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Abstract: The majority of the optical observations collected via spaceborne optical satellites are
corrupted by clouds or haze, restraining further applications of Earth observation; thus, exploring an
ideal method for cloud removal is of great concern. In this paper, we propose a novel probabilistic
generative model named sequential-based diffusion models (SeqDMs) for the cloud-removal task in
a remote sensing domain. The proposed method consists of multi-modal diffusion models (MmDMs)
and a sequential-based training and inference strategy (SeqTIS). In particular, MmDMs is a novel
diffusion model that reconstructs the reverse process of denosing diffusion probabilistic models
(DDPMs) to integrate additional information from auxiliary modalities (e.g., synthetic aperture
radar robust to the corruption of clouds) to help the distribution learning of main modality (i.e.,
optical satellite imagery). In order to consider the information across time, SeqTIS is designed to
integrate temporal information across an arbitrary length of both the main modality and auxiliary
modality input sequences without retraining the model again. With the help of MmDMs and SeqTIS,
SeqDMs have the flexibility to handle an arbitrary length of input sequences, producing significant
improvements only with one or two additional input samples and greatly reducing the time cost
of model retraining. We evaluate our method on a public real-world dataset SEN12MS-CR-TS for
a multi-modal and multi-temporal cloud-removal task. Our extensive experiments and ablation
studies demonstrate the superiority of the proposed method on the quality of the reconstructed
samples and the flexibility to handle arbitrary length sequences over multiple state-of-the-art cloud
removal approaches.

Keywords: cloud removal; diffusion models; multi-modal; multi-temporal; synthetic aperture radar
(SAR)-optical

1. Introduction

In recent decades, massive remote sensing data have been collected by Earth-observing
satellites, and such data have started to play an important role in a variety of tasks, in-
cluding environmental monitoring [1], economic development mapping [2], land cover
classification [3], and agricultural monitoring [4,5]. However, remote sensing images are
often blocked by haze or clouds [6], which impedes the data processing and analysis for
target monitoring tasks. Therefore, it is valuable and pivotal to explore the approaches for
reconstructing the data corrupted by clouds for subsequent data analysis and employment.

In general, cloud removal can be seen as a special type of inpainting task that fills
the missing areas of remote sensing data corrupted by clouds with new and suitable
content. Prior approaches to cloud removal can be classified into two main types according
to the source of information used for the reconstruction: multi-modal approaches and
multi-temporal approaches [7]. In order to expand the information sources, multi-modal
approaches [8–14] have been developed to reconstruct cloud-covered pixels via information
translated from synthetic aperture radar (SAR) data or other modal data more robust to
the corruption of clouds [15]. Traditional multi-modal approaches [8,9] utilize the digital
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number of SAR as an indicator to find the repair pixel. Eckardt et al. [9] introduce the term
closest feature vector (CFV), combining the closest spectral fit (CSF) algorithm [16] with
the synergistic application of multi-spectral satellite images and multi-frequency SAR data.
With the wide application of deep learning and the rapid development of generative models,
Gao et al. [14] first translate the SAR images into simulated optical images in an object-to-
object manner by a specially designed convolutional neural network (CNN) and then fuse
the simulated optical images together with the SAR images and the cloudy optical images
by a generative adversarial network (GAN) to reconstruct the corrupted area. In contrast
to methods using a single time point of observations, multi-temporal approaches [17–22]
attempt a temporal reconstruction of cloudy observations by means of inference across
time series, utilizing the information from other cloud-free time point as a reference, based
on the fact that the extent of cloud coverage over a particular region is variable over time
and seasons [6]. Traditional multi-temporal approaches [18–20] employ hand-crafted filters
such as mean and median filters to generate the cloud-covered parts using a large number
of images over a specific area. For instance, Ramoino et al. [20] conduct cloud removal
using plenty of Sentinel-2 images taken every 6–7 days across a time period of three months.
In terms of approaches that utilize deep learning techniques, Sarukkai et al. [17] propose
a novel spatiotemporal generator network (STGAN) to better capture correlations across
multiple images over an area, leveraging multi-spectral information (i.e., RGB and IR
bands of Sentinel-2) to generate a cloud-free image. However, these image reconstruction
approaches do not leverage multi-modal information and require a large number of mostly
cloud-free images taken over an unchanging landscape, greatly limiting their usability and
applications.

Meanwhile, much of the early work on cloud removal used datasets containing simu-
lated cloudy observations, copying cloudy pixel values from one image to another clear-free
one [23], but could not precisely reproduce the statistic of satellite images containing nat-
ural cloud occurrences [12]. Recently, Ebel et al. [7] curated a new real-world dataset
called SEN12MS-CR-TS, which contains both multi-temporal and multi-modal globally
distributed satellite observations. They also proposed a sequence-to-point cloud removal
method based on 3-D CNN (we denote it as Seq2point) to integrate information across time
and within different modalities. However, this method lacks a probabilistic interpretation
and the flexibility to handle input sequences of arbitrary length. It just uses the ResNet-
based [24] branch and a 3-D CNN structure as a generator to combine the feature maps in
the time span and needs to be retrained in a great amount of time when the length of the
input sequence changes.

Overall, existing approaches have at least one of three major shortages: (1) They do not
use globally distributed real-world datasets, leading to the degraded generalizability of the
methods. (2) They are not designed to fully leverage both multi-modal and multi-temporal
information to reconstruct the corrupted regions. (3) They lack a probabilistic interpretation
and flexibility to handle an arbitrary length of the input sequences.

In this paper, we propose a novel method, sequential-based diffusion models (Se-
qDMs), for the cloud-removal task in remote sensing by integrating information across
time and within different modalities. As GANs are known to suffer from the instability
training process [25], we choose the denoising diffusion probabilistic models (DDPMs) [26]
with a better probabilistic interpretation and a more powerful capability of capturing the
data distribution as the backbone model. In particular, we propose novel diffusion models,
multi-modal diffusion models (MmDMs), which reconstruct the reverse process of DDPMs
to integrate additional information from the auxiliary modalities (e.g., SAR or other modal-
ities robust to the corruption of clouds) to help the distribution learning of main modality
(i.e., spaceborne optical satellites data). Since the standard DDPMs training and inference
strategy processes the samples only in a single time point, we introduce an improved train-
ing and inference strategy named sequential-based training and inference strategy (SeqTIS)
to integrate information across time from both main modality and auxiliary modalities
input sequences. It is worth noting that SeqDMs have the flexibility to handle an arbitrary
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length of the input sequences without retraining the model, which significantly reduces the
training time cost. We conduct adequate experiments and ablation studies on a globally
distributed SEN12MS-CR-TS dataset [7] to evaluate our method and justify its design. We
also compare with other state-of-the-art cloud removal approaches to show the superiority
of the proposed method.

2. Preliminaries: Denoising Diffusion Probabilistic Models

Our proposed method for cloud removal is based on DDPMs [26]. Here, we first
introduce the definition and properties of this type of generative model. The DDPMs define
a Markov chain of a diffusion process controlled by a variance schedule {βt ∈ (0, 1)}T

t=1 to
transform the input sample x0 to white Gaussian noise xT ∼ N (0, I) in T diffusion time
steps. The symbol t represents the diffusion time steps in the diffusion process of DDPMs.
We use the symbol l to represent the sample index in sequential data later. In order to
distinguish ’time step’ in the diffusion process of the model and in sequential data, we
describe it as ’diffusion time step’ and ’sequential time step’, separately . Each step in the
diffusion process is given by:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

The sample xt is obtained by slowly adding i.i.d. Gaussian random noise with variance
βt at diffusion time step t and scaling the previous sample xt−1 with

√
1− βt according to

the variance schedule. A notable property of the diffusion process is that it admits sampling
xt at an arbitrary diffusion time step t from the input x0 in a closed form as

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I), (2)

where αt := 1− βt and ᾱt := ∏t
s=1 αs.

The inference process (the generation direction) works by sampling a random noise
vector xT and then gradually denoising it until reaches a high-quality output sample
x0. To implement the inference process, the DDPMs are trained to reverse the process
in Equation (1). The reverse process is modeled by a neural network that predicts the
parameters µθ(xt, t) and Σθ(xt, t) of a Gaussian distribution:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)). (3)

The learning objective for the model in Equation (3) is derived by considering the
variational lower bound,

E[− log pθ(x0)] ≤ Eq[− log
pθ(x0:T)

q(x1:T |x0)
] = Eq[− log p(xT)−∑

t≥1
log

pθ(xt−1|xt)

q(xt|xt−1)
] = LVLB, (4)

and this objective function can be further decomposed as:

LVLB = Eq[DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸
LT

+ ∑
t>1

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]. (5)

It is noteworthy that the term Lt−1 trains the network in Equation (3) to perform one
reverse diffusion step. Furthermore, the posterior q(xt−1|xt) is tractable when conditioned
on x0, and it allows for a closed form expression of the objective since q(xt−1|xt, x0) is also
a Gaussian distribution:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), (6)

where

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (7)
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and
β̃t =

1− ᾱt−1

1− ᾱt
βt. (8)

Instead of directly predicting µ̃t, a better way is to parametrize the model by predicting
the cumulative noise ε that is added to the current intermediate sample xt:

µθ(xt, t) =
1√
αt
(xt −

βt√
1− ᾱt

εθ(xt, t)), (9)

then, the following simplified training objective is derived from the term Lt−1 in Equation (5):

Lsimple = Et,x0,ε[||ε− εθ(
√

ᾱtx0 +
√

1− ᾱtε, t)||2]. (10)

As introduced by Nichol and Dhariwal [27], learning variance Σθ(xt, t) in Equation (3)
of the reverse process helps to improve the log-likelihood and reduce the number of
sampling steps. Since Lsimple does not depend on Σθ(xt, t), they define a new hybrid
objective:

Lhybrid = Lsimple + λLVLB. (11)

Furthermore, they make DDPMs achieve better sample quality than the current state-
of-the-art generative models by finding a better architecture through a series of abla-
tions [28]. Hence, we base our proposed method on DDPMs.

3. Materials and Methods

In this section, we describe in detail the proposed method sequential-based diffusion
models (SeqDMs) for cloud removal in remote sensing, which consists of two components.
In Section 3.1, we first present novel diffusion models, multi-modal diffusion models
(MmDMs), which leverage a sequence of auxiliary modal data as additional information to
learn the distribution of main modality. In Section 3.2, we introduce an improved training
and inference strategy named sequential-based training and inference strategy (SeqTIS)
for cloud removal to integrate information across time from both the main modality (i.e.,
optical satellite data) and auxiliary modalities (e.g., SAR or other modalities more robust to
the corruption of clouds) input sequences.

3.1. Multi-Modal Diffusion Models

Unlike prior diffusion models [26–28], multi-modal diffusion models (MmDMs) lever-
age auxiliary modalities data as additional inputs to learn the distribution of the main
modality, which will complement the partial missing information of the main modality
during the inference process (cloud-removal process). The graphical model for MmDMs is
shown in Figure 1.

We denote a sequence of multi-modal input data as {X, A1, ..., An, ..., AN}, which
consists of one main modality X, as well as N auxiliary modalities A. Since optical satellite
data are susceptible to haze or clouds and SAR or other modalities are more robust against
these influences [6,15], we consider optical satellite data as the main modality X and SAR
or other modalities as auxiliary modalities A in this paper. The most important feature
of MmDMs is the powerful ability to capture the distribution of X, and the ability to
complement the missing information of X with A during the inference process, leading to
a better performance of cloud removal in remote sensing.
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Figure 1. Graphical model for multi-modal diffusion models (MmDMs), which consists of one main
modality X and N auxiliary modalities A. In order to reverse the diffusion process of X, it learns a
neural network pθ(Xt−1|Xt, A1:N

t ) to approximate the intractable posterior distribution q(Xt−1|Xt).

The diffusion process of MmDMs is similar to that of DDPMs; it involves individually
transforming each modal input sample to white Gaussian noise according to the same
variance schedule {βt ∈ (0, 1)}T

t=1 in T diffusion time steps . Each diffusion step of the
main-modality sample X0 is given by:

q(X1:T |X0) :=
T

∏
t=1

q(Xt|Xt−1), q(Xt|Xt−1) = N (Xt;
√

1− βtXt−1, βtI), (12)

and the diffusion step for the nth auxiliary modal sample An
0 is given by:

q(An
1:T |An

0 ) :=
T

∏
t=1

q(An
t |An

t−1), q(An
t |An

t−1) = N (An
t ;
√

1− βt An
t−1, βtI). (13)

Instead of directly learning a neural network pθ(Xt−1|Xt) to approximate the in-
tractable posterior distribution q(Xt−1|Xt) described in Equation (5) of DDPMs, MmDMs
add the auxiliary modalities as conditions to the reverse process:

pθ(X0:T |A1:N
1:T ) := p(XT)

T

∏
t=1

pθ(Xt−1|Xt, A1:N
t ), (14)

pθ(Xt−1|Xt, A1:N
t ) = N (Xt−1; µθ(Xt, A1:N

t , t), Σθ(Xt, A1:N
t , t)). (15)

Then, the training objective for the model in Equation (15) is derived by the variational
lower bound on negative log likelihood:

E[− log pθ(X0)] ≤ Eq[− log
pθ(X0:T |A1:N

1:T )

q(X1:T |X0)
] = Eq[− log p(XT)−∑

t≥1
log

pθ(Xt−1|Xt, A1:N
t )

q(Xt|Xt−1)
] = LVLB, (16)

and it can be further rewritten as:

LVLB = Eq[DKL(q(XT |X0)||p(XT))︸ ︷︷ ︸
LT

+ ∑
t>1

DKL(q(Xt−1|Xt, X0)||pθ(Xt−1|Xt, A1:N
t ))︸ ︷︷ ︸

Lt−1

− log pθ(X0|X1, A1:N
1 )︸ ︷︷ ︸

L0

]. (17)

Based on Equations (6)–(10) and the property of the diffusion process, we can derive a
new version of the simplified training objective from the term Lt−1 in Equation (17):
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Lsimple(θ) = Et,X0,εx ,A1:N
0 ,ε1:N

a
[||εx − εθ(

√
ᾱtX0 +

√
1− ᾱtεx,

√
ᾱt A1:N

0 +
√

1− ᾱtε
1:N
a , t)||2], (18)

where εx is the cumulative noise added to the main modal sample X0 and ε1:N
a are the

noises individually added to N auxiliary modal samples A1:N
0 .

3.2. Sequential-Based Training and Inference Strategy

To better reconstruct the missing information corrupted by clouds or haze, we in-
troduce sequential-based training and inference strategy (SeqTIS) to integrate the infor-
mation across time from both main modality and auxiliary modalities. SeqTIS contains
a temporal training strategy and a conditional inference strategy, both of which use a
reusable module called sequential data fusion module. For ease of description, we extend
the multi-modal input data {X, A1, ..., An, ..., AN} in a prior section into a multi-modal
and multi-temporal version {XL, A1_L, ..., An_L, ..., AN_L} , where XL = {x1, ..., xl ..., xL}
and An_L = {an_1, ..., an_l , ..., an_L} are the time series of length L. Corresponding to
the multi-modal and multi-temporal input data, we also have a ground truth sequence
{X̂, Â1, ..., Ân, ...ÂN}, which contains cloud-free main modality X̂. All of the modules and
processes in SeqTIS are described below.

3.2.1. Sequential Data Fusion Module

As shown in Figure 2, the sequential data fusion modules are used to integrate the
information across time in each modality and are designed separately for either main
modality or auxiliary modalities.

Since the auxiliary modalities A1:N are not influenced by clouds or haze, the sequential
data fusion module for auxiliary modality is simply designed to individually diffuse data
in each sequential time step l into a certain diffusion time step t and then calculate an
average weighted value of that diffusion time step to integrate information across time. The
nth auxiliary modality sequence An_L is processed by the sequential data fusion module
for auxiliary modality as follows:

an_l
t ∼ N (

√
ᾱtan_l

0 , (1− ᾱt)I) =
√

ᾱtan_l
0 +

√
(1− ᾱt)ε

n_l
a , l = 1, 2, ..., L, n = 1, 2, ..., N, (19)

where εn_l
a ∼ N (0, I) is a cumulative noise added to the current intermediate sample an_l

t .
After diffusing the data in each sequential time step l, we calculate the average weighted
value of diffusion time step t as follows:

Ãn
t =

∑L
l=1 an_l

t
L

, n = 1, 2, ..., N, (20)

which integrates the information of sequence An_L across time.
Since the main modality XL = {x1, ..., xl ..., xL} is susceptible to missing information

due to clouds or haze, the sequential data fusion module for the main modality is designed
to maintain the known regions’ (cloud-free pixels) information of each sequential time
step l as much as possible , which is quite different from that for auxiliary modalities.
In order to model the spatial-temporal extent of clouds, the binary cloud masks ML =
{m1, ..., ml ..., mL} are computed on-the-fly for each main modality data in XL via the cloud
detector of s2cloudless [29]. The pixel value 1 of ml indicates a cloud-free pixel, and value
0 indicates a cloudy pixel. The main modality sequence XL is processed by the sequential
data fusion module for the main modality to the diffusion time step t− 1 as follows:

xl
t−1 ∼ N (

√
ᾱt−1xl

0, (1− ᾱt−1)I) =
√

ᾱt−1xl
0 +

√
(1− ᾱt−1)ε

l
x, l = 1, 2, ..., L, (21)
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where εl
x is the noise added to the intermediate sample xl

t−1. Then, we maintain the known
regions information of xl

t−1 by:

x̃l
t−1 = xl

t−1 �ml , (22)

where � indicates the pixel-wise multiplication. Finally, we calculate a weighted value
of known regions at diffusion time step t− 1 for each pixel according to the frequency of
value 1, which occurs in masks ML throughout the whole time step L:

Xknown
t−1 =

∑L
l=1 x̃l

t−1

∑L
l=1 ml + s

, (23)

where s is a small offset (set to 10−19) to prevent the unknown regions’ pixels divided by 0.

Next

Iteration

no
is

e
no

is
e

no
is

e

*

*
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+
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is
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no

is
e

no
is

e

*
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is
e

*
+

+

Sequential Data Fusion Module for

Auxiliary Modality

Sequential Data Fusion Module for Main Modality

Figure 2. The overview of conditional inference strategy in sequential-based training and inference
strategy (SeqTIS). The symbol ∗ indicates the pixel-wise multiplication.

3.2.2. Conditional Inference Strategy

Before the training strategy, we first describe in detail the conditional inference strategy
of SeqTIS, whose overview is shown in Figure 2.

The goal of cloud removal is to reconstruct the pixels corrupted by clouds or haze in
optical satellite data using information from known regions (cloud-free pixels) or other
modalities as a condition. In order to obtain as many as possible known regions for cloud
removal, the multi-modal and multi-temporal sequences {XL, A1_L, ..., An_L, ..., AN_L} are
used as inputs to the models during the inference process (cloud-removal process).



Remote Sens. 2023, 15, 2861 8 of 18

Since each reverse step in Equation (15) from Xt to Xt−1 depends on both the main
modality Xt and the auxiliary modalities A1:N

t , we need to integrate information across
the time of each modality sequence first and then alter the known regions, as long as the
correct properties of the corresponding distribution can be maintained .

In order to integrate the information of the main modality XL at diffusion time step
t − 1, we use the sequential data fusion module for the main modality expressed by
Equations (21)–(23) to obtain the known regions’ information Xknown

t−1 . Then, we use the
sequential data fusion modules for auxiliary modality expressed by Equations (19) and (20)
to obtain the information integrated value Ã1:N

t . After that, we can obtain the unknown
regions (corrupted by clouds or haze) information at t− 1 by using both Xt and Ã1:N

t as
inputs:

Xunknown
t−1 ∼ N (µθ(Xt, Ã1:N

t , t), Σθ(Xt, Ã1:N
t , t)) (24)

To utilize the information from the known regions as fully as possible, we define a
region mask M̃ for altering the known regions as follows:

M̃ = Θ(
L

∑
l=1

ml), (25)

where Θ is a pixel-wise indicator, meaning that the output value will be 1 if the pixel value
at the corresponding position is not 0; otherwise, it will be 0. Finally, we can keep the
known regions’ information and obtain the next reverse step intermediate Xt−1 as follows:

Xt−1 = M̃� Xknown
t−1 + (1− M̃)� Xunknown

t−1 (26)

The conditional inference strategy allows us to integrate temporal information across
the arbitrary length of input sequences without retraining the model, which significantly
reduces the training cost and increases the flexibility of inference. Algorithm 1 displays the
above complete procedure of the conditional inference strategy.

Algorithm 1 Conditional inference (cloud removal) strategy of SeqTIS

1: XT ∼ N (0, I)
2: for t = T, ..., 1 do
3: for l = 1, ..., L do
4: εl

x ∼ N (0, I) if t > 1, else εl
x = 0

5: xl
t−1 ∼ N (

√
ᾱt−1xl

0, (1− ᾱt−1)I) =
√

ᾱt−1xl
0 +

√
(1− ᾱt−1)ε

l
x

6: x̃l
t−1 = xl

t−1 �ml

7: for n = 1, ..., N do
8: εn_l

a ∼ N (0, I) if t > 1, else εn_l
a = 0

9: an_l
t ∼ N (

√
ᾱtan_l

0 , (1− ᾱt)I) =
√

ᾱtan_l
0 +

√
(1− ᾱt)ε

n_l
a

10: end for
11: end for
12: Ãn

t = ∑L
l=1 an_l

t
L , where n = 1, 2, ..., N

13: Xunknown
t−1 ∼ N (µθ(Xt, Ã1:N

t , t), Σθ(Xt, Ã1:N
t , t))

14: Xknown
t−1 =

∑L
l=1 x̃l

t−1

∑L
l=1 ml+s

15: M̃ = Θ(∑L
l=1 ml)

16: Xt−1 = M̃� Xknown
t−1 + (1− M̃)� Xunknown

t−1
17: end for
18: return X0

3.2.3. Temporal Training Strategy

Unlike RePaint [30], which only uses the pre-trained unconditional DDPMs based on
RGB dataset as a prior, it is necessary to train MmDMs based on multi-spectral satellite
data from the beginning. Therefore, we propose a specific training strategy, the temporal
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training strategy, to accurately capture the real distribution of cloud-free main modality
q(X̂) and to force the models to fully leverage the auxiliary modalities’ information to deal
with the extreme absence of the main modality.

In order to capture the distribution of q(X̂) as a cloud removal prior, we leverage
the powerful distribution capture capability of MmDMs by using the cloud-free samples
{X̂, Â1:N} in training split as inputs and optimize the parameter θ in the neural networks
as follows:

Oθ [||ε x̂ − εθ(
√

ᾱtX̂0 +
√

1− ᾱtε x̂,
√

ᾱt Â1:N
0 +

√
1− ᾱtε

1:N
â , t)||2 + λLVLB]. (27)

where ε x̂ ∼ N (0, I) is the noise added to the input sample X̂0.
Due to the probability of each sample of cloudy input sequence XL being severely

corrupted by clouds, we have to force the models to make full use of the information from
the auxiliary modalities by training with the cloudy sequences as well. We need to process
XL and A(1:N)_L in the training split by the sequential data fusion modules to obtain the
known regions’ information Xknown

t and Ã1:N
t at diffusion time step t. Then, we use the

Gaussian random noise N (0, I) to fill the unknown regions and optimize the parameter θ
as follows:

Oθ [||ε x̂ − εθ(Xt, Ã1:N
t , t)||2 + λLVLB]. (28)

Algorithm 2 displays the complete procedure of the temporal training strategy in detail.

Algorithm 2 Temporal training strategy of SeqTIS

1: repeat
2: X̂0 ∼ q(X̂)

3: Ân
0 , where n = 1, 2, ..., N . coregistered and paired with X̂0

4: XL
0 = {x1

0, ..., xl
0..., xL

0 } . corresponding to X̂0

5: A(1:N)_L
0 = {a(1:N)_1

0 , ..., a(1:N)_l
0 , ..., a(1:N)_L

0 } . coregistered and paired with XL
0

6: t ∼ Uniform ({1, ..., T})
7: ε x̂ ∼ N (0, I) if t > 1, else ε x̂ = 0
8: εn

â ∼ N (0, I) if t > 1, else εn
â = 0, where n = 1, 2, ..., N

9: Take gradient descent step on

10: Oθ [||ε x̂ − εθ(
√

ᾱtX̂0 +
√

1− ᾱtε x̂,
√

ᾱt Â1:N
0 +

√
1− ᾱtε

1:N
â , t)||2 + λLVLB]

11: for l = 1, ..., L do
12: εl

x ∼ N (0, I) if t > 1, else εl
x = 0

13: xl
t ∼ N (

√
ᾱtxl

0, (1− ᾱt)I) =
√

ᾱtxl
0 +

√
(1− ᾱt)εl

x
14: x̃l

t = xl
t �ml

15: for n = 1, ..., N do
16: εn_l

a ∼ N (0, I) if t > 1, else εn_l
a = 0

17: an_l
t ∼ N (

√
ᾱtan_l

0 , (1− ᾱt)I) =
√

ᾱtan_l
0 +

√
(1− ᾱt)ε

n_l
a

18: end for
19: end for
20: Ãn

t = ∑L
l=1 an_l

t
L , where n = 1, 2, ..., N

21: Xunknown
t ∼ N (0, I)

22: Xknown
t = ∑L

l=1 x̃l
t

∑L
l=1 ml+s

23: M̃ = Θ(∑L
l=1 ml)

24: Xt = M̃� Xknown
t + (1− M̃)� Xunknown

t
25: Take gradient descent step on

26: Oθ [||ε x̂ − εθ(Xt, Ã1:N
t , t)||2 + λLVLB]

27: until converged
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4. Results

To verify the feasibility of our method on the cloud-removal task in remote sensing do-
main, we conduct sufficient experiments on a public real-world dataset for cloud removal.

4.1. Dataset Description

This real-world dataset named SEN12MS-CR-TS [7] is a globally distributed dataset
for multi-modal and multi-temporal cloud removal in remote sensing domain. It contains
paired and co-registered sequences of spaceborne radar measurements practically unaf-
fected by clouds, as well as cloud-covered and cloud-free multi-spectral optical satellite
observations. Complementary to the radar modality’s cloud-robust information, historical
satellite data are collected via Sentinel-1 and Sentinel-2 satellites from European Space
Agency’s Copernicus mission, respectively. The Sentinel satellite provides public access
data and is among the most prominent satellites for Earth observation.

Statistically, it contains observations covering 53 globally distributed regions of interest
(ROIs) and registers 30 temporally aligned SAR Sentinel-1 as well as optical multi-spectral
Sentinel-2 images throughout the whole year of 2018 in each ROI. Each band of every
observation is upsampled to 10-m resolution (i.e., to the native resolution of Sentinel-
2’s bands 2, 3, 4, and 8), and then full-scene images from all ROIs are sliced into 15,578
nonoverlapping patches of dimensions 256× 256 px2 with 30 time samples for every S1 and
S2 measurement. The approximate cloud coverage of all data is about 50%, from clear-view
images (e.g., used as ground truth), over semi-transparent haze, or small clouds to dense
and wide cloud coverage.

4.2. Evaluation Metrics

We evaluate the quantitative performance in terms of normalized root mean squares
error (NRMSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM) [31], and
spectral angle mapper (SAM) [32], defined as follows:

NRMSE(x, y) =

√√√√ 1
C · H ·W

C,H,W

∑
c=h=w=1

(xc,h,w − yc,h,w)2, (29)

PSNR(x, y) = 20 · log10(
1

NRMSE(x, y)
), (30)

SSIM(x, y) =
(2µxµy + ε1)(2σxy + ε2)

(µx + µy + ε1)(σx + σy + ε2)
, (31)

SAM(x, y) = cos−1(
∑C,H,W

c=h=w=1(xc,h,w · yc,h,w)√
∑C,H,W

c=h=w=1 x2
c,h,w ·∑

C,H,W
c=h=w=1 y2

c,h,w

), (32)

with images x, y compared via their respective pixel values xc,h,w, yc,h,w ∈ [0, 1], dimensions
C = 13, H = W = 256, which means µx, µy; standard deviations σx, σy; covariance σxy; and
constants ε1, ε2, to stabilize the computation . NRMSE belongs to the class of pixel-wise
metrics and quantifies the average discrepancy between the target and the prediction. PSNR
is evaluated on the whole image and quantifies the signal-to-noise ratio of the prediction
as a reconstruction of the target image. SSIM is another image-wise metric that builds on
PSNR and captures the SSIM of the prediction to the target in terms of perceived change,
contrast, and luminance [31]. The SAM measure is a third image-wise metric that provides
the spectral angle between the bands of two multi-spectral images [32]. For further analysis,
the pixel-wise metric NRMSE is evaluated in three manners: (1) over all pixels of the target
image (as per convention), (2) only over cloud-covered pixels (visible in neither of any
input optical sample) to measure reconstruction of noisy information, and (3) only over
cloud-free pixels (visible in at least on input optical sample) quantifying the preservation
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of information. The pixel-wise masking is performed according to the cloud mask given by
the cloud detector of s2cloudless [29].

4.3. Baseline Methods

We compare our proposed method with the following baseline methods: (1) Least
cloudy: we just take the least-cloudy input optical observation and forward it without
further modification to be compared against the cloud-free target image. This provides
a benchmark of how hard the cloud-removal task is with respect to the extent of cloud-
coverage present in the data. (2) Mosaicing: we perform a mosaicing method that averages
the values of pixels across cloud-free time points, thereby integrating information across
time. That is, for any pixel, if there is a single clear-view time point, then its value is copied;
for multiple cloud-free samples, the mean is formed, and in case no cloud-free time point
exists, then a value of 0.5 is taken as a proxy. The mosaicing technique provides a bench-
mark of how much information can be integrated across time from multi-spectral optical
observations exclusively. (3) STGAN [17]: Spatio-temporal generator networks (STGANs)
are proposed to generate a cloud-free image from the given sequence of cloudy images,
which only leverage the RGB and IR bands of the optical observation. (4) Seq2point [7]:
Seq2point denotes the sequence-to-point cloud removal method builds on the generator of
STGAN, replacing the pairwise concatenation of 2D feature maps in STGAN by stacking
features in the temporal domain, followed by 3D CNNs.

4.4. Implementation Details

To make a fair comparison, we train all versions of SeqDMs by an Adamw [33]
optimizer with a learning rate of 0.0001 and utilize the half-precision (i.e., FP16) training
technique [34] to obtain significant computational speedup and memory consumption
reduction. The architecture of the neural network used in MmDMs is obtained by modifying
the input channels suitable for the multi-modal information based on that in [28], which
is a U-Net [35] model using a stack of residual layers and downsampling convolutions,
followed by a stack of residual layers with upsampling convolutions, with skip connections
connecting the layers with the same spatial size. In addition, we use global attention
layers at the 32 × 32, 16 × 16, and 8 × 8 resolutions with 4 attention heads, 128 base
channels, 2 residual blocks per resolution, BigGAN up/downsampling, and adaptive
group normalization. In order to make a consistent comparison with the above compared
methods, the modalities S1 and S2 are, respectively, value-clipped within the intervals of
[−25,0] and [0,10,000] and then normalized to the range [−1,1] for stable training. We set
the sequence length L = 3 in the training split for the temporal training strategy and train
the models with batch size 1 for 10 epochs on GPUs RTX3090 for roughly five days. All of
the other compared methods are also trained on SEN12MS-CR-TS according to the training
protocol of [7].

4.5. Experimental Results

To evaluate performance and generalization of the proposed method, we use the
whole test split over all of the continents of SEN12MS-CR-TS containing S2 observations
from the complete range of cloud coverage (between 0% and 100%). Table 1 compares the
results of our proposed method with the baseline methods detailed in Section 4.3, entirely
trained and inferred with the input sequences of length L = 3.

Since mosaicing directly averages the values on cloud-free time points for each pixel
to integrate information across time, it does not perform well on imagery structure (e.g.,
perceived change, contrast, and luminance) as well as multi-spectral structures, while it has
very little noise with the highest PSNR, indicating the maximum amount of information
can be integrated.

The results also show that the proposed method SeqDMs outperforms the baselines
in the majority of pixel-wise metrics and greatly exceeds Seq2point [7] in the image-wise
metric PSNR, except for SSIM and SAM (where Seq2point [7] is a little better). This
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demonstrates that SeqDMs can obtain reconstructed samples with superior image quality
due to its powerful ability of distribution capture and can typically outperform trivial
solutions to the multi-modal multi-temproal cloud removal problem. The examples of the
reconstructed outcomes for the considered baselines on four different samples from the
test split are illustrated in Figure 3. The considered cases are cloud-free, partly cloudy,
cloud-covered with no visibility except for one single time point, and cloud-covered with
no visibility at any time point. The illustrations show that SeqDMs can perfectly maintain
any cloud-free pixels of the input sequences and leverage the distribution of the known
regions to generate the cloudy pixels.

Table 1. Quantitative evalutation of the proposed method SeqDMs with baseline methods in terms of
normalized root mean squared error (NRMSE), peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) [31] , and spectral angle mapper (SAM) [32] metrics. All methods are trained and inferred
with the input sequences of length L = 3.

Model NRMSE(All) ↓ NRMSE(Cloudy) NRMSE(Clear) PSNR ↑ SSIM ↑ SAM ↓

least cloudy 0.079 0.082 0.031 22.98 0.815 0.213
mosaicing 0.062 0.064 0.036 31.68 0.811 0.250

STGAN 0.057 0.059 0.050 25.42 0.818 0.219
Seq2point 0.051 0.052 0.040 26.68 0.836 0.186

SeqDMs(proposed) 0.045 0.046 0.026 28.07 0.827 0.223

The ↓means lower is better, and ↑means the higher is better.

Figure 3. Cont.
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Figure 3. Exemplary input sequences, reconstructed outcomes, and cloud-free target images for some
baselines reported in Table 1 in four considered cases. Columns: Four different samples from the
test split. The four considered cases are cloud-free, partly cloudy, cloud-covered with no visibility
except for one single time point, and cloud-covered with no visibility in any time point. Rows: Three
samples of input sequences, reconstructed outcomes of mosaicing, Seq2point [7] , and SeqDMs, as
well as the cloud-free target image.

However, SeqDMs fall short of capturing the imagery structure or multi-spectral
structure when the input sequences are quiet short, in terms of SSIM and SAM metrics.
The input sequences are quite short, indicating that input samples are collected in a rela-
tively concentrated period. This produces three challenges for the cloud removal using
SeqDMs with the powerful ability of distribution capture: (1) Cloud coverage might be
quiet high, resulting in severe information loss. (2) The temporal shift between input
samples and cloud-free target image might be large, causing significant differences in the
perceived change, contrast, or luminance. (3) The robustness of exceptional data due to
equipment failure might be weak, misleading the model to a wrong inference direction that
is completely different from the cloud-free target image.

To overcome the above challenges, we consider the inference process (i.e., cloud-
removal process) over longer input sequences by using the conditional inference strategy
detailed in Section 3.2.2 to integrate more information across time without retraining the
SeqDMs again. Table 2 reports the performance of our proposed method SeqDMs and
Seq2point [7] inferred with input sequences of length L = 3, 4, 5, respectively. It is worth
noting that SeqDMs need to be trained only once with sequences of length L = 3, while
Seq2point [7] needs to be trained with sequences of length L = 3, 4, 5, respectively. The
results indicate that inferring with longer input sequences can significantly improve the
performance of SeqDMs in terms of reconstructed quality, imagery structure, and multi-
spectral structure and can easily outperform the baseline methods in majority metrics with
much less training cost, except for SAM.

To further understand the benefit of conditional inference strategy, Table 3 reports the
performance of SeqDMs as a function of cloud coverage, inferred with input sequences
of length L = 3, 4, 5. The cloud coverage is calculated by averaging the extent of clouds
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of each images in the sequence of length L = 3. The results show that longer input
sequences can significantly improve the performance, especially in the cases of extreme
cloud coverage. Figure 4 shows the performance histograms of SeqDMs in terms of PSNR,
SSIM, NRMSE(cloudy), and SAM; it visualizes the significant improvements in the extreme
cloud coverage cases by increasing input sequences length L. In addition, the cloud-
removal performance is highly dependent on the percentage of the cloud coverage. While
the performance decrease is not strictly monotonous with an increase in cloud coverage, a
strong association still persists.

Table 2. Quantitative evalutation of the proposed method SeqDMs and Seq2point [7] inferred with
input sequences of length L = 3, 4, 5 in terms of NRMSE, PSNR, SSIM [31], and SAM [32] metrics.
It is worth noting that SeqDMs need to be trained only once with sequences of length L = 3, while
Seq2point [7] needs to be trained with sequences of length L = 3, 4, 5, respectively.

Model NRMSE(All) ↓ NRMSE(Cloudy) NRMSE(Clear) PSNR ↑ SSIM ↑ SAM ↓

Seq2point (L = 3) 0.051 0.052 0.040 26.68 0.836 0.186
SeqDMs (L = 3) 0.045 0.046 0.026 28.07 0.827 0.223

Seq2point (L = 4) 0.049 0.050 0.041 27.10 0.845 0.172
SeqDMs (L = 4) 0.037 0.038 0.024 28.31 0.847 0.201

Seq2point (L = 5) 0.048 0.048 0.032 27.07 0.846 0.178
SeqDMs (L = 5) 0.038 0.038 0.017 28.21 0.846 0.198

The ↓means lower is better, and ↑means the higher is better.
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Figure 4. The performance histograms of SeqDMs inferred with input sequences of length L = 3, 4, 5
in terms of PSNR, SSIM, NRMSE(cloudy), and SAM.
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Table 3. Performance of our proposed method SeqDM as a function of cloud coverage, inferred with
input sequences of length L = 3, 4, 5. The cloud coverage is calculated by averaging the extent of
clouds of each images in the sequence of length L = 3.

Cloud Coverage L NRMSE(All) ↓ NRMSE(Cloudy) NRMSE(Clear) PSNR ↑ SSIM ↑ SAM ↓

0–10%
3 0.023 0.030 0.023 32.31 0.907 0.118
4 0.024 0.028 0.021 31.81 0.905 0.120
5 0.024 0.026 0.015 31.74 0.907 0.120

10–20%
3 0.035 0.035 0.034 28.00 0.863 0.161
4 0.034 0.033 0.038 28.17 0.865 0.160
5 0.033 0.033 0.029 28.48 0.871 0.157

20–30%
3 0.033 0.032 0.034 29.30 0.854 0.138
4 0.032 0.032 0.038 29.25 0.855 0.138
5 0.032 0.031 0.021 29.61 0.861 0.135

30–40%
3 0.033 0.032 0.032 29.86 0.875 0.156
4 0.033 0.033 0.028 29.08 0.873 0.160
5 0.033 0.033 0.027 29.08 0.875 0.160

40–50%
3 0.045 0.045 0.042 26.54 0.826 0.227
4 0.042 0.042 0.037 26.96 0.834 0.223
5 0.042 0.042 0.034 26.93 0.834 0.222

50–60%
3 0.042 0.042 0.023 28.40 0.832 0.217
4 0.041 0.041 0.020 27.91 0.841 0.217
5 0.041 0.041 0.030 27.91 0.841 0.217

60–70%
3 0.038 0.038 0.029 29.36 0.838 0.217
4 0.038 0.038 0.024 27.88 0.839 0.220
5 0.040 0.040 - 27.68 0.832 0.220

70–80%
3 0.048 0.048 - 24.60 0.803 0.268
4 0.040 0.040 - 27.13 0.842 0.228
5 0.045 0.045 - 26.68 0.822 0.225

80-90%
3 0.050 0.050 - 24.58 0.779 0.285
4 0.038 0.038 - 28.60 0.834 0.216
5 0.040 0.040 - 28.48 0.833 0.209

90–100%
3 0.104 0.104 - 18.80 0.609 0.434
4 0.059 0.059 - 24.52 0.755 0.288
5 0.054 0.054 - 24.96 0.782 0.261

The ↓means lower is better, and ↑means the higher is better.

Finally, we conduct an ablation experiment to assess the benefit of utilizing the tempo-
ral training strategy of SeqTIS. Table 4 compares the results of our propose method SeqDMs
with an ablation version not using temporal training strategy (i.e., only trained with Equa-
tion (27)). The comparison demonstrates that using the whole version of temporal training
strategy of SeqTIS leads to a higher quality in the cloud-removal task.

Table 4. Comparison of the proposed method SeqDMs (L = 3) using the temporal training strategy
of SeqTIS versus an ablation version not using the temporal training strategy (i.e., only trained with
Equation (27)) in terms of NRMSE, PSNR, SSIM [31], and SAM [32] metrics.

Model NRMSE(All) ↓ NRMSE(Cloudy) NRMSE(Clear) PSNR ↑ SSIM ↑ SAM ↓

SeqDM (no temporal
training strategy) 0.048 0.050 0.026 27.90 0.821 0.223

SeqDM (with temporal
training strategy) 0.045 0.046 0.026 28.07 0.827 0.223

The ↓means lower is better, and ↑means the higher is better.
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5. Discussion

The main contribution of this paper is in the development of the sequential-based
diffusion models (SeqDMs), which is a novel probabilistic generative model for the cloud-
removal task of optical satellite imagery. It consists of two parts, multi-modal diffusion
models (MmDMs) and sequential-based training and inference strategy (SeqTIS). MmDMs
are novel diffusion models that reconstruct the reverse process of DDPMs to integrate
additional information from the auxiliary modalities (e.g., SAR or other modalities robust
to the corruption of clouds or haze) in order to help the distribution learning of the main
modality (i.e., optical satellite imagery). Although the main modality typically is suscepti-
ble to the influences of clouds or haze, MmDMs are capable of capturing the distribution of
the main modality by conditioning the missing information with the auxiliary modalities
during the training and inference process. SeqTIS is an improved training and inference
strategy specifically for MmDMs, which allows us to integrate temporal information across
arbitrary length of the both main modality and auxiliary modalities input sequences with-
out retraining the model again. With the help of the MmDMs and SeqTIS, our proposed
method SeqDMs outperform several other state-of-the-art multi-modal multi-temporal
cloud removal methods and have the flexibility to handle the arbitrary length of input
sequences, producing significant improvements with only one or two additional input
samples and greatly reducing the time cost of model training , as detailed in Tables 1 and 2.
This work serves as an important stepping stone for cloud removal by integrating informa-
tion across time and data modalities to achieve improved interpretability, model flexibility,
and generalizability. However, due to the powerful distribution capture capability of
MmDMs and the direct information combination of known regions and unknown regions
by SeqTIS, knowing how to more effectively enhance the robustness of the exceptional data
in sequence and more efficiently extract useful information based on the transparency of
the cloud is still crucial to fundamentally improve the performance of the proposed method
rather than inferring over longer input sequences.

6. Conclusions

This paper proposes SeqDMs, a novel probabilistic generative model for the cloud-
removal task in remote sensing. Unlike other popular generative models, our method
introduces a novel diffusion model by reconstructing the reverse process of DDPMs to
integrate additional information from the auxiliary modalities and utilizes a specialized
training and inference strategy to handle sequences of an arbitrary length without retrain-
ing the model again. Our extensive experiments demonstrate that our method outperforms
several state-of-the-art methods in cloud removal with excellent interpretability and flex-
ibility. In the future, we will pursue the direction of studying the characteristics of each
band of the multi-spectral optical satellite imagery to extract more helpful information for
further reducing the semantic gap between the reconstructions and target images.
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