stains intends to mimic the visual inspection produced by
the technicians, mainly based on the analysis of the colour differences of the facades. A
threshold was establish for the colour differences (AE) value, below which the differences
are not perceptible by the human eye [14,15]. The European standard [14] describes a test
method for measuring the surface colour of porous inorganic materials, such as natural
stones or synthetic materials, like mortar, plaster, brick, among others.

The total colour difference AE between two measurements (L, a1, by and Ly, a», b) is
the Euclidian distance between their positions in the CIELab colour space. It is calculated
by applying Equation (2):

AEy; = V/AL? + Aa? + A2 )

where AL = L, — L corresponds to the difference in clarity; Aa = a; — a1 corresponds to the
red/green difference; and Ab = b, — by corresponds to the yellow /blue difference.

Thus, if the value is greater than five (AE > 5), the colour variation is perceptible by the
human eye. However, in many cases, a values of ten can be adopted, i.e., if the differences
are less than ten (AE < 10), they are difficult to distinguish by the human eye [8,14,15].
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4. Results and Discussion
4.1. Traditional Visual Inspection

The traditional visual inspection includes the definition and labelling of materials and
pathologies, before compiling results from the on-site survey in a drawing software [26],
aiming to identify and map all of the stains present in the facades. From the on-site
observation, it became clear that there were dark and light stains. The visual inspection
works as a reference to evaluate the quality of the maps automatically obtained based on
the colour difference evaluations. A panorama for each of the three facades analysed was
elaborated from the planimetric survey, as defined in Section 2, and the stains observed
were drawn by an expert using a time-consuming approach with rough precision results
(Table 2).

Table 2. Planimetric survey and mapping of the stains by visual inspection.

Facade No. 4 Facade No. 7 Facade No. 9

]
&0
[
£
=
(=1
&0
0
)
£ J_i HTE LLH | AL (LH [ HL
g i fid B
3 THTED THTED ] |
s HL ﬂl L _; | L |
g
& \ 1] 11 71
E
South orientation North orientation North orientation
L0 LTI
? H[{L iﬁ &3 L_ _ULL
— 3 —
3 - l 0TI
G 11& &j n \IWH
= 4 - ‘ ‘
k5 il [in)il [0 | ENj LjC] Omo i
£
o
£ 100.49 m?—53.07%—dark stains 17.27 m?>—17.47%—dark stains 1.472 m?>—1.36%—dark stains
42.75 mzz—39-29%—hght stains 34.69 m?>—35.10%—light stains 16.707 m>—15.47%—light stains
100.49 m*—92.37%—total stains 51.96 m2—52.57%—total stains 18.179 m2—16.83%—total stains

4.2. Colour Evaluation

The first step towards proper colour characterisation is the colour calibration of the
image. This is done using the classic ColorChecker positioned over the area to be measured.
The colour calibration of the image is performed by a transformation computed from the
twenty-four reference colours of ColorChecker. The colour reference areas are automatically
detected and the colour difference AE is measured (Figure 8). Then, a transformation is
computed to minimise the AE for all twenty four colours, and applied to the whole image,
resulting in a true colour image. The colour can be measured and characterised in this true
colour image for all colour space and at any selected area, as exemplified in Figure 9.
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(a) (b) (©)

Figure 8. Colour calibration: (a) ColorChecker detection; (b) colour correction matrix; and (c) colour
correction directions.

|

H=426"°

S=379%
V =280.0%

Figure 9. Colour characterisation in HSV colour space.

4.3. Image Classification

A previous general analysis was conducted using the H, S, and V channels for colour
evaluation. The selection of the main yellow colour of the facade is performed using the
H (hue) channel and, if useful, the user can also analyse the S and V channels. In this
case, the yellow colour, which represents a good state of conservation, is related to the
human perception, because the H channel values are just slightly affected by shadows and
brightness, which in the HSV colour spaces are manifested in the two other channels. The
analysis was performed manually and supervised by the user based on a visual analysis,
allowing us to define a mask that removes external elements such as trees, cars, windows,
or air-conditioning equipment, as exemplified in Figure 10. Table 3 presents the final masks
generated for each of the three facades, which only saves the relevant pixels that represent
the facade cladding.
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(b)

Figure 10. Facade mask to remove the external elements (example of facade No. 4): (a) image for
mask calibration; and (b) definition of mask threshold.

Table 3. HSV analysis of the three facades by the user.

Facade No. 4

Facade No. 7 Facade No. 9

Mosaic

Supervided
mask
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Table 4 presents the results based in AE, taking as reference a yellow colour computed
in an area selected by the user, and marked with a red rectangle in the images of the facades
in Table 3. Then, the maps for AE > 2.3, AE > 5, AE > 10, AE > 15, AE > 20, and AE > 30
were plotted to map the stains areas. The percentage of stains measured in each map was
also added to Table 4.

Table 4. Analysis of AE in the three case studies.

Facade No. 4 Facade No. 7 Facade No. 9

o
o~
AN
m
<
| I'g)
AN
m
<
76.58% 43.32% 35.26%
"‘ R
= eI T
AN _. l_-._-l _ .
= e — |
< N A
= I !
56.73% 18.00% 4.38%

4.4. Analysis of Results

For comparison purposes, the visual inspection was filtered by the facade cladding
mask (see Figure 2). Figure 11 shows the overlap of that mask (in blue) with the manual
mapping performed. This way, the area analysed by both methods are exactly the same.

(b)

Figure 11. Visual inspection map with the automatic mask in blue: (a) building No. 4; (b) building
No. 7; and (c) building No. 9.

Different facts were revealed when comparing the manual drawing carried out in
Section 4.1 with the image classification performed in Section 4.3. Figure 12 presents the
comparison between the areas mapped with the stains from both approaches. The results
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Area of stains

100%

80%

60%

40%

20%

0%

show that regardless of the applied method, Facade No. 4 clearly presented the worst
apparent state of conservation, since a large majority of the facade was classified with stains.
The stains in this facade are well differentiated from the cladding reference yellow colour,
and the maps computed for AE > 2.3 provide a huge area of stains (90.6%). For AE > 5, the
value reduces to 76.6%. The visual inspection leads to a total area of stains of 81.1%, i.e.,
between the automatic maps for AE > 2.3 and AE > 5. On the opposite side, the results of
facade No. 9 reveal an apparent best state of conservation. The areas computed for AE > 5
and AE > 10 are 35.3% and 4.4%, respectively, while the visual mapping reaches 18.4%.
For facade No. 7, with an apparent state of conservation between the two other buildings’
facade, the automatic mapping for AE > 5 is 43.3%, which is identical to the values obtained
for the visual mapping, which is 41.2%.

No.4

1.0
mAE>23 ®WAE>5 mAE>23 mAE>5
AE>10 AE > 15 ™ 0.8 AE>10 AE>15
[}
AE >20 AE > 30 E AE > 20 AE > 30
B Manual S 0.6
«
S 04
S
2 02
0.0
No.7 No.9 No .4 No.7 No.9
Building Building

(b)

Figure 12. Comparison between the results obtained by manual and automatic classification methods:
(a) area of stains; (b) Interception over Union (IoU).

Briefly, the results indicate that, for the facade with the worst state of conservation
(No. 4), the automatic mapping is close to the manual mapping for AE between 2.3 and 5;
for facade No. 7, with an average state of conservation, the automatic and manual mapping
is similar for AE > 5; and for the facade with the best state of conservation, No. 9, the manual
mapping reaches an area of stains between the automatic mapping obtained for AE > 5 and
AE > 10. These results are in line with the classification of Table 1, which mentions that the
colour differences are perceptible at a glance for AE between 2 and 10. At a glance, and
for a non-trained human eye, values lower that 10 are hardly noticeable. The automatic
mapping for JND (AE > 2.3) is important to analyse the colour changes throughout close
observation, something which is not usually performed in visual inspection, especially
when there are no doubts about the condition.

To a comprehensively analysis of the results, the IoU between the classification maps
was computed, using the Jaccard Index, and the maps highlighting its differences were
plotted (Table 5). The maps indicate the areas classified as stains for manual and automatic
mapping (white areas), the areas classified as stains by manual mapping and as cladding
by the StainView (in Green), as well as the areas classified as stains by the StainView
and classified as cladding by the manual mapping. The results show that: (i) for facade
No. 4, differences are concentrated in the edge of the analysed cladding area; (ii) for facade
No. 7, despite the identical total area of stain measures, more than an half of this area
does not match between the approaches; (iii) for facade No. 9, greater difficulty in the
visual classification is revealed, given the good conditions preserving absence of stains.
Furthermore, the user influence can also be noticed in the automatic mapping, since the area
selected as the reference colour is close to the area selected as stain in the visual inspection.
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Table 5. Maps with differences in relation to the visual inspection and IoU values (Jaccard index).

Facade No. 4 Facade No. 7 Facade No. 9

Q
3

=}
=

o

a

N

53]

<

ToU = 0.832

[}

N

=]

<

ToU = 0.754

o

i

N

=)

<

IoU = 0.584 IoU =0.224 IoU = 0.029

Wite—pixels classified as stains by manual and automatic approaches; Green—pixels classified as stains by
manual approach and classified as cladding by the automatic approach; Magenta—pixels classified as stains by
automatic approach and classified as cladding by the manual approach.

5. Conclusions

The StainView is a fast and user-friendly method that enabling a support to a first
approach for the analysis of the state of conservation of facades, being a valuable tool for
inspection and diagnosis.

The final maps produced facilitate the identification of critical areas by the detection
of stains, which have a higher probability of containing anomalies, identically to the visual
inspections usually performed. Furthermore, this allows the identification and separation
of materials, specifically, the cladding is extracted for analysis, and external elements such
as trees, cars, windows, air-conditioning equipment, among others, are removed from
the images. Additionally, the method also allows the colour characterisation in the whole
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facade. Finally, the mosaic image produced can be analysed at any time, including being
processed with new approaches and analysis.

The results show that the classification based on colour differences (AE) mimic the
traditional visual inspection, which is more evident for the cases in the worst and average
states of conservation, in which the stains are more clear. In cases of good conditions, there
may still be a tendency for the inspector who is carrying out the visual analysis to look
for defects in greater detail rather than relying on a quick assessment, as is the case with
obvious faults. For the three cases analysed in Bairro de Alvalade, in Lisbon, this is evident
for facade No. 9 (with best state of conservation), which is less accurate when compared
with the remaining facades. For facades No. 4 and No. 7, AE can identify slight colour
differences that may not be observed by naked eye.

The automatic approach significantly reduces the inspection time, allowing for a
facade mapping that is 8-12 times faster. This advantage becomes even more pronounced
as the number of facades being evaluated increases. Additionally, bias evaluation and
accuracy are improved, since these reduce human intervention. The facades present a
different yellow colour reference for cladding depending on the light exposition. However,
the advantage of using a specific reference colour to measure relative colour differences
makes the method versatile and easy to apply by technicians which are non-experts in
computer vision.

A drawback of the method is its performance when dealing with facade panoramas
with ‘noise” elements, such as urban furniture, vegetation, and vehicles, which hide parts of
the facade from the panorama. This means that the analysis is not performed on the entire
facade. This can be overcome by more complex image surveying, from different points of
view, to avoid facade blind spots. However, the error is often not relevant at this scale.
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