
Citation: Rehman, K.; Fareed, N.;

Chu, H.-J. NASA ICESat-2:

Space-Borne LiDAR for Geological

Education and Field Mapping of

Aeolian Sand Dune Environments.

Remote Sens. 2023, 15, 2882. https://

doi.org/10.3390/rs15112882

Academic Editor: Simone Mineo

Received: 22 April 2023

Revised: 28 May 2023

Accepted: 30 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

NASA ICESat-2: Space-Borne LiDAR for Geological Education
and Field Mapping of Aeolian Sand Dune Environments
Khushbakht Rehman 1 , Nadeem Fareed 1,2,* and Hone-Jay Chu 1

1 Department of Geomatics, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan;
khushbakhtrehman280@gmail.com (K.R.); honejaychu@geomatics.ncku.edu.tw (H.-J.C.)

2 Department of Agricultural and Biosystems Engineering, North Dakota State University,
Fargo, ND 58102, USA

* Correspondence: nadeem.fareed@ndsu.edu or nadeem@geomatics.ncku.edu.tw; Tel.: +1-701-729-5075

Abstract: Satellites are launched frequently to monitor the Earth’s dynamic surface processes. For
example, the Landsat legacy has thrived for the past 50 years, spanning almost the entire application
spectrum of Earth Sciences. On the other hand, fewer satellites are launched with a single specific
mission to address pressing scientific questions, e.g., the study of polar icecaps and their response
to climate change using Ice Cloud and the Land Elevation Satellite (ICESat) program with ICESat-1
(decommissioned in 2009) and ICESat-2. ICESat-2 has been operational since 2018 and has provided
unprecedented success in space-borne LiDAR technology. ICESat-2 provides exceptional details
of topographies covering inland ice, snow, glaciers, land, inland waterbodies, and vegetation in
three-dimensional (3D) space and time, offering the unique opportunity to quantify the Earth’s
surface processes. Nevertheless, ICESat-2 is not well known to some other disciplines, e.g., Geology
and Geomorphology. This study, for the first time, introduces the use of ICESat-2 in aeolian sand dune
studies, purely from an ICESat-2 remote sensing data perspective. Two objectives are investigated.
first, a simplified approach to understanding ICESat-2 data products along with their application
domains. Additionally, data processing methods and software applications are briefly explained to
unify the information in a single article. Secondly, the exemplified use of ICESat-2 data in aeolian sand
dune environments is analyzed compared to global Digital Elevation Models (DEMs), e.g., Shuttle
Radar Topography Mission (SRTM). Our investigation shows that ICESat-2 provides high-resolution
topographic details in desert environments with significant improvements to the existing methods,
thereby facilitating geological education and field mapping. Aeolian sand dune environments can be
better understood, at present, using ICESat-2 data compared to traditional DEM-based methods.

Keywords: ICESat-2; LiDAR; geology; geological education; fluvial environments; deserts;
field mapping; ground control points

1. Introduction

Compared with the traditional field and laboratory experimental techniques decipher-
ing grain-scale geology, large-scale regional and global investigations were found to be
challenging since several influencing factors, e.g., earthquakes, seismic activities, extreme
weather conditions, and man-made anthropogenic alterations, can trigger spatial–temporal
changes impractical to document using traditional approaches [1]. With the launch of the
first Landsat satellite in 1972, remote sensing observations permitted geological visualiza-
tions and investigations at regional and global scales with unprecedented spatial–temporal
scales [2]. With the unparalleled development in multispectral imaging sensors [3,4], au-
tomated processing workflows [5–8], and wide-area spatial–temporal coverage, remote
sensing has proven to be a rapid and efficient data source for surface geological visualiza-
tions, investigations, analyses, and updating geological maps that can significantly reduce
extensive field investigations [9–11].
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Three-dimensional (3D) spatial data acquired from Global Navigational Satellite Sys-
tems (GNSS), digital photogrammetry, remote sensing, geophysical explorations, and
laser-based measurement technologies are the key to the Geographical Information System
(GIS) for efficiently managing and updating spatial databases [12]. The three-dimensional
modeling of Earth’s surface objects necessarily requires three physical attributes: spectral in-
formation deciphering the object’s composition; textural information depicting the surface
roughness, and geometrical information defining the object’s shape in space and time [12].
The integration of spectral and textural information with the geometrical information of
Earth’s surface objects has been accomplished by integrating data from different satellites
through surface imaging algorithms [7]. Over the past 20 years, 3D information through
space-borne observations at regional and global scales [13] e.g., Shuttle Radar Topography
Mission (SRTM) dataset in 2003, and the Digital Elevation Model (DEM) derived from the
Advanced Space-Borne Thermal Emission and Reflection Radiometer global DEM (ASTER
GDEM) witnessed unprecedented global data product development for measuring 3D
parameters [14,15].

1.1. Highlights

Light-detection and ranging (LiDAR) technology initially advanced with airborne
laser scanners (ALSs) performed by aircraft or ground-based systems using terrestrial
laser scanners (TLSs) have revolutionized the 3D modeling of Earth’s surface processes at
unprecedented levels of speed, scale, and spatial resolution [13,16]. Compared with passive
remote sensing methods (e.g., optical imaging systems), LiDAR systems employ their own
source of light (e.g., laser beams) to survey object locations (x, y) and their elevations (z) at
a rate of up to one million laser returns per second [16]. With unprecedented spatial and
temporal resolutions, the increased use of LiDAR data is apparent when understanding the
Earth’s surface processes, e.g., mass wasting, geomorphology, glacier morphology, rock
slope monitoring, active volcanism, and lithology [2,16]. Single LiDAR datum provides a
wealth of information about the object under observation, e.g., dense point measurements
with laser return intensity (LRI) characterizing the shape, surface roughness, and surface
reflectance properties [2]. Point-cloud automate classifications of different objects, e.g.,
buildings, trees, etc., enable us to create Digital Surface Model (DSM), DEM, and Digital
Terrain Model (DTM) technologies at user-defined ground sampling distances (GSDs) at
several scales through automation [17,18]. Furthermore, the algorithm enabling LiDAR data
fusion with multispectral remotely sensed data witnessed the improved characterization
of geological mapping [7]. Despite the increased growth in the development of LiDAR
sensors and their widespread adoption in the quest of understanding Earth’s surface
processes, LiDAR is still considered an expensive technology, while datasets at the global
scale are rapidly growing, yet far from complete [19]. In addition, for surface change-
detection scenarios, repeated LiDAR surveys for the same location are still uncommon due
to financial constraints [16].

1.2. Ice Cloud and Land Elevation Satellites (ICESat)

On 15 September 2018, the National Aeronautics and Space Administration (NASA)
launched ICESat-2 to continually support the quantification of ice-sheet contributions to
sea-level rise, estimating sea-ice thickness, and monitoring glacier-melting outlets [19].
ICESat-2 is a legacy mission following ICESat-1, which was operational from 2003 to 2009
and decommissioned in 2010 [20]. ICESat-1 provided unprecedented success as a valuable
reference geodetic control for several other research disciplines due to its higher reliability
and horizontal and vertical accuracies at the centimeter (cm) level, originating from precise
laser-return values from the Earth’s surface. Several publications witnessed the success
of ICESat-1 addressing, e.g., coastal Digital Elevation Model (DEM) development [21], im-
proving SRTM DEM, ASTER GDEM v2 [21], improving canopy heights [22], and estimating
above-ground biomass (AGB) [23], with several other scientific investigations [14,24,25].
Therefore, with the proven success of ICESat-1 [14,24,25], ICESat-2 aims to collect laser
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measurements of Earth’s terrestrial surfaces, e.g., vegetation, ice, land, and water, providing
highly accurate geodetic measurements for a wide range of terrestrial applications [20].
ICESat-2 is equipped with a state-of-the-art laser-ranging instrument based on Photon-
Counting LiDAR (PCL) technology measuring Earth’s surface geodetic elevations at a much
higher spatial–temporal resolution compared to its predecessor, full-wave Geoscience Laser
Altimeter Systems (GLAS) LiDAR sensor [26]. Unlike discrete return, topographic airborne
LiDAR system (ALS) [17], or full-waveform LiDAR sensors (e.g., GLAS), the Advanced
Topographic Laser Altimeter System (ATLAS) onboard ICESat-2 is a photon-based sensor
(e.g., PCL). Therefore, offers added the advantage of detection sensitivities at the photon
level [25].

1.3. Contributions

A large portion of the aeolian system is comprised of sand dunes that are sand
deposits ranging from hundreds of meters to several kilometers in width and length
spread across all continents, except Antarctica. The sand dunes generally occur in group
formations of sand fields (<30,000 km2) and sand seas (≥30,000 km2) [27]. Deserts and sand
dunes play an important role in understanding global changes linked to their formation,
evolution, and interaction with the biosphere, hydrosphere, cryosphere, and atmosphere,
as 25% of desert area is covered with sand [14,27]. For example, dust particles are excellent
cloud condensation nuclei fostering properties associated with clouds and precipitation at
regional and global scales. However, scientific investigations unveiled sand dunes’ aeolian
geomorphology, largely based on field and laboratory experiments at grain and single-dune
scales. Consequently, sand dunes in remote regions at regional and global scales remain
far from being fully understood. Aeolian sand deposits constitute 6% of the entire world’s
land cover, with 97% of these deposits occurring in arid lands [14].

Desert regions and their aeolian and fluvial processes are dynamic processes that
are far away from human settlements and require frequent field visits. The geometrical
properties of aeolian and fluvial systems, e.g., dune height, channel width, and surficial
features, are challenging to be mapped and modeled using medium-resolution global
DEMs, e.g., SRTM (30 m). Given the fact that certain geological regions are challenging
and human access is constrained (e.g., deserts), addressing the spatial–temporal changes
becomes a complex problem, solely relying on field surveys. Earth observation from space,
therefore, can help us to understand such arising challenges using spectral information
from optical imagery and geometrical information deciphering texture, elevation, and
structural changes derived from satellite altimetry.

Nevertheless, ICESat-2 is objectively known to Earth scientists working on its pri-
mary mission objectives, i.e., monitoring ice or polar regions. ICESat-2 from a geologist
standpoint is not yet fully recognized and remains an unexplored data source. Space-borne
optical, InSAR, and ICESat-1 sensors are well-documented in the past research [20,21,23];
however, the present study is the first of its kind to explore and quantify the use of ICESat-2
data from a purely geological standpoint to showcase the usefulness of ICESat-2 in sand
dune environments [28]. Our approach addresses the following aspects of ICESat-2 data.
(a) A thorough understanding of ATLAS data acquisition, data products, and data pro-
cessing to help with geological education and field mapping. In addition, we aim to enlist
up-to-date software applications developed by NASA and other data scientists to unify
the information for easy access. (b) The exemplified use of ICESat-2 data acquisition and
processing using several open source and commercial applications is presented for desert
sand dune regions in comparison with global DEM-based approaches [14]. The overall aim
is to document the application potential of ICESat-2 for overall geological education in a
classroom environment compared with traditional DEM-based approaches. In addition,
we aim to show that ICESat-2 can provide field-level geodetic control points necessary for
the evaluation of traditional DEM products.
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2. Materials and Methods
2.1. ATLAS

Onboard ICESat-2, an ATLAS photon-counting lidar (PCL) was placed in a geocen-
tric position close to polar low-altitude Earth Orbit (LEO) at an approximate altitude of
480 kilometers (km) orbiting at the speed of 6.9 km/s with an approximate orbital period
of 94.22 min. Unlike most optical satellites, ATLAS operates in ascending and descending
modes, collecting data during the day and night. The PCL operation is more favorable
during the night to reduce the background noise, and is generally higher during daytime
due to background solar radiations [29].

2.1.1. Data Acquisition Mechanisms

ATLAS profiles the Earth’s surface with six laser beams along an imaginary Reference
Ground Track (RGT) as shown in Figure 1a. PCL operates at the green wavelength of the
visible portion of the electromagnetic spectrum, as PCL technology is mature at 532 nm [28].
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Figure 1. Schematic diagram of ATLAS data acquisition along reference ground track (RGT)—solid
black line. (a) ATLAS data acquisition without off-pointing along RGT. (b) The separation distance
between laser footprints along track direction. (c) A 14 m laser footprint on the ground with a
Gaussian distribution of laser returns. (d) ATLAS data acquisition along RGT with off-pointing left
(L) and (e) right (R). (f) An example case of ATLAS off-pointing left (L) in desert settings.

ATLAS-PCL operates with a pulse repetition rate (PRR) of 10 kHz that translates into
10,000 laser pulses in one second, illuminating the Earth’s surface with a footprint 14 m
in diameter (Figure 1c) [30]. In the along-track direction, two neighboring footprints are
separated by 0.74 m spacing (Figure 1b). In total, six laser beams are paired into a weak
beam, i.e., 1/4 in power compared to a corresponding strong beam located 90 m apart in
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the across-track direction (Figure 1d), while each beam pair is 3.3 km apart from the next
beam pair (Figure 1e). The notation of Ground Track (GT) with beam numbers (1,2,3) was
assigned. To cover more land and vegetation areas along each RGT, ATLAS was off-pointed
to the left (L) (Figure 1d) and right (R) (Figure 1e) of the RGT for the first two years of
operation; therefore, each beam presents right (R) or left (L) notations, as shown in Figure 1.
The example of RGT off-pointing (R) is shown in Figure 1f.

2.1.2. Geolocated Photon Clouds

ATLAS laser-pulse-energy temporal distribution is approximately Gaussian in nature
with a circular spot on the ground (Figures 1c and 2). The energy starts decaying from the
center of the laser spot towards the edges (Figure 2a).
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Figure 2. Schematic diagram presenting energy distribution of an emitted ATLAS laser beam.
(a) Circular laser spot with 14 m laser footprint Gaussian distribution. (b) Gaussian distribution
along the diameter of the laser spot [22] (see Figure 1c).

The ATLAS laser spot corresponding to a strong beam is four times stronger with
a pulse energy of 175 micro joules (µJ) than the weak beams with a pulse of 45 µJ. The
weak and strong beams are designed by considering the dynamic range of high-reflectance
surfaces, e.g., snow, and low-reflectance surfaces, e.g., vegetation, sea, etc. Given the
fact that the ATLAS weak beams operate at much lower power levels than strong beams,
ATLAS strong beams provide a more complete sampling of low-reflecting terrestrial objects.
ATLAS is equipped with a photon-counting LiDAR (PCL) sensor sensitive at the photon
level, i.e., a single photon reflected from Earth’s surface at 532 nm wavelengths is registered
by the ATLAS sensor. The ATLAS instrument uses photon-counting techniques to measure
the Time of Flight (TOF) for a photon to travel from ATLAS to Earth and back to the sensor,
and, with altitude (z) above the ellipsoidal reference system [31], ATLAS also precisely
records the latitude and longitude of each photon and the collected photon data are referred
to as the “geolocated photon cloud”. More details about the ATLAS-PCL sensor can be
found at [28]. Single-photon-sensitive LiDAR systems are capable of detecting individual
photons backscattered from terrestrial objects, as opposed to linear-mode instruments,
e.g., ALS systems that require thousands of backscattered photons in order to detect a
return [32]. Nevertheless, ALS systems essentially record strong backscattered pulses from
terrestrial objects instead of single photons; therefore, the term “point clouds” is used to
describe the number of backscattered laser echoes. For that reason, PCL systems are prone
to background-noise photons, e.g., photons generated by sunlight at green wavelengths,
i.e., 532 nm, are also registered by PCL systems. In addition, PCL sensors operating at
532 nm are capable of penetrating through water columns; therefore, they are useful for the
shallow-water bathymetry of coastal waters and lakes [32,33].

2.1.3. Topographic Effects on Photon Clouds

Topography in the most general form is characterized by three different types: (a) flat,
(b) flat-but-rough, and (c) sloped surfaces, as demonstrated in Figure 3. The received
photons by the sensor from different surfaces exhibit dissimilar distributions in 3D space
and time characterizing the topographic details (Figure 3) [31]. The emitted and corre-



Remote Sens. 2023, 15, 2882 6 of 24

sponding reflected photons received by the sensor show a similar distribution response
from flat-but-smooth surfaces (Figure 3a). Over a rough surface of peak and valley configu-
rations, some photons are reflected from the top of the peaks, fewer from the slope surfaces
stretching between peaks and valleys, and some are reflected from the valley (troughs), as
demonstrated in Figure 3b [31]. For sloped surfaces, the photons from the upper edge of
the footprint are received earlier than photons from the lower edge (Figure 3c). In addition,
due to the background radiation effect, the photon events recorded by the ATLAS receiver
telescope 0.8 m in diameter within the 45 m receiver Field of View (FOV) are comprised of
signal and noise photons, respectively. PCL sensors are prone to detect a large portion of
noise photons, i.e., originating from the sun and instruments. ATLAS onboard algorithms
reduce the size of telemetered data [32] by removing a large portion of noise photons [33,34].
ATLAS onboard algorithms ensure that most of the signal photons within a Range Window
(RW) of several hundred meters above and below the onboard reference DEM surface
are retained [32]. In addition to this, the ATLAS receiver is equipped with special filters,
only permitting photons with wavelength closer to 532 nm, ensuring most of the received
photons are signal photons. However, some of the noise photons with wavelengths closer
to 532 nm are received by ATLAS sensors (Figure 3, gray dots) [33,34].

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 25 
 

 

2.1.3. Topographic Effects on Photon Clouds 
Topography in the most general form is characterized by three different types: (a) 

flat, (b) flat-but-rough, and (c) sloped surfaces, as demonstrated in Figure 3. The received 
photons by the sensor from different surfaces exhibit dissimilar distributions in 3D space 
and time characterizing the topographic details (Figure 3) [31]. The emitted and corre-
sponding reflected photons received by the sensor show a similar distribution response 
from flat-but-smooth surfaces (Figure 3a). Over a rough surface of peak and valley con-
figurations, some photons are reflected from the top of the peaks, fewer from the slope 
surfaces stretching between peaks and valleys, and some are reflected from the valley 
(troughs), as demonstrated in Figure 3b [31]. For sloped surfaces, the photons from the 
upper edge of the footprint are received earlier than photons from the lower edge (Figure 
3c). In addition, due to the background radiation effect, the photon events recorded by the 
ATLAS receiver telescope 0.8 m in diameter within the 45 m receiver Field of View (FOV) 
are comprised of signal and noise photons, respectively. PCL sensors are prone to detect 
a large portion of noise photons, i.e., originating from the sun and instruments. ATLAS 
onboard algorithms reduce the size of telemetered data [32] by removing a large portion 
of noise photons [33,34]. ATLAS onboard algorithms ensure that most of the signal pho-
tons within a Range Window (RW) of several hundred meters above and below the 
onboard reference DEM surface are retained [32]. In addition to this, the ATLAS receiver 
is equipped with special filters, only permitting photons with wavelength closer to 532 
nm, ensuring most of the received photons are signal photons. However, some of the noise 
photons with wavelengths closer to 532 nm are received by ATLAS sensors (Figure 3, gray 
dots) [33,34]. 

 
Figure 3. Schematic diagram of photons reflected from different Earth surfaces. (a) Reflected pho-
tons from flat, (b) from rough, and (c) sloped surfaces. The gray dots represent the background-
noise photons received along with signal photons (orange dots). The blue, green, and red dots rep-
resent the photons classified by an algorithm with the likelihood of ATLAS signal photons with 
confidence tags of high (blue), medium (green), and low (red). 

Within the RW, ATLAS signal photons reflected from Earth’s surface show a less ran-
dom distribution (orange dots) than noise photons (gray dots); therefore, the ATL03 algo-
rithm uses the along-track histogram technique to keep only the most likely signal pho-
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Figure 3. Schematic diagram of photons reflected from different Earth surfaces. (a) Reflected photons
from flat, (b) from rough, and (c) sloped surfaces. The gray dots represent the background-noise
photons received along with signal photons (orange dots). The blue, green, and red dots represent
the photons classified by an algorithm with the likelihood of ATLAS signal photons with confidence
tags of high (blue), medium (green), and low (red).

Within the RW, ATLAS signal photons reflected from Earth’s surface show a less
random distribution (orange dots) than noise photons (gray dots); therefore, the ATL03
algorithm uses the along-track histogram technique to keep only the most likely signal
photons. Based on the distribution of the received photons in an along-track histogram,
the algorithm automatically assigns the confidence tags to the received photons, e.g., high-
confidence- (blue), medium-confidence- (red), and low-confidence-signal photons (green)
(Figure 3).
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2.1.4. Geophysical corrections

Along with the confidence thresholding of photons (Figure 3), onboard ICESat-2, the
ATL03 algorithm also applies geophysical corrections [35] to obtain global geophysical-
corrected photon heights based on Equation (1):

Hgc = HP − Ho − HOL − HDAC − HSEPT − HOPT − HSET − HTCA (1)

where (H gc) is the geophysically corrected height of each received photon ( HP) by remov-
ing the effects of ocean tides (Ho) and ocean-loading tidal effect ( HOL), which is caused
by the elastic response of Earth’s crust to ocean tides, dynamic atmospheric corrections
(HDAC), solid Earth pole tides ( HSEPT), ocean pole tides (HOPT ), solid Earth tides (HSET),
and total column atmospheric delay corrections (HTCA). Therefore, ICESat-2 data prod-
ucts do not require complex geophysical corrections for end users. However, the ATLAS
green laser can penetrate through shallow water columns paving the way for bathymetric
applications. Water-column-refraction effects are not removed from the photon clouds over
water bodies [36]. For space altimetry, the elevation is usually recorded using reference
ellipsoid WGS84; therefore, geolocated photons should be corrected for orthometric heights
for comparison with other geospatial elevation products, e.g., DSM and DEM.

2.2. Data Products

The ATL03 algorithm generates geolocated photon clouds, i.e., ATL03′s first and
most comprehensive data product, which contains the complete set of photons received
from terrestrial objects, e.g., ice, vegetation, water, and land, including background noise
(Figure 4a,b), with many algorithms available to remove background noise [34,35].

The ATL03 product is further processed by advanced algorithms to produce surface-
specific products, e.g., land-ice height (ATL06), sea-ice height (ATL07), land and vegetation
height (ATL08), sea-ice freeboard (ATL10), ocean surface height (ATL12), and inland
water surface height (ATL13), as shown in Figure 4c. Each product type offers highly
accurate geodetic control points important for large applications representing Earth’s
surface processes. For example, ATL08 provides highly accurate elevation measurements
of bare-Earth (ground) and off-the-terrain (OT) objects (e.g., buildings, vegetation) useful
to evaluate the DEM and DSM originating from other sources (e.g., SAR, photogrammetry,
satellite imagery) (Figure 4d). For the cryosphere investigation, ATL06 was derived using
an ice-extent mask generated using satellite datasets. Similarly, the ATL07 product was
specific to sea-ice height studies. In the context of structural geological visualizations
and investigations, ATL08 was of more interest because it covers the land and vegetation
heights sampled at a 100 m cluster of photon clouds. To ensure data parameter consistency
in the ATL08 data product, a fixed step size of 100 m was deliberately selected. This
uniform step size guaranteed a consistent canopy (i.e., vegetation) and terrain metrics
along the track direction, thereby enhancing the usability of the final products for users. For
vegetated areas, the chosen resolution of 100 m typically yielded around 140 signal photons,
which were utilized for calculating terrain and canopy height parameters. However, it is
worth noting that there may be instances where the number of photons exceeds 140 or
falls below that threshold. The heights derived from the ATLAS instrument were defined
as the absolute height above the WGS84 ellipsoid. Within each 100 m step of the data,
various land parameters were included. These parameters consisted of the mean, minimum,
maximum, median, standard deviation, mode, and skewness of the photons classified as
ground. Additionally, the data provided the height associated with the interpolated ground
line (h_te_interp) at the midpoint of each 100 m segment [19]. Highly accurate ICESat-2
data products are useful to incorporate with aerial imagery, UAS data, smartphones, GNSS,
and other digital ancillary data to quantify the error or elevation biases (Figure 4e). For
wall-to-wall mapping, ICESat-2 elevation products are useful for machine learning-based
regression and classification applications (Figure 4f) [36–38].
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Figure 4. ICESat-2 data acquisition and processing into different ATLAS products for various
applications. (a) ICESat-2 data acquisition, corrections, and processing into geolocated photon-cloud
ATL03 product. (b) ATL03 derivative products ATL06, ATL07, ATL08, ATL10, ATL12, and ATL13,
available through OpenAltimetry. (c) The application domain of different products. (d) Exemplary
successful applications of different products. (e) Integration scenarios with other remotely sensed
datasets. (f) Projected use in field-level investigations for classical and deep learning methods.

2.3. Data Access and Processing

The data were available through several options, e.g., the OA web-based cloud plat-
form https://openATLimetry.org/data/icesat2/ (accessed on 16 January 2023), for inter-
active online Web-based visualization [39], and a comprehensive list of all the derived
data products can be found on the National Snow and Ice Data Center (NSIDC) website
https://nsidc.org/data/icesat-2/data (accessed on 16 January 2023). In addition, a NASA
Earth Data Search provided access to all ICESat-2 data products, along with customiza-
tion options, e.g., photon clouds within the Area of Interest (AOI) using a shapefile or
bounding box.

ICESat-2 data comprised 200+ variables and are mostly available in a Hierarchical
Data Format (HDF) for easy storage and retrieval [40]. To process ATLAS data using
commercial and open-source software applications, e.g., Python, Java, MATLAB, and
R programming, several software applications were developed. A comprehensive list
of software applications is available on NSIDC https://nsidc.org/data/icesat-2/tools
(accessed on 16 January 2023) and summarized in Table 1. Most of the applications ensured
certain functions to input the data, such as extracting data within an Area of Interest (AOI),
herein referred to as spatial subsetting. Within the AOI, the subsetting further allowed
us to download the data within the desired time based on start/end dates or day/night
operations. In addition, out of 200+ variables in the ICESat-2 data, only the user’s desired
variables, e.g., location coordinates (x, y), elevation above ellipsoid (z), along with photon
quality flags (e.g., high, medium, low), could be filtered out within the AOI, herein refer to
as variable subsetting to reduce the data size. To consume the processed ICESat-2 data in

https://openATLimetry.org/data/icesat2/
https://nsidc.org/data/icesat-2/data
https://nsidc.org/data/icesat-2/tools
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frequently used mapping software applications, the output is generally provided in the
most frequently used data formats, as listed in Table 1.

Table 1. ICESat-2 data processing software applications based on commercial and open-source platforms.

Name Platform
Data Subsetting

Input Output Spatial Temporal Variables

Icepyx 1 [41] Python/notebook Online HDF5 Yes Yes No

Panoply 2 [42] Java/GUI netCDF/HDF/
GRIB JPEG/PNG/TIF/KMZ/PDF Yes Yes Yes

PhoREAL 3 [43] Python/GUI HDF ASCII/CSV/HDF5/
KML/PNG/LAS Yes Yes Yes

LaRC 4 [40] Web/GUI Online GIF/ASCII Yes No No
IceFlow 5 Python/notebook Online HDF/CSV/ASCII Yes Yes Yes

PhotonLabeler 6 [44] MATLAB/GUI HDF LAS/HDF/ Yes Yes Yes
IceSat2R 7 R/RStudio OA API Yes Yes No

1. https://github.com/icesat2py/icepyx/tree/main (accessed on 16 January 2023); 2. https://www.giss.nasa.gov/
/tools/panoply/ (accessed on 16 January 2023); 3. https://github.com/icesat-2UT/PhoREAL (accessed on 16 Jan-
uary 2023); 4. https://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi?_ga=2.130658959.1671241382.16732
79224-613752272.1672687542 (accessed on 16 January 2023); 5. https://github.com/nsidc/NSIDC-Data-Tutorials/
tree/main/notebooks/iceflow (accessed on 16 January 2023); 6. https://github.com/Oht0nger/PhoLabeler
(accessed on 16 January 2023); 7. https://github.com/mlampros/IceSat2R (accessed on 16 January 2023).

2.4. Study Areas

To demonstrate the effective use of ICESat-2 data in desert environments, study area A
in Oman and study area B in Australia representing aeolian desert environments of star and
linear sand dunes were selected as case studies (see Figure 5a). Dunes, the most common
form of desert land features, are developed by winds and composed of loose sand particles
that are transported by the wind; therefore, they can change, extend, and grow in size and
shape, depending on wind energy and direction [45].

2.4.1. Site A—Star Sand Dunes

Study site A located at geographic coordinates (53◦22′51.097′ ′E 18◦39′32.313′ ′N) was
composed of star sand dunes with fluvial channels and covered a total area of 103.73 km2

(see Figure 5b) with HR imagery located in the Rub Al-Khali sand sea in northern Oman [46].
A total of sixty-three star dunes of different sizes were found at site A, as displayed
using SRTM 30 m DEM, as shown in Figure 5c, and the terrestrial photo depicts the
microtopography of star dunes in Figure 5d.

2.4.2. Site B—Longitudinal Linear Sand Dunes

Site B located at geographic coordinates (122◦5′27.751′ ′E 20◦37′3.285′ ′S) was composed
of linear or longitudinal sand dunes that covered a total area of 1076 km2, as shown by
HR imagery (Figure 5e), located in the Great Sandy Desert in north-western Australia. Site
B covered longitudinal sand dunes oriented in the SE–NW direction, marginally covered
with a vegetation type known as “Acacias”, as indicated by the red box in Figure 5e and
the terrestrial photo in Figure 5g. The majority of the described Acacia species (≈1300) in
Australia are in the subgenus Phyllodineae. Phyllodinous acacias exhibit heteroblasty, i.e., they
show distinct juvenile and adult leaf forms and, therefore, exhibit great geometrical and
structural diversity at different growth stages [47]. A visual estimation revealed that there
were about eighty-seven longitudinal sand dunes at site B. The geometrical depiction of
longitudinal linear sand dunes is shown in Figure 5c using SRTM 30 m DEM.

2.5. Data Processing and Methods

The ICESat-2 ATL03 product (Figure 4a) was downloaded (e.g., green lines in Figure 5c,f)
with spatial subsetting for study sites A and B using NASA Earth Data Search application:
https://search.earthdata.nasa.gov/search (accessed on 16 January 2023). In addition, two

https://github.com/icesat2py/icepyx/tree/main
https://www.giss.nasa.gov//tools/panoply/
https://www.giss.nasa.gov//tools/panoply/
https://github.com/icesat-2UT/PhoREAL
https://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi?_ga=2.130658959.1671241382.1673279224-613752272.1672687542
https://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi?_ga=2.130658959.1671241382.1673279224-613752272.1672687542
https://github.com/nsidc/NSIDC-Data-Tutorials/tree/main/notebooks/iceflow
https://github.com/nsidc/NSIDC-Data-Tutorials/tree/main/notebooks/iceflow
https://github.com/Oht0nger/PhoLabeler
https://github.com/mlampros/IceSat2R
https://search.earthdata.nasa.gov/search
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other datasets, e.g., ASTER and Advanced Land-Observing Satellite (ALOS)/Phased Array-
Type L-band Synthetic Aperture Radar (PALSAR) DEMs were also acquired using the
NASA Earth Search Application for sites A and B [48]. The acquired datasets, along with
their documented global accuracies in root mean square error (RMSE), are listed in Table 2.
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Figure 5. Study area map. (a) Location of selected aeolian sand dune environments in Oman and
Australia. (b) Aeolian star dunes in Oman. (c) Star dunes as shown by SRTM-DEM and ICESat-2
data (green lines). (d) Star dunes mapped with microtopography, as seen in the terrestrial photo.
(e) Aeolian linear dunes in Australia, as shown with HR imagery. (f) Linear dunes shown with SRTM-
DEM and ICESat-2 data. (g) Linear sand dune environment ground photos for a region marked with
a red rectangle in (e). The red rectangle in (b) ref. Figure 8, and the red rectangle in (e) ref. to Figure 7.

Table 2. Summary of acquired datasets for two study sites.

Product Name Resolution (m) Elevation RMSE (m) Ref.

SRTM 30 ≈14.00 [49]
ASTER 30 ≈08.40 [49]

ALOS-PALSAR 12.5 ≈04.00 [49]
ICESat-2 ATL03 14 m (footprint) ≈00.48 [50]
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The acquired datasets (Table 2) were processed using several software applications
documented in Table 1. Global DEM products, e.g., SRTM, ASTER, and ALOS-PALSAR,
were processed using ArcGIS Desktop 10.8 (ESRI, Redlands, CA, USA), and ICESat-2 ATL03
was first processed using the PhoREAL software application [44] to convert HDF [51] data
into a point-cloud LAS format [52]. In addition, LAS data were processed using the modern
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
Python package to remove background-noise photons (see Sections 2.1.2 and 2.1.3) from
the data, as shown in Figure 6a,b [53]. We objectively demonstrated the use of the software
applications documented in Table 1 in order to download, pre-process, process, and classify
ICESat-2 data products.
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Figure 6. (a) ICESat-2 ATL03 photon clouds (yellow dots) with background noise (red dots).
(b) Noise-photon classification and removal using the HDBSCAN algorithm and manual editing [53].
A’ and A” represents the 3-D cross section of classified photon clouds (b) of an area marked with
green rectangle in (a).

In addition, all datasets were projected to the Universal Transverse Mercator (UTM)
World Geodetic System (WGS) 84. Global DEMs were normalized where the lowest
elevations were set to zero to obtain consistent height metrics. Similarly, following noise
removal, ICESat-2 point clouds were normalized, whereas the lowest elevation points were
set to zero [54]. The evaluation of global DEM products compared with ICESat-2 ATL03
was performed using RMSE and Mean Absolute Error (MAE), while linear regressions were
performed to find the correlation (R2) between ICESat-2 and global DEM products [55].

3. Results
3.1. Comparison with Global DEM Products
Geological Education and Investigations

Desert-margin settings are composed of fluvial and aeolian processes that rarely
operate individually and usually work on feedback mechanisms from each other, i.e.,
fluvial processes are governed by aeolian processes and vice versa. Nonetheless, changes
in aeolian processes alter the fluvial processes that, in response, trigger further changes
in aeolian processes until a balance is achieved [56]. The present study was designed
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to present sand dune structures, purely from the ICESat-2 data standpoint; therefore, a
detailed description of these features can be found in [31].

In the context of the geological education and investigations of an Area of Interest
(AOI), optical imagery provides the wall-to-wall mapping of AOI composed of different
geological features, e.g., channels, dunes, and vegetation, with two-dimensional (2D) spaces
(Figure 7a). A more comprehensive analysis aims at using the spectral responses of different
cover types, e.g., sand, soil-crust, vegetation, and salinity indices, using medium-resolution
satellite images, e.g., Landsat [14,56]. It was found to be challenging to discriminate be-
tween sand dunes and sand sheets exclusively based on the spectral data, since both are
composed of sand deposits and show homogeneity in the image spectra (Figure 7b–g) [14].
To discriminate between and decipher the differences in their shape and sizes, DEM or
DSM (e.g., SRTM) are usually draped over the optical imagery to show the geometrical
characteristics of different terrestrial objects for geological investigations or geological edu-
cation purposes in a classroom environment. A frequently used approach is to construct
3D transects to decipher the structural construct of different terrestrial objects, e.g., sand
dunes, as shown in Figure 7h–j, using SRTM, ALOS-PALSAR, and ASTER DEM products,
respectively. The DEM draping technique is useful for visualizing geometrical character-
istics; however, it is constrained by several factors. First, high-resolution (HR) satellite
imagery is available commercially at a nominal price or freely through Google Earth (GE)
Pro [57], globally, which is frequently updated and offers a new geological resource for
mapping, e.g., Figure 7a [58]. On the contrary, global HR-DEMs produced by commer-
cial/government agencies are cost-prohibitive/restrictive, consequently, they are ousted
by freely available mediums or coarse-resolution DEMs, e.g., SRTM (Figure 7h) [15,59].
Unlike satellite imagery, global DEMs are based on single-mission (e.g., SRTM) data with
little or no temporal resolutions; therefore, geometrical changes in the Earth’s surface
posterior to DEM production are absent [60]. ICESat-2, therefore, helps us to understand
and quantify such changes with much higher spatial–temporal resolutions (for details, see
Section 3.5) [20]. Figure 7 shows that the ICESat-2 data are robust in depicting the aeolian
dunes, deciphering the dunes’ widths and heights in much greater detail (Figure 7k,l) com-
pared to SRTM (30 m), ALOS-POLSAR (12.5 m) [61], and ASTER (30 m) DEMs products
(Figure 7h–j) [42].

Furthermore, global DEM datasets were collected between 2000–2011 [43]; in the past
two decades or so, the surface geological realm has significantly altered under the influence
of erosion and deposition (Figure 7b–g), thus making global DEM products outdated for
many regions in the world [44], including desert environments (Figure 7). Owing to their
medium resolution at 30 m DEM, e.g., SRTM or ASTER, and the influence of interpolation
methods to obtain a gridded DEM, textural and surficial information is lost (Figure 7h–j).

According to Shumack et al., 2020, vegetated linear dunes in the Simpson Desert in
Australia are low in height (>10 m), as revealed by ground surveys; therefore, linear sand
dunes are generally not well presented by ASTER and SRTM DEM products, given the fact
that medium-resolution DEM products with 30 m GSD showed under and over estimations
of terrain elevations (z); the documented global RMSE values are shown in Table 2 [45].
Therefore, ICESat-2 offers the unique opportunity to derive and quantify the planimetric
dune patterns at a much higher resolution, which was not possible in the previous studies
(Figure 7). Figure 7 also indicates that global DEM products depend on onboard sensors
for data collection. For example, 3D-elevation transects show similar elevation patterns for
SRTM and ALOS-PALSAR DEMs (Figure 7h,i) [61] compared with ASTER-DEM derived
from stereo-imagery (Figure 7j) [20]. In addition, given the fact that the data were collected
at different periods, the planimetric dune patterns derived using global DEMs were more
likely to yield inconsistencies (Figure 7h–j). On the contrary, ICESat-2 data (Figure 7k,l)
were more consistent with HR imagery (Figure 7a) with exact data acquisition time tags.
The temporal aspects of ICESat-2 are further discussed in Section 3.3.
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Figure 7. Linear dunes in study area B in Australia (red bounding box in Figure 5e). (a) HR im-
agery of linear sand dunes with small vegetation. Landsat imagery of the years (b) 2000, (c) 2005,
(d) 2008, (e) 2010, (f) 2014, and (g) 2020. Three-dimensional transects of elevation from (h) SRTM-DEM,
(i) ALOS-PALSAR-DEM, (j) ASTER-DEM, (k) ICESat-2 strong beam, and (l) ICESat-2 weak beam [39],
where blue dots represent higher confidence levels for ICESat-2 photons with a low probability of
noise photons. The yellow rectangles represent dune peaks and the green rectangles represent chan-
nels between two consecutive dunes. The numbers 1, 2, 3, and 4 indicate the respective locations of
dunes in (h–l), respectively.
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3.2. Classification and Field Mapping

To segregate and label the photon clouds into different terrestrial objects, e.g., canopy,
water, and bare Earth, manual or automated classifications were required [62]. ATLAS pho-
tons were unclassified in the ATL03 data product, i.e., no prior information was available
for terrestrial objects depicted by photon clouds (Figure 8b). Analogous to labeling over
satellite imagery, to segregate the photons into their respective features, e.g., terrestrial
objects, photon labeling was required, as shown in Figure 8c [44]. We used PhotonLabeler
developed by MATLAB (Table 1) [44] with user-friendly GUI to classify raw photon clouds
into different classes, e.g., noise, fluvial channels, and star dunes (Figure 8c).
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Figure 8. Depicting fluvial desert environment of star dunes (black arrows), study site A, using
ICESat-2 ATL03 data product. (a) Star dunes and fluvial channels as seen using HR imagery; fluvial
channels are indicated by blue arrows and the yellow line marks the ICESat-2 Reference Ground Track
(RGT). (b) ATL03 photons without classification tags. (c) ATL03 photon clouds are classified as noise,
star dunes, and fluvial channels [44]. (d) Star dunes as depicted by SRTM-DEM at 30 m resolution.
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The labeled ICESat-2 photon clouds were useful to derive planimetric dune patterns
metrics, such as dune crest length, i.e., the horizontal length of the dune crest line (Figure 8c);
dune crest density, i.e., total number or length of dune crest lines per counting unit; dune
sinuosity, i.e., the crest length divided by the linear distance between dune termination;
dune spacing, i.e., the crest-to-crest distance between dune crests or dune wavelength; and
dune width and height (see Figure 8c). The present study only considered dune height
metrics as a showcase study (for details, see Section 3.4). Compared with HR satellite
imagery (Figure 8a), a quantitative analysis of planimetric dune pattern metrics is limited
without high-resolution LiDAR data, e.g., HR-DEM [63]. To this end, ICESat-2 fills this gap
to some extent (see Figure 8c). Compared with ICESat-2, global DEM-based planimetric
dune pattern metrics, e.g., dune crest length, sinuosity, and dune height, are outdated, with
elevation errors that need to be quantified (see Figures 7h–j and 8d). Figure 8c indicates
that star dunes depict more complex sinuosity using ICESat-2 data than SRTM-DEM
(Figure 8d). Compared with terrestrial photos (Figure 5d), ICESat-2 can decipher the star
dunes’ microtopography that was lacking in global DEM products (Figure 8c,d).

In the context of field mapping, the collection of Ground Control Points (GCPs) through
GNSS field surveys is an essential step to assess and quantify the accuracy of global DEM
products, e.g., SRTM DEM (for details, see Section 3.3). The accuracy evaluation is crucial for
concluding the suitability of different DEM products. However, collecting GCPs, referred
to as “field mapping,” is expensive and labor-intensive, particularly in desert regions. To
this end, ICESat-2 time-tagged photon clouds offered an extensive profiling of large areas,
significantly reducing the field mapping tasks (see Figure 8c). Moreover, ICESat-2 photon
clouds enabled the direct acquisition of GCPs of inaccessible regions, such as dune peaks,
which were difficult to access due to loose sand [15]. In addition, extensive GCPs profiling
compared with ICESat-2 seems challenging for time-constraint projects [16].

3.3. Elevation (z) Accuracy Assessment

Accuracy evaluation of DEMs is an important step in establishing the metrics obtained
from elevation, e.g., sand dune height [49]. Traditionally, this is accomplished by collecting
sparse elevation points through GNSS field surveys or LiDAR measurements [63]. A
common method for assessing accuracy involves calculating RMSE, MAE, and R2 values,
which allow for the quantification of error budgets and correlations between the DEMs and
reference data, e.g., GNSS.

In this study, ALOS-PALSAR, SRTM, and ASTER DEMs were evaluated in two sand
dune environments (Table 2 and Figure 5) using the quantification metrics of RMSE,
MAE, and R2, respectively. For site A, ALOS-PALSAR has an RMSE of 5.72 and MAE
of 4.34 (Figure 9a), while for site B, the RMSE and MAE values are significantly lower
at 2.0 and 1.58 (Figure 9d), respectively. Similarly, the SRTM dataset presents a similar
performance for both sites, with RMSE and MAE values of 5.48 and 4.18 for site A (Figure 9b)
and 2.02 and 1.59 for site B (Figure 9e). The RMSE, MAE, and R2 values are consistent for
SRTM and ALOS-POLSAR at both study sites (Figure 9a,b,d,e), with the possible reason that
both DEMs are based on active remote sensing, i.e., SAR interferometry techniques [64,65].
Compared with ALOS-PALSAR and SRTM DEMs, ASTER-DEM performed differently
between the two sites, with lower RMSE and MAE values for site A, i.e., 4.21 and 3.19
(Figure 9a–c), and higher values for site B, i.e., 2.68 and 2.06 (Figure 9c,f), respectively.
Such differences were highly likely caused by ASTER-DEM data sources and production
methods, due to the fact that the ASTER-DEM originates from optical satellite imagery
through Structure from Motion (SfM), e.g., Ames Stereo Pipeline (ASP), with possible
artifacts at an elevation (z) caused by weather conditions, cloud cover, image saturation,
and shadows [66]. Moreover, the R2 values were inconsistent for both sites across all three
datasets, with values ranging from 0.49 to 0.95. The lower R2 values for site B can be
attributed to the presence of vegetation frictional cover (see Figures 5g and 7a–g).
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Nevertheless, as shown in Figure 9, the accurate evaluation of DEMs varied across
the two study sites, with site B generally exhibiting lower error values. The lower RMSE
and MAE at site B can be attributed to the linear sand dunes, which are more simplified
than star dunes (ref. Figure 7k,l and Figure 8c). Figure 9 indicates that ICESat-2 is useful to
quantify the elevation (z) inaccuracies of global DEM products, as LiDAR-based methods
are more appropriate for accuracy evaluation and assessment [67].

3.4. Dune Height Statistical Analysis

The statistical analysis of dune height was performed to quantify ICESat-2′s perfor-
mance compared with global DEMs, i.e., ALOS-PALSAR, SRTM, and ASTER products
(Table 3). Dune height is a more relevant metric compared with dune spacing and width,
which can be measured using high-resolution satellite imagery [57]. The statistical analysis
included the minimum, maximum, mean, and standard deviation of the dune heights
at sites A and B. The number of star dunes acquired by the ATLAS sensor was about
(≈45/63), from which 10 star dunes from site A were selected and each dune was sampled
at 10 different, random locations to perform a statistical analysis, which yielded a total
(10 × 10 = 100) dune height observation for star dunes. While linear sand dunes covered
more ICESat-2 footprints, metrics were performed at 10 random locations of 87 linear sand
dunes, given the fact that, unlike star dunes’ longitudinal values, linear sand dunes were
consistent linear features for hundreds of kilometers, which yielded more (≈870) dune
height observations for site B [46]. The statistical analysis of sand dune heights is presented
in Table 3.

Table 3 shows that global DEMs, e.g., ALOS-PALSAR, SRTM, and ASTER, overestimate
the dune heights at both study sites (Figure 5 and Table 3). In terms of the resolution, SRTM
and ASTER at 30 m showed similar mean and standard deviation values for sites A and
B. On the contrary, ALOS-PALSAR at 12.5 m showed the highest standard deviations for
both study areas. Table 3 and Figure 10a,e show that ICESat-2 shows more consistent
results in both study sites, providing the lowest minimum, maximum, mean, and standard
deviation values. ASTER showed great inconsistencies (Figure 10c,g), producing the



Remote Sens. 2023, 15, 2882 17 of 24

greatest variability in dune height. Alternatively, ALOS-PALSAR (Figure 10b,f) and SRTM
(Figure 10d,e) showed similar performances at both study sites. In terms of the sensors,
there were notable differences in the minimum and maximum values for each sensor,
indicating variations in the elevations (z) of collected datasets (Table 3). This study, therefore,
highlighted the usefulness of ICESat-2 in sand dune studies to quantify the accuracies of
global DEM products. Though ICESat-2 is a profiling system and wall-to-wall mapping is
not possible, regression techniques are a useful alternative to improve the dune metrics
derived from global DEMs or improve the accuracy/resolution of global DEMs [44,65,67].

Table 3. Statistical analysis of star and longitudinal sand dunes’ heights.

Study Site Metric Sensor
Statistical Analysis

No. of Obs. Minimum Maximum Mean Std. Dev.

Site A: star dunes

Dune height [45]

ALOS-PALSAR 100 52.6 74.08 66.09 7.30
SRTM 54.58 73.32 66.51 6.21
ASTER 56.10 72.34 65.15 5.81

ICESat-2 51.06 65.89 57.75 4.58

Site B: linear dunes

ALOS-PALSAR 870 8.56 23.06 17.94 4.04
SRTM 8.93 22.01 17.42 3.67
ASTER 14.43 27.22 21.84 3.68

ICESat-2 5.09 13.91 9.92 2.39
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3.5. Temporal Coverage

The high cost associated with multi-temporal ALS-LiDAR data acquisition and pro-
cessing over a large area is prohibitive. To this end, there is an element of incompati-
bility of multi-temporal ALS-LiDAR data arising from varying acquisition parameters,
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e.g., footprint size, wavelength, scan pattern, and beam divergence [12,16]. To quantify
the geological changes over a vast area is therefore challenging using ALS, due to data
availability and compatibilities issues [16]. On the other hand, traditional global DEMs
(e.g., ASTER or SRTM) have fewer revisit times for obtaining terrain spatial–temporal sig-
natures (Figure 7). Legacy digital photogrammetry and LiDAR data are rare at the global
scale for time-series assessments of sand dune changes [68]. On the contrary, time-tag
photons provide an unprecedented data source (Figure 11d) to quantify volumetric changes
in desert environments with documented success for water level changes [69].
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The temporal resolution of ICESat-2 cannot be presented similar to traditional satellite
missions (e.g., Landsat), given the fact that ICESat-2 operates along imaginary RGT lines
with capabilities of off-pointing to the left and right of RGT (see Figure 1). The temporal
coverage, including future visits, is shown in Figure 11 for study site B, Australia. Figure 11a
shows that, within a distance segment of 500 m east–west, the aeolian sand dunes were
visited once every year from 2019 to 2022, except for the year 2020, when the revisit time
was doubled. According to the NASA ICESat-2 official web-page (https://icesat-2.gsfc.
nasa.gov/science/specs (accessed on 16 February 2023)), ICESat-2 was on safe hold from

https://icesat-2.gsfc.nasa.gov/science/specs
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26 June to 9 July 2019, and 4 to 12 April 2022. Additionally, the official webpage provided
the RGT data for specific dates when ICESat-2 has passed and will overpass a location in
the future. The planned RGT for study site B is shown for late 2022 and 2023 (yellow lines
in Figure 11c). For a specific Area of Interest (AOI), the Langley Research Center (LaRC)
application can be used to determine the ICESat-2 overpass time (Table 1) [40].

In addition, Figure 11d indicates that, with each passing year, fewer photon events
were recorded, indicating the aging of the laser system onboard the ICESat-2 ATLAS sensor,
along with the effects of environmental conditions [70]. It is worth mentioning that ICESat-2
temporal resolution was constrained by several factors. First, the cloud cover can conceal
underlying topographies, thereby creating data gaps (Figure 11d, gray bounding box).
Secondly, ATLAS off-pointing capability to cover a larger area along the left and right sides
of each RGT ensured that some locations were frequently visited, especially the middle
beams, as compared to the edge beams within the sensor footprint (Figure 11b). For site
A, Oman, the ICESat-2 covered forty-five star dunes out of a total of sixty-three that were
mapped using HR imagery and SRTM-DEM, which shows that, within an area of 10 km by
10 km, ICESat-2 covered 71.42% star dune fields at a high resolution (Figure 5c).

4. Discussion

The potential of providing field-level structural details of fluvial and aeolian processes
using time-tagged ICESat-2 photon returns was assessed. Finally, how weak and strong
beams interact with these features presents the complex micro-topography using difficult to
obtain from traditional DEM-based height transects (see Figures 7 and 8). A LiDAR signal
can penetrate through canopies; the ICESat-2 3D transect reflects surface characteristics, e.g.,
surface roughness, presence, or absence of canopies with the exact date and time compared
to global DEM products (see Figure 7). ICESat-2 provides very high-resolution elevation
transects deciphering the dunes, channels, channel width, dune height, and vegetation
within the channel using ATLAS strong (Figure 7k) and weak beams (Figure 7l). On the
contrary, global DEM products’ 3D-elevation transects showed outdated channels and
dunes, while surficial features were completely absent from the data (Figure 7h–j).

In the context of geological education in a classroom environment, ICESat-2 3D-
elevation transects revealed robust information about the structure of sand dune features,
e.g., peaks, valleys, and vegetation present within the valleys (see Figure 7k,l), compared
with global DEM products (Figure 7h–j). ICESat-2 data products through OA [39] can
interactively be visualized through a Web platform with a stable Internet connection:
https://openATLimetry.org/data/icesat2/ (accessed on 21 April 2023). This certainly
offered many advantages over traditional DEM draping over satellite imagery techniques
(Figure 5). Geologists are more interested in the elevation transects of different lithological
groups interpreted from high-resolution satellite imagery (Figure 7a). OA provided a single
platform with the integrated use of recently acquired high-resolution satellite imagery
(Figure 7a), with ICESat-2 and level-2 -3 products, e.g., ATL06 (land-ice height), ATL07
(sea-ice height), ATL08 (land and vegetation heights), ATL10 (sea-ice freeboard), ATL12
(ocean surface height), and ATL13 (inland surface water height), as shown in Figure 4. OA
also provided several interactive GIS functions via a Web-based GIS platform traditionally
implemented in most spatial data processing software packages, e.g., QGIS, ArcGIS (ESRI,
Redland, CA), etc. Additionally, ICESat-2 GLT could be accessed by data acquisition dates.
Furthermore, OA offered a search by location functionally, or zoomed into the AOI based
on the provided coordinates, e.g., city or country name based on the location database
of NASA. OA provided excellent ease of use with ICESat-2 data visualization, globally.
However, OA does not work on tablets and smartphones without Internet access. To
address this challenge, ICESat-2 photon clouds can be downloaded in a CSV format for
use by other offline platforms, such as QGIS, etc. Detailed documentation regarding OA
design philosophy can be found in the developer information [40].

In the context of field mapping, the ICESat-2 photon returns from different litholog-
ical groups, which significantly facilitate the preparation of digital procedures, includ-
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ing laboratory pre-fieldwork, survey fieldwork, and the interpretation of post-fieldwork.
For example, the acquired Ground Control Points (GCPs) using GNSS can be plotted
to evaluate the accuracy of ICESat-2 data and vice versa (Figures 9 and 10) [26]. There-
fore, for inaccessible regions, ICESat-2 data can be used directly to reduce overall field-
mapping tasks (Figure 7k,l) [15]. The application spectrum of ICESat-2 data is wide-
ranging, producing global- to local-scale planimetric dune patterns, as shown in this
study (Figure 10 and Table 3). For example, Ground Control Points (GCPs) and Control
Points (CPs) are important datasets generally acquired using highly accurate GPS/GNSS
observations to quantify the accuracy of DEM/DSM originating through photogrammetry
techniques using satellites, aerial, or UAS surveys [43,50]. Nevertheless, highly accurate
geodetic-level ICESat-2 observations provide an alternative to traditional GPS/GNSS-based
field surveys. Unlike traditional ALS data, ICESat-2 temporal coverage enables the 3D
volumetric-change-detection application at a global scale (Figure 11).

The present study only discussed the application potential of ICESat-2 data in desert
environments by studying star and linear sand dunes, in order to introduce a benchmark
for in-depth studies. To this end, we evaluated the usefulness of ICESat-2 compared to
global DEM products. First, we quantified the overall accuracies of global DEM products
(Figure 8) and then dune height metrics were assessed (Figure 10 and Table 3).

The study of arid dune field vegetation, i.e., photosynthetic vegetation ( fPV) and
non-photosynthetic vegetation ( fNPV), was important to understand the arid ecosystem
dynamics (Figure 7b–g) of vegetation species, e.g., Acacias. The studies indicated that
medium-resolution satellite imagery, e.g., Landsat (30 m) or Sentinel-2 (10 m), was been
extensively used to understand arid ecosystem dynamics [71]. However, vegetation func-
tional traits (e.g., plant height and crown area) are possible to obtain, at present, using
ICESat-2 data, as shown in the green box in Figure 7k,l. However, ICESat-2 strong beams
(Figure 7k) revealed further information about vertical vegetation structure compared with
the weak beam (Figure 7l); therefore, I was more useful than weak beams. The accuracy
evaluation revealed that global DEMs show significant differences in vertical accuracies;
therefore, documented global accuracies were less reliable (Table 2) to quantify the errors
for different geographical locations in the world. To this end, ICESat-2 showed consistent
and more accurate vertical accuracies useful to quantify the vertical accuracies of global
DEMs at local scales (Table 3 and Figure 10).

A longstanding goal of aeolian research is to diversify dune types and their classifica-
tion using remotely sensed datasets [27,46]. Global DEM products were utilized to identify
diverse dune types at 30 to 90 m medium-to-coarse-resolution products (Figures 7 and 8) [14].
ICESat-2 high-resolution LiDAR transects were capable of deciphering dune geometries
with richer details, expanding the research scope of dune types and sub-type classifications
and mapping (Figures 7k,l and 8).

5. Conclusions

Earth observation from space has enabled repeated scientific investigations at a global
scale. The legacy of satellite data has significantly enabled scientists to quantify the growth
and development of scientific knowledge using freely available DEM and HR-satellite
imagery. To this end, the majority of research investigations have been conducted in a wide-
area capacity, including remote regions in desert environments. Aeolian sand dune regions
compose the dominant part of the world’s desert regions and are extensively explored and
investigated using global remote sensing freely available datasets. Global DEM products
have proven to be very effective datasets to quantify the growth and development of aeolian
sand dune environments, yet their medium resolution (e.g., 30 m) presented limitations
for newly developed, young sand dunes along with sand dunes of a smaller size < 30 m.
To overcome the challenges presented by global DEM products, HR-DEM originated from
LiDAR datasets proved to be the most effective source of information. Nevertheless,
expensive aerial LiDAR surveys are rare in desert environments; therefore, there is a lack
of high-resolution LiDAR data products covering global desert environments.
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On the other hand, global space-borne LiDAR missions, e.g., ICESat-1 and ICESat-2,
provided global LiDAR data with revisit capabilities to address this gap in the research,
to some extent. However, the evaluation and quantification of ICESat-2 data in aeolian
sand dune environments were lacking in the previous research. The present study show-
cased the usefulness of ICESat-2 LiDAR data for the case study in two diverse sand dune
environments, including star dunes in the Rub Al-Khali desert of Oman and linear lon-
gitudinal sand dunes in the marginally vegetated Great Sandy Desert in north-western
Australia. The evaluation showed that globally documented RMSE errors of global DEM
products, e.g., SRTM, ALOS-PALSAR, and ASTER, were inconsistent in both study areas,
which could be quantified using ICESat-2 photon cloud data as a reference benchmark
dataset. Similarly, dune height metrics derived using global DEM products also showed
inconsistent results compared with ICESat-2 data. The present study is the first of its kind
to document the usefulness of ICESat-2 LiDAR data for geological education and in-depth
investigations, compared with traditional DEM-based approaches. The goal of aeolian
sand dune research is to expand the classification of dune types using remote sensing data.
Global DEM products were used to identify various dune types at medium (30 m) to coarse
(90 m) resolutions. However, high-resolution LiDAR transects from ICESat-2 provided
more detailed and comprehensive dune geometries, opening-up new prospects for study-
ing, mapping, and classifying different dune types and sub-types at unprecedented higher
spatiotemporal resolutions never before achieved in previous studies. In addition, ICESat-2
has shown the potential to map and quantify the geometrical traits (e.g., height) of desert
vegetation, such as “Acacias”.

However, space-borne LiDAR is a profiling system, and wall-to-wall mapping is not
possible when using spaceborne LiDAR alone; therefore, advanced regression and machine
learning models can be developed/deployed to integrate global HR imagery and medium-
resolution DEM products with ICESat-2 data to further improve aeolian sand dune studies
at much higher resolutions, thus contributing a new body of knowledge and advanced
scientific investigations.
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