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Abstract: Forest growing stock volume (GSV) is an essential aspect of ecological carbon stock
monitoring. The successive launches of spaceborne microwave satellites have provided a broader
way to use microwave remote sensing to monitor forest accumulation. Currently, the inversion
parameterization models of active microwave remote sensing stock volume mainly include the
interferometric water cloud (IWCM), BIOMASAR, and Siberia. Among them, the IWCM introduces
backscattering and coherence, the BIOMASAR model only introduces backscattering, and the Siberia
model only introduces coherence. Although these three models combine the backscatter coefficient
and coherence of SAR to estimate volume accumulation, the performance of the models has not been
evaluated at the same time in the same area. Therefore, this article starts from the perspective of
the three combinations of coherence and backscattering, relies on three models that do not require
measured data, and evaluates the accuracy of the models’ overall inversion of GSV. In addition,
we combine precipitation meteorological information, vegetation types, and seasonal variation to
separately explore model performance. The comparison results show that the IWCM model is
relatively stable in the process of stock volume inversion and is more sensitive to the vegetation
types of coniferous and deciduous forests. The influence of seasons and precipitation on the model is
weak, and the accuracy of the multi-time-series model is slightly improved. The Siberia model has a
good storage volume inversion effect in this study area, but the multiple time series did not improve
the model accuracy. The BIOMASAR model is simple, and its performance was slightly inferior
in this study area. Precipitation can negatively affect BIOMASAR. The model results for multiple
time series outperform those for single time. In summary, the stability of IWCM is more suitable for
research with unknown information. The BIOMASAR model is simple, does not require coherence
calculations, and is ideal for the estimation of large-scale national or world-level storage distributions.
The Siberian model performs better in small regions and smaller spatiotemporal baselines.

Keywords: active microwave; growing stock volume; methods comparison; water cloud model

1. Introduction

Ecological issues are currently being investigated by almost all countries around the
world [1–3]. Among these ecological issues, forests are an important research target because
they play a vital role in regulating the ecological climate and are the primary means of
carbon uptake [4–6]. The forest growing stock volume (GSV) is a critical parameter of a
forest and is generally related to the forest economy and sustainable development [6,7].
The forest GSV refers to the total volume of standing trees in the forest per unit area, and
the unit is usually cubic meters per hectare (m3/ha). Usually, GSV is measured in the field
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by manually collecting the breast diameter and tree height of the trees in a sample plot and
then calculating an allometric equation or checking a height–breast diameter–volume table
to estimate the GSV [8]. The manual field measurement method is time-consuming and
labor-intensive, with long renewal cycles and limited working areas making it challenging
to widely use.

With the continuous development of remote sensing science and technology, more and
more works have estimated the GSV [9]. Currently, the GSV estimation methods in remote
sensing mainly include passive optical remote sensing, active optical remote sensing, and
active microwave remote sensing [10–13]. The passive optical remote sensing method
is mainly based on combining spectral information with the measured data to carry out
modeling regression to obtain the GSV [11,14,15]. However, passive optical remote sensing
technology cannot obtain data all day in all weather, visible light cannot pass through
clouds and fog, and is easily affected by weather. Consequently, the direct sensitivity of
the visible-light band to GSV is low, and high accuracy cannot be achieved. Active optical
remote sensing mainly uses LiDAR for GSV estimation. LiDAR is mainly used to extract
the vertical forest structure, distribution density, and other information through the point
cloud and is combined with a digital elevation model (DEM) to obtain the GSV of a sample
through multiple linear regression or machine learning [10,16–19]. Due to the effects of
weather and the expensive data acquisition over a large area, LiDAR technology is also
limited in application. In contrast, active microwave remote sensing can penetrate clouds
and fog and acquire data in all weather, and microwaves are directly sensitive to GSV or
biomass [20]. Moreover, it is becoming increasingly convenient to obtain microwave data
as global microwave remote sensing satellites have been launched one after another in
recent decades. The National Aeronautics and Space Administration (NASA) provides
free passive microwave data from satellites such as SMAP and AMSR. The launch of
the Sentinel-1 satellite has also provided new opportunities for active microwave remote
sensing [21].

With the improvement in computing power, machine learning and deep learning
algorithms are gradually being enriched, and these methods have been gradually intro-
duced into the calculation of remote sensing parameters [22–24]. Currently, the commonly
used methods for the inversion of forest GSV via active microwave remote sensing can be
roughly divided into two categories: nonparametric and parametric models [25]. The non-
parametric models introduce various field and microwave data parameters into the model
and continuously train and correct the model to obtain the accumulation result [26–30].
Such models can often be highly accurate by combining a large amount of measured data
with machine learning algorithms. To date, most studies have combined C- or L-band
synthetic aperture radar (SAR) data with nonparametric machine learning algorithms to
calculate GSV or biomass, mainly including random forest (RF) [26,27], support vector re-
gression (SVR) [28], artificial neural network (ANN) [31], deep neural network (DNN) [27],
and bagging stochastic gradient boosting (BagSGB) [32]. These methods are flexible and
highly precise but produce poor interpretation and are prone to overfitting. The locally
trained nonparametric models are challenging to directly use in other research areas, and
these models rely on measured data. A parametric model refers to a model equation estab-
lished by analyzing the relationship between microwave and ground objects. Although
the usually established parametric model equations are relatively simple, the model can be
improved and optimized by reasonably changing the parameters of the equations [33–35].
For instance, the water cloud model is one of the classical parametric models used for forest
GSV inversion. This model describes the backscattering mechanism of SAR, revealing the
scattering process of active microwaves to a certain extent. This model also describes the
total amount of backscattering as a two-part contribution of bare soil and forest, which
is weighted by forest transmittance to obtain the forest volume [36]. The water-cloud
model has been applied to forest stock volumes in Sweden, Finland, and other places.
The use of long-term time series and multi-time-series intensity data can produce better
estimation results. For example, the BIOMASAR method combines the intensity infor-
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mation of multiple time series with the vegetation coverage to estimate the GSV without
relying on the measured information [37,38]. A global GSV dataset in 2010 was produced
by the BIOMASAR estimation model combined with the multi-time-series Envisat ASAR
backscatter data, which has been of great help to studies without in situ measurements [9].
The water-cloud model was first proposed to calculate the vegetation canopy’s water con-
tent and soil moisture [39]. Based on this model, the coherence of SAR is introduced, the
coherence of microwave is weighted by backscattering, and the forest volume is estimated
from the perspective of the forest structure. A representative of this method is the interfer-
ometric water-cloud model (IWCM) [13,40,41]. The IWCM has achieved good results in
estimating the GSV from C-band active microwave data and can be used for large-scale
forest stock mapping [42]. Through the allometric growth equation, the interferometric
water-cloud model has also been applied to the inversion of forest biomass. In combination
with the relationship between tree height and forest volume, this model can also be used
for tree height estimation, although the acquisition of SAR data is not limited. Strong
wind can affect the shape of forest trees, which then affects the coherence of two SAR
images. Precipitation affects the backscattering intensity information, so a model combined
with multi-time-series data often produces better results [21,34,43]. In Siberia’s large-scale
forest volume mapping, the IWCM was simplified, and a simple index model based on
forest coherence was obtained, called the Siberia model [13,42,44,45]. The Siberia model, in
combination with the estimation results of ERS-1/2 data, was proven reasonable [42], but
there is no relevant research on multi-time-series data.

The above models are based on different combinations of radar backscatter coeffi-
cients and radar coherence coefficients. However, very few studies have evaluated the
existing methods from the perspectives of only using backscatter, combining backscatter
and coherence, and only using coherence. Because of this deficiency, it is still unclear how
suitable models can be selected to estimate GSV with active microwave remote sensing.
Consequently, this study focused on comparing the typical models of estimating the GSV
from the above three perspectives. Specifically, the BIOMASAR model is a representative
of using only backscatter, the IWCM model is a representative of using coherence and
backscatter, and the Siberia model is a representative of using only coherence; the three
models do not need to use measured data in the process of calculating the GSV. This
study contributes not only to better understanding the advantages, disadvantages, and
applicability of existing methods in estimating the GSV with microwave remote sensing
but also to finding directions for further improvement.

2. Materials and Methods
2.1. Study Area

In the past century, the total number of forests in Sweden has doubled, and the state
of the ecological environment has also tended to improve. This is closely related to the
acquisition of Sweden’s open natural resource survey data. Scholars and citizens can
understand the local ecological conditions through public information. Therefore, this
study comprehensively considered the data factors. Most of Kronoberg and some areas
of surrounding cities were selected as the research area. The research area is shown in
Figure 1.

2.2. Data

To better explore the performance of the model, we used C-band Sentinel-1 data
as the main data; the Sentinel-2, DEM, and land cover data as auxiliary data; and the
meteorological data and national forest inventory (NFI) ground point data as the data for
evaluating the results.
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Figure 1. Location of study area. (a) The location of the study area in Sweden; (b) vegetation contin-
uous fields (VCFs) in the study area, and (c) CGLS-LC100 Collection 3 2016 land cover data of the 
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Figure 1. Location of study area. (a) The location of the study area in Sweden; (b) vegetation
continuous fields (VCFs) in the study area, and (c) CGLS-LC100 Collection 3 2016 land cover data of
the study area.

2.2.1. Ground Point Data

This experiment did not depend on measured data in the processes of model es-
tablishment and estimation. Instead, measured data were only used in the processes of
model evaluation and comparison. The data used in this experiment were a subset of the
2016 National Forest Inventory (NFI) sample plot data in Sweden. Each point in the sample
plot data represents the forest situation of a circular plot with a radius of 7 m centered on
this point. The dataset includes forest volume and records multiple attributes such as tree
height, number of tree species, dry wood, and wet weight. We chose the southern part
of Sweden, where the sampling points are densely distributed. In this research area, the
central ecological communities are temperate broad-leaved forests and mixed forests, and
forest species are relatively rich.

2.2.2. Sentinel Data

Sentinel data are the most widely used data in current research. The Sentinel-1 satellite
was launched in 2014, and the strip scan mode includes stripmap (SM), interferometric
wide swath (IW), extra-wide swath (EW), and wave (WV) modes. Among them, the
WV scanning mode can only obtain single-polarization HH or VV model data, and other
models can obtain single-polarization and dual-polarization data. A whole year of data
were available for the study area in 2016. Therefore, to explore the impact of changes in the
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coherence and backscattering caused by changes in time and seasons on the estimation of
the annual forest stock volume, we used the Sentinel_1A single-look complex (SLC) data
from the IW scanning mode and VV polarization mode in 2016. There were 2 pieces of data
per month, and the time baseline was 12 days. With a restricted baseline of 12 days, 18 pairs
of coherence maps and 24 intensity maps of backscatter information were obtained.

The Sentinel-2 satellite was launched in 2015. The satellite is equipped with a
multispectral imager, which can obtain 13 spectral bands, and the resolution of each
band is different. Sentinel-2 multispectral data can be used to observe natural disas-
ters such as volcanic eruptions, floods, and landslides. We used the SNAP and Sen2Cor
(https://step.esa.int/main/, accessed on 1 March 2022) plugins provided by the ESA to
perform radiometric calibration and atmospheric correction on the Sentinel-2L1C data
and convert them into Sentinel-2L2A data for the calculation of vegetation coverage meta-
data. The obtained vegetation coverage was used to mask the parameters of the GSV
inversion model.

2.2.3. Digital Elevation Model (DEM)

We used the 90 m resolution SRTM digital elevation model public data (https://www.
earthdata.nasa.gov/sensors/srtm, accessed on 1 March 2022), which cover 80% of the
world’s surface area. On the Swedish site, the data only cover the southern part of Sweden,
which is one of the reasons why this research area was selected.

2.2.4. Land Cover Data

To minimize the influence of other land cover types on the result, we referred to the
Copernicus Global Land Service: Land Cover 100 m: collection 3: epoch 2016: Globe
(https://lcviewer.vito.be/2016, accessed on 1 March 2022) [46]. This dataset contains land
surface classification data from 2015 to 2019. The research area data are shown in Figure 1c.
The land surface can be divided into 23 categories, and the resolution is 100 m. The land
cover data were used to mask the backscatter and coherence data in the experiment, and
we only counted the part where the coverage type was forest.

2.2.5. Meteorological Data

The meteorological data were obtained from the official website of the National Center
for Environmental Information, and the daily meteorological data in 2016 were obtained
from the global surface summary of day data at (https://www.ncei.noaa.gov/maps/
daily/, accessed on 1 May 2022). The data were obtained through 4 data collections per
day, including multiple attributes such as daily average temperature, maximum and low
temperature, precipitation, and dew point temperature. The global surface summary of the
daily data is a comprehensive surface dataset that records the daily weather in detail. In
this experiment, data extraction was performed according to the time and location of the
SAR data.

2.3. Methods

The basic model in this study was the water-cloud model (WCM), which has been
successfully applied in the inversion process of soil moisture, forest stock volume, and
biomass [47]. The class water-cloud model used for forest parameter inversion is a simple
backscattering parameter model, and the basic formula is as follows:

B f or = BgrTthr + Bveg(1− Tthr) (1)

where B f or is the total backscattering coefficient (dB); parameters Bgr and Bveg represent
the contribution of bare soil and vegetation to the backscattering (dB), respectively; and
Tthr is the transmittance of microwaves through the forest.

Tthr = 1− f (1− Ttree) (2)

https://step.esa.int/main/
https://www.earthdata.nasa.gov/sensors/srtm
https://www.earthdata.nasa.gov/sensors/srtm
https://lcviewer.vito.be/2016
https://www.ncei.noaa.gov/maps/daily/
https://www.ncei.noaa.gov/maps/daily/
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Ttree = e−αh (3)

Here, f is the area filling factor; α is the attenuation factor of the forest, which represents
the two-way attenuation per meter (dB/m); and Ttree represents the two-way transmission
rate of the forest. After verification [40,48], the transmission rate of the forest Tthr can be
expressed as

Tthr = e−βVol (4)

where Vol represents the forest stock volume (m3/ha), and β is the empirical coefficient
(dimensionless). Then, we have

e−βVol = 1− f (1− e−αh) (5)

f =
1− e−βVol

1− e−αh (6)

We assume that the two-way transmittance of the forest is negligible [40]:

Tthr = e−βVol ≈ 1− f (7)

The basis for this assumption is that the two-way attenuation of the forest in the
C band a few meters before the canopy height of the forest is negligible [43]; then, the
expression of the water-cloud model for forest stock volume inversion is

B f or = Bgre−βVol + Bveg(1− e−βVol) (8)

2.3.1. Interferometric Water-Cloud Model (IWCM)

The interferometric water-cloud model (IWCM) is mainly used for the inversion
of forest stock volume and biomass. Its basic idea is similar to that of the water-cloud
model. The coherence is divided into two parts that are contributed by vegetation and
ground, separately, which are weighted by their respective backscattering. The vegetation
contribution also considers the influence of the structure on volume decorrelation [25].

C f or = Cgr
Bgr

B f or
Tthr + Cveg

Bveg

B f or
(1− Tthr)Cvol (9)

Cvol =
α

(α− jω)

(e−jωh − e−αh)

(1− e−αh)
(10)

Here, C f or is the total coherence, Cgr is the time-dependent coherence of the ground, Cveg is
the time-dependent coherence of trees, and the coherence is weighted by the backscattering,
volume decorrelation, and geometric effects that the model considers. The first half of
Equation (9) is the ground coherence contribution, and the second half represents the
vegetation contribution, where ω is the geometric coefficient of the SAR image pair.

ω =
4πB⊥

λR sin θ
(11)

Here, B⊥ represents the normal component of the baseline, λ is wavelength, R is the slant
range, and θ is the local incidence angle.

2.3.2. Siberia Model

The Siberia model has been validated in Siberia. Based on the IWCM, the model
assumes that the spatial baseline is zero, and the backscattering intensity of each part is
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equal without considering the geometric effect of the interference and the decorrelation
effect of the volume. The following simplified model was obtained [42,49]:

C f or = C0e−Vν ·Vol + C∞(1− e−Vν ·Vol) (12)

where exp(−Vν ·Vol) is the exponential change relationship between the stock volume and
coherence, Vν is the rate of coherence decrease with the increase in forest stock volume, C0
is the coherence when the forest stock volume is zero, and C∞ is the situation when the
forest is extremely dense and saturated.

2.3.3. BIOMASAR Model

The basis of the BIOMASAR model is Equation (1). Considering that the model
parameters of forest accumulation on a single date are easily affected by meteorological
factors, the uncertainty of a single result is offset through the cumulative average of multi-
time-series data [37].

Vi = −
1
β

ln

(
Bi

veg − Bi
f or

Bi
veg − Bi

gr

)
(13)

Here, i is the serial number of a certain time image in the time series; Vi is the single-date
accumulation result corresponding to the time; Bi

f or corresponds to the total backscatter

coefficient; and Bi
veg and Bi

gr are the corresponding backscatter contributions of the vegeta-
tion and the ground, respectively. Parameter β is the empirical coefficient. The weighted
average of the backscattering coefficients on the single-date stock volume can be used to
obtain the final forest stock volume [20,25].

VMT =

N
∑

i=1

Bi
Bmax

Vi

N
∑

i=1

Bi
Bmax

(14)

Here, VMT is the multi-time-series GSV estimation result, Bi = (Bi
veg − Bi

gr)i
; and Bmax is

the maximum value of Bi.

2.4. Parameter Determination

Figure 2 demonstrates the general experimental procedure used in this study. The
known parameters in the three models were the total backscatter and coherence. Parameters
Bgr and Cgr were determined using the vegetation coverage (VCF) data as a mask, and the
VCF was calculated from Sentinel-2L2A data using SNAP software from European Space
Agency (ESA). The threshold was set according to the distribution of the VCF, and the
pixels were marked as “ground” and “dense vegetation” according to the threshold. Using
a sliding window, the mean value of the pixels marked as “ground” in the window was
considered to be the ground contribution of the central pixel, and the mean value of the
pixels marked as “dense vegetation” was the contribution of dense vegetation [37,38]. Due
to the different regional data sources and methods for calculating the VCF, the threshold of
the VCF was slightly adjusted according to the actual situation, but the processes were the
same. Parameters Bveg and Cveg were determined by selecting BVCF and CVCF in the dense
vegetation area, respectively, through training in a similar way to Bgr and Cgr, respectively.
BVCF and CVCF were introduced as parameters into the WCM and the IWCM formulas,
and the values of Bveg and Cveg were calculated. For the calculation method, we referred
to [42,50,51]. The geometric parameters of SAR in the model were extracted during the
interference; the β empirical parameter refers to the existing research on BIOMASAR and
IWCM, which reported a value of 0.006 ha/m3 [37]. Parameter Vν is the decreasing value
of coherence with the growth in forest stock volume, and the value in this study was
0.015 according to the references. Parameter α is the attenuation factor of the forest, and its
value is 2 dB/m according to [50,51].



Remote Sens. 2023, 15, 2848 8 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

determined by selecting VCFB  and VCFC  in the dense vegetation area, respectively, 
through training in a similar way to grB  and grC , respectively. VCFB  and VCFC  were in-
troduced as parameters into the WCM and the IWCM formulas, and the values of vegB  
and vegC were calculated. For the calculation method, we referred to [42,50,51]. The geo-
metric parameters of SAR in the model were extracted during the interference; the β  
empirical parameter refers to the existing research on BIOMASAR and IWCM, which re-
ported a value of 0.006 ha/m3 [37]. Parameter Vν  is the decreasing value of coherence 
with the growth in forest stock volume, and the value in this study was 0.015 according 
to the references. Parameter α  is the attenuation factor of the forest, and its value is 2 
dB/m according to [50,51]. 

BIOMASAR IWCM Siberia

Method

Auxiliary Data

Insitu data

Meteorological 
data

SAR
(SENTINEL_1)

VCF

Apply Orbit File；Interference；Calibrate；
Multilooking；Speckle filtering；Terrain 

Correction.etc

Sentinel_2L1C

SNAP(Sen2Cor)

Sentinel_2L2A

LandCover

Data processing

Backscattering 
Coefficient Coherence

Retrieval Result

Auxiliary Data
Main data

DEM

Result_MT

Result_1...N

BIOMASAR

Result_MT

Result_1...N

IWCM

Result_MT

Result_1...N

Siberia

 
Figure 2. General experimental procedure. The yellow part is the data, the blue part is the SAR 
processing and model processing, and the pink part is the result of each step. 

2.5. Evaluation Method 
The basic aim of this experimental model comparison was to perform baseline esti-

mation, interference, filtering, and geocoding on the Sentinel-1 SLC data to obtain the co-
herence and backscatter. Geocoded backscatter and coherence information were fed into 
the model to obtain estimates of the forest stock for single image pairs. The weighted av-
erage was then used to obtain the inversion results of multi-time-series forest stock vol-
ume. In this experiment, the mean absolute error (MAE), root mean square error (RMSE), 
and relative root mean square error (RRMSE) were used to evaluate the accuracy of the 
results. The parameter trueV  represents the mean of the true value, m  is the total number 

Figure 2. General experimental procedure. The yellow part is the data, the blue part is the SAR
processing and model processing, and the pink part is the result of each step.

2.5. Evaluation Method

The basic aim of this experimental model comparison was to perform baseline es-
timation, interference, filtering, and geocoding on the Sentinel-1 SLC data to obtain the
coherence and backscatter. Geocoded backscatter and coherence information were fed
into the model to obtain estimates of the forest stock for single image pairs. The weighted
average was then used to obtain the inversion results of multi-time-series forest stock vol-
ume. In this experiment, the mean absolute error (MAE), root mean square error (RMSE),
and relative root mean square error (RRMSE) were used to evaluate the accuracy of the
results. The parameter Vtrue represents the mean of the true value, m is the total number
of verification points, and Vol represents the model valuation. The smaller the evaluation
value, the better the performance of the model.

MAE =
1
m

m

∑
l=1
|Vol −Vtrue| (15)

RMSE =

√
1
m

m

∑
l=1

(Vol −Vtrue)
2 (16)
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RRMSE =

√
1
m

m
∑

l=1
(Vol −Vtrue)

2

Vtrue
(17)

The evaluation of the model was carried out from three aspects. The first one was
the evaluation of the overall accuracy and efficiency. The quantitative indicators of model
accuracy for a single time serious and multiple time series were calculated, as well as the
correlation between the results and the measured values. Then, the performance of the
model at multiple time series and a single time was evaluated, and the model with the best
overall performance was selected. Second, the model performance was evaluated under
different vegetation cover types and combined with the NFI tree type attribute and GSV
data. Because each NFI point represents the vegetation within the radius, the vegetation
types that accounted for greater than 50 percent within the range were considered to be
tree types at this point. The evaluation factors were separately calculated for the classified
results to obtain the model performance under different vegetation types. Third, the
evaluation factors were combined with weather information. The weather station data and
model results on the same date were extracted. Then, different weather conditions were
distinguished to calculate the evaluation value, and the model performance under different
weather conditions was analyzed.

3. Results

Figure 3 shows the result map of the GSV obtained after remote sensing data pre-
processing and model inversion. The classification style of the result was consistent
with that of [42,51]. All three models carried out the inversion of the forest stock vol-
ume. Among them, Figure 3a is the 2010 global forest stock volume dataset (https:
//globbiomass.org/products/global-mapping/, accessed on 1 May 2022) [9]; Figure 3b
is the multi-time-series result of IWCM; Figure 3c is the multi-time-series result of the
Siberia model; and Figure 3d is the BIMOASAR estimation result. It can be seen from
the figure that the BIOMASAR model underestimated the GSV around water bodies. The
Siberia result in Figure 3c and the IWCM model result in Figure 3d are more similar to
the distribution of the dataset in 2010. In order to more comprehensively compare and
evaluate the model results, the result evaluation was divided into three aspects from the
whole to refinement.

3.1. Result Accuracy Evaluation

The precision quantification factors were extracted from the period-by-period data
of the three models. The forest stock volume was considered to be stable without human
intervention in a year, so the measured value in 2016 was taken as the real value in a
year. Each model to be evaluated had 18 single-date results, 1 multi-time series result, and
159 points. First, the correlation analysis was performed and statistics were calculated
between the estimated value and the actual measured value of a single period of this
research site. Figure 4 is a heat map of the correlation distribution, where he lighter
the color, the higher the correlation. From Figure 4, it can be concluded that the overall
correlation of the inversion results of the IWCM model in this study area was slightly
higher than that of the other two models.

For the three models, we calculated the MAE, RMSE, and RRMSE point by point by
date, as shown in Figure 5. From the perspective of the RMSE and RRMSE, the Siberia
model performed better, but there were outliers in the model.

https://globbiomass.org/products/global-mapping/
https://globbiomass.org/products/global-mapping/
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Figure 4. The correlation heat map of the results. Model name_MT is the result of multiple time
series. Vol_total represents the measured value. (a) The correlation of IWCM; (b) the correlation of
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The correlation between multiple time series and the measured GSV data from the
NFI were calculated. Figure 6 represents the 2010 dataset. It can be seen that the correlation
between the IWCM and GSV data from the NFI was higher than that of the other two
models, and the correlation of BIOMASAR was lower than that of the other results. The
lower accuracy of BIOMASAR is directly due to the model using existing data parameters.
As mentioned in [33,34], the parameters can be directly used.

The multi-time-series results synthesized by weighting and superimposing the single-
date results of the model are shown in Table 1. The average absolute error, root mean
square error, and relative root mean square error of the IWCM model were better, followed
by those of BIOMASAR and Siberia.
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Table 1. Evaluation statistical table of multi-time-series results.

Metric IWCM Siberia BIOMASAR

MAE
(m3/ha) 119.47 171.14 138.99

RMSE
(m3/ha) 186.88 300.52 246.32

RRMSE 1.26 2.03 1.66

3.2. The Effect of Precipitation

To explore the factors that affect the models’ estimation results, we introduced the
weather station data at the time of data acquisition. Meteorological records were collected
corresponding to the time of the experimental SAR data. A total of 18 days, of which
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5 days had precipitation, were evaluated. In this experiment, a precision evaluation of the
precipitation date and nonprecipitation date results of the three models was carried out. As
shown in Figure 7, from the statistical graphs of the three precision evaluation factors, we
can see that the GSV estimated by the Siberia model and IWCM was relatively stable and
hardly affected by precipitation. Precipitation increased the error in the BIOMASAR results,
indicating that the model was more sensitive to precipitation, and different precipitation
conditions had a certain impact on the model results.
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3.3. The Effect of Vegetation Type

From the measurement data, the volume points used for precision evaluation were
artificially divided into coniferous and deciduous forests. The points of the forest resource
survey data represent regional results, and each point represents a forest region with an
area of about 154 square meters. Therefore, the tree species that contained more than 50%
of the tree species were artificially defined as this point as the tree species represented
by bits. According to manual statistics, among the 158 measured points, 111 measured
points were coniferous forests, and the rest were deciduous forests. The point values of
the estimation results were extracted for the stock volumes of the two types of tree species,
and the separate accuracy evaluation factors were calculated. The final result is shown in
Figure 8. It can be seen that the IWCM model was more sensitive to the type of tree species,
and the model’s performance for coniferous forest was better than that for deciduous forest.
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Figure 8. The effect of tree species on results. (a) MAE distribution, (b) RMSE distribution, (c) RRMSE
distribution. The IWCM model was the most sensitive to tree species, and the accuracy for deciduous
forest was higher than that for coniferous forest.

3.4. The Effect of Season

The 18-period data were divided according to the seasons in the Swedish regions
by month. As the research area is located in southern Sweden, the division of months
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into the four seasons was roughly as follows: spring, March–May, containing four data;
summer, June–August, containing five data; autumn, September–November, containing
five data; winter, December–February, containing four data. Although the extraction time
was 18 periods in total, the 159 points from each period of data were involved in the point
accuracy evaluation. It can be seen from Figure 9 that the errors of the BIOMASAR model
in the spring and winter were relatively high. This was because there were rainfall dates in
the statistical results in these two seasons, so the model results considerably fluctuated. The
error distribution of the Siberia model in each season was relatively low, but the model’s
performance had certain fluctuations with the change of seasons. The IWCM model was
less sensitive to the seasons, and the fluctuation was the least affected by the seasons.
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distribution. There was precipitation on the spring date of the BIOMASAR model, and the distribution
span was large. The IWCM model was stable. The result of the Siberia model was the best in winter.

4. Discussion

In this experiment, we used three existing models for comparison. Although the three
models have been proven to successfully calculate the GSV, they have not been compared
at the same time and in the same study area. In the experiment, the relationship between
the tree height and GSV was fitted for the research area. Other parameters were obtained
from various references, and the parameters mentioned in these references were directly
used. The purpose of this study was to compare the models, keeping the conditions the
same as much as possible. The reason for not using the relationship between tree height
and GSV in the references was to avoid the influence of small-area forest characteristics
on the results. The directly used parameters were the physical training parameters of
the C-band microwave. These parameters have also been used in different studies. This
study used Sentinel-1 data, the same microwave band as used in other studies. However,
different factors, such as equipment parameters, capture time, and research area, led to
different backscattering intensity signals and coherence. This is why the results of this
study appear to be different from those of previous studies. These differences have little
effect on comparing the models used under the same conditions.

In this study, three computational GSV methods based on the idea of the water-cloud
model were used. All three models can estimate the GSV in a study area, but their inversion
effects are slightly different. The BIOMASAR model is the result of the weighted average of
the GSV estimated via multiple water-cloud models. This method uses the intensity signal
of SAR to establish the relationship between backscatter and forest vegetation parameters
to estimate the GSV. Because the model only uses the backscatter information of SAR, the
performance of the model using Sentinel 1 single-date data was slightly lower than that of
the other two models in this study area. BIOMASAR was more sensitive to climate changes,
especially precipitation. Precipitation causes changes in the dielectric constant, which leads
to changes in the backscattering intensity information received by the receiver. To solve
this problem, Santoro et al. weighted the accumulation of the results of the single-date
model as the final result of the model [37]. It can be seen from Figure 10 that the results
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with large errors were neutralized, which reduced the error and uncertainty of the model
and improved the stability of the model results as a whole.
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Figure 10. The total distribution of the evaluation of single-date and multi-time-series results. (a) MAE
distribution, (b) RMSE distribution, (c) RRMSE distribution. M_T represents multi-time-series data.
The effects of the IWCM and BIOMASAR were slightly improved in the multi-time-series results,
while the effect of the Siberia model was not improved.

The IWCM model simulates the relationship between the vegetation and land backscat-
ter in the WCM to establish equations. It calculates the GSV through the coherence equation
of SAR. The equation also preserves the weights for the backscatter calculations. The coher-
ence can reflect the structural information of the image collection area, so it is reasonable
and feasible to introduce it into the observation of forest volume [38,40,50]. The coherence
and backscattering in the IWCM can reflect the structure information and scattering inten-
sity information of the observed target surface. From the evaluation of the results above, it
was found that the overall performance of the model was more stable than that of the other
two models for this study area and these experimental data. Precipitation and seasons
had little influence on the model, and the model was sensitive to tree species. Due to the
limited wavelength of the C band and as the state of deciduous forests greatly changes at
different times, double changes in intensity and structural information occurred, so we
observed fluctuations in accuracy. The calculation method of multi-time-series IWCM
results is similar to the method of superposition of BIOMASAR for multi-time-series results.
The single-date results of the IWCM model were superimposed on the time series, and the
accuracy was slightly improved, but the effect was not significantly improved.

The equations for the Siberia model use only the coherence of the study area to estimate
the GSV. Siberia had the smallest single-date RMSE and RRMSE, but the MAE was higher
than that of the IWCM model. Through the model evaluation from different aspects, it
was found that the model was not sensitive to precipitation. In terms of tree type, the
accuracy for deciduous forests was lower than that for coniferous forests. In this study,
the multi-time-series results were compared with the single-date results. The accuracy of
the multi-time-series results of the Siberia model in the study area was higher than the
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accuracy of the single-date results. For forests without obvious structural changes, the
model can be used to estimate the GSV using single-date data.

The three models use different combinations of backscatter and coherence. In order
to explore the relationship between coherence, backscattering, and GSV, we calculated
and drew a heat map. From Figure 11, it can be seen that the coherence was negatively
correlated with GSV, while the backscatter and GSV were weakly positively correlated. The
concomitant change in the coherence and GSV in the research area was more evident than
that in the backscattering. The Siberian model in the study did not take into account the
volume decorrelation effect of SAR. In the future, this model could be combined with SAR
geometry information to discover the volume decorrelation effects.
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5. Conclusions

In this study, three active microwave remote sensing models of forest GSV were
investigated. These three models represent ideas of only using backscatter intensity, only
using the coherence coefficient, and combining the backscatter intensity and coherence
coefficient. From the results, the following can be concluded:

(1) For this study area with many unknown conditions, among the three models, the
IWCM model using both backscatter and coherence was more stable and more suitable.
However, the model uses two parameters, backscatter and coherence. The acquisition
of these two parameters also increases the time cost. Compared with the other two
models, this model takes the longest time and is most sensitive to tree species type.

(2) The Siberia model only uses coherence to calculate the GSV. In this study, the single-
date result of this model had the best accuracy. However, a stable effect could not
be obtained in multi-time-series data. The stability of the model estimation results
ranked second among the three models. The data time baseline used in the experiment
was 12 days. Reducing the space and time baseline may lead to better results.

(3) The establishment of BIOMASAR model equations only uses SAR backscatter coeffi-
cients to estimate the GSV. The principle of the model is simple, easy to understand,
and easy to reproduce. Because no SAR coherent computation is required, the time
consumption is the least among the three models. It is more suitable for national,
world-scale, or large-scale GSV collection. However, due to the introduction of fewer
parameters, the stability of the model is poor. This study area is small, and the accu-
racy of this method ranked third. The amount of precipitation affected the accuracy
of the model.

In summary, we realized the estimation of the GSV and compared three models that do
not rely on measured data. We recommend using the BIOMASAR method for a wide range
of research areas, as the model can more quickly obtain results. When the research area is
small, the data are rich, and it is necessary to distinguish tree species, we recommend using
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the IWCM method. The Siberia model can be used in research areas where the amount of
data is small and the time and space baselines are close.

Although the three models do not rely on measured data, better results may be
obtained if the parameters are obtained in the study area. Data with a longer time series
and a larger research scope can be used to dynamically analyze changes in forest stock
volume and will be more useful. The correlation between coherence and GSV is stronger,
and the coupling of parametric models and nonparametric models will achieve better
results for different situations, which is also one of the future development directions.
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