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Abstract: Hyperspectral images (HSIs), captured by different Earth observation airborne and space-
borne systems, provide rich spectral information in hundreds of bands, enabling far better discrimi-
nation between ground materials that are often indistinguishable in visible and multi-spectral images.
Clustering of HSIs, which aims to unveil class patterns in an unsupervised way, is highly important in
the interpretation of HSI, especially when labelled data are not available. A number of HSI clustering
methods have been proposed. Among them, model-based optimization algorithms, which learn
the cluster structure of data by solving convex/non-convex optimization problems, have achieved
the current state-of-the-art performance. Recent works extend the model-based algorithms to deep
versions with deep neural networks, obtaining huge breakthroughs in clustering performance. How-
ever, a systematic survey on the topic is absent. This article provides a comprehensive overview
of clustering methods of HSI and tracked the latest techniques and breakthroughs in the domain,
including the traditional model-based optimization algorithms and the emerging deep learning
based clustering methods. With a new taxonomy, we elaborated on the main ideas, technical details,
advantages, and disadvantages of different types of clustering methods of HSIs. We provided a
systematic performance comparison between different clustering methods by conducting extensive
experiments on real HSIs. Unsolved problems and future research trends in the domain are pointed
out. Moreover, we provided a toolbox that contains implementations of representative clustering
algorithms to help researchers to develop their own models.

Keywords: hyperspectral images; remote sensing; model-based optimization; clustering; deep learning

1. Introduction

A hyperspectral remote sensing image can be viewed as a stack of gray-scale images
with each capturing the spectral reflectance characteristics of land cover in a narrow range
of wavelengths. The rich spectral information makes it possible to recognize subtle dif-
ferences and changes in the compositions of materials that cannot be noticed in optical
photographs [1]. This is of interest in various domains ranging from space exploration
and Earth observation to ocean monitoring and precision agriculture. Figure 1 shows an
example of a hyperspectral image (HSI). Clustering of HSI refers to categorizing pixels into
different clusters in an unsupervised way, where pixels of the same cluster are more similar
than those from different clusters. It unveils the important structure of HSIs with the fact
that pixels from the same cluster often share a common characteristic. The obtained struc-
ture information can be used to compress the relevant image content by merging similar
pixels, reducing significantly the data volume of HSI to be interpreted. This alleviates the
huge burden on big data storage, transmission and real-time processing, which is highly
important in current on-trend nanosatellites with very limited power budgets [2]. It should
be noted that the clustering of HSI can also refer to the clustering of spectral bands in
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the task of band selection, where the representative band in each cluster is selected [3–5].
In this article, we mainly focused on the clustering of pixels of HSI.

The essential benefit of the clustering of HSI is in its unsupervised nature, which
allows for the mapping of land covers without using labelled training data as opposed
to supervised learning. Clustering algorithms are also widely applied in other domains,
including image denoising [6], super-resolution [7], unmixing [8], target detection [9],
feature extraction [10], and dimensionality reduction [11]. These applications demonstrate
the importance of clustering algorithms of HSIs. Figure 2 shows the number of publications
by searching all the database of the Web-of-Science with the topics “hyperspectral”, “remote
sensing” and “classification” in Figure 2a and “hyperspectral”, “remote sensing”, and
“clustering” in Figure 2b. It is observed that an increasing number of articles in both fields
were published especially in the last seven years. Compared with supervised classification
of HSI, the research on clustering is lagging far behind. One major reason is that supervised
classification models often perform better than unsupervised classification approaches.
However, the lack of sufficient labelled training data in practice is still a major obstacle for
the real deployment of supervised approaches. Some efforts have been made to alleviate
the problem, such as transfer learning [12,13] and few-shot learning [14,15]. Nevertheless,
the issue requiring labelled data to train classifiers remains unsolved. Recent breakthroughs
in unsupervised classification have demonstrated that clustering methods can outperform
state-of-the-art supervised models in terms of accuracy [16–18], showing a decreasing gap
between supervised and unsupervised models. Given the importance of the clustering
algorithms in the interpretation of HSIs, the rapid evolution of clustering techniques and
the recently obtained superior performance over supervised models, it is important to
summarize and highlight the recent progress in the field. This enables researchers to more
easily follow the evolutions of the related research and will attract more attention from the
community to boost the development of these techniques.

Building Water

Pear Tree

Grass

Wavelength Wavelength

Wavelength

Wavelength

Figure 1. An example of HSI for Matiwan Village in Xiongan of Hebei Province of China, consisting
of 250 bands with a spatial size of 3750 × 1580, and spectral signatures of four representative land
covers, i.e., “building”, “water”, “pear tree” and “grass”.
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Figure 2. The number of publications in Web of Science by searching with topics (a) “hyperspectral”,
“remote sensing”, and “classification”; (b) “hyperspectral”, “remote sensing”, and “clustering”.

Traditional clustering methods of HSI include centroid-based [19–21], density-
based [22–24], probability-based [25–27], and biologically driven methods [28,29]. Model-
based optimization methods [30–34] that employ matrix representation techniques, such
as sparse representation (SR) [35], low-rank representation (LRR) [30], and non-negative
matrix factorization (NMF) [36], have achieved the current state-of-the-art performance,
attracting significant attentions in the fields. Through solving related convex/non-convex
optimization problems, useful features/embeddings or important properties (e.g., connec-
tivities) of data for clustering can be obtained. Recent works have extended model-based
methods to deep versions and adopted neural networks to extract deep features for cluster-
ing, which is more effective in dealing with nonlinear data structure of HSIs. Two important
questions are: (1) do deep clustering models always outperform the model-based clustering
methods? and (2) which factors should be taken into account to develop an effective
clustering model of HSI? With a comprehensive overview of HSI clustering methods and
extensive experiments, we will answer the two questions in this article. In the literature,
there are some excellent overview papers on clustering methods [18,37–40]. However,
most of them focus on object-level clustering tasks where gray-scale and color images are
involved, and the surveys on the clustering of HSI are very scarce. This survey fills in this
gap by providing a comprehensive overview of the state-of-the-art clustering methods of
HSIs. Particularly, we introduced the main ideas, technical details, advantages, and disad-
vantages of different types of clustering methods. A new taxonomy of clustering methods
was proposed, which helps readers to better follow the rapidly evolving techniques in the
domain. We conducted extensive experiments on real HSIs to support a comprehensive
comparative performance analysis of different clustering methods. Moreover, we provided
an open source library that contains the codes of different methods to help researchers
to develop their own models, especially for beginners who are willing to enter the field.
Lastly, we discussed the limitations of the current status in the field and indicate promising
research directions.

2. The Challenges in the Clustering of HSI

The clustering of hyperspectral images is challenging due to the following reasons:

1. Clustering of high dimensional data, such as HSI, is difficult in general, due to the
so-called “curse of dimensionality” problem [41]. The redundant bands of HSI make
the inherent meaningful clusters sparse in a higher dimension. Using conventional
distances such as Euclidean distance to measure the similarity of data points is no
longer effective due to the participation of irrelevant dimensions.

2. Clustering of HSI at pixel-level needs efficient algorithms to process large volumes
of hyperspectral data. However, advanced models are often required to fit with the
complex cluster structure of data to yield accurate clustering results, which results
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in computationally expensive algorithms. How to make a good balance between
efficiency and accuracy is difficult.

3. Influenced by sensor noise, varying imaging conditions and spectral mixing, hyper-
spectral data often show large within-class spectral variabilities, leading to a mixture
of different clusters to a certain degree. The data distribution within-class can be
arbitrary, which makes the centroid-based approaches infeasible.

4. Estimation of the number of clusters in HSI is not trivial. Similar clusters can be
merged as a major cluster or on the contrary a major cluster can be divided into
more sub-clusters. Current clustering approaches mostly assume that the number of
clusters is known.

Traditional clustering methods often yield an unsatisfactory performance in the clus-
tering of HSI. For instance, k-means is known for being sensitive to initialization and
noise, and only works well on “ball”-like distributed data, which is often not the case for
high-dimensional HSI [42]. Density-based clustering algorithms assume that a cluster is a
contiguous region of high point density that is separated from other clusters by contiguous
regions of low point density. However, due to the effect of noise and spectral variabilities,
the assumption might not be true in practice. The performance of probabilistic clustering
can be also degraded by the violation of its specific probability distributions for clusters.
An example with real data is shown in Figure 3, which demonstrates that the distribution
of data points within-class is not spherical and the data points across different classes
are highly mixed. Centroid-based clustering methods fail to uncover the correct cluster
structure of the data.

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Corn-notill

Grass-trees

Soybean-notill

Soybean-mintill

Corn-notill

Grass-trees

Soybean-notill

Soybean-mintill

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Corn-notill

Grass-trees

Soybean-notill

Soybean-mintill

-20 -10 0 10 20
-50

-40

-30

-20

-10

0

10

20

30

40

Corn-notill

Grass-trees

Soybean-notill

Soybean-mintill

Corn-notill

Grass-trees

Soybean-notill

Soybean-mintill

-20 -10 0 10 20
-50

-40

-30

-20

-10

0

10

20

30

40

Corn-notill

Grass-trees

Soybean-notill

Soybean-mintill

Spectral Bands

In
te

n
si

ty

(a) (b) (c)

Figure 3. (a) The false color image of Indian Pines, (b) randomly selected spectral signatures of four
classes and (c) visualization of spectral data of four classes with dimensionality reduction technique
t-SNE. The dimensionality of data is reduced to two. It is observed that the spectral signatures
within-class have high variabilities in (b) and the distribution of data within-class is nonspherical
according to (c), which degrades the performance of traditional centroid-based clustering methods.

Compared with traditional clustering algorithms, model-based optimization methods
and deep learning based methods perform clustering in a learned feature domain where
the extracted features can be more discriminative than the raw data, resulting in improved
clustering accuracy. Table 1 summarizes the published works of model-based optimiza-
tion methods and deep learning-based methods for HSI clustering. Figure 4 shows the
corresponding statistics. It is observed that most works adopt the model-based cluster-
ing techniques and the deep clustering models only account 31%. As shown in Table 1,
we classify model-based optimization methods into three categories: self-representation
based, dictionary learning based and NMF based methods, and classify deep clustering
models into four classes: self-representation based deep clustering, autoencoder based,
graph convolution based and contrastive learning based approaches, each of which will be
introduced in the subsequent sections.
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Figure 4. The statistics of model-based and deep clustering methods for HSIs.

Table 1. A summary of model-based and deep clustering methods.

Category Subcategory Sub-Subcategory Algorithms Remarks

Model
based

clustering

Self-repre
sentation

based

Spectral
based

SSC [31], LRR [43], LRSSC [44],
S0/L0-LRSSC [45]

Adopt self-representation models to learn the
similarity matrix of data points for spectral

clustering. Only spectral information of HSI is
exploited.

Spatial-spectral
based

JSSC [46], SpatSC [47],
L2-SSC [48], TV-CRC-LAD [32],

S4C [42], S-SSC [49],
LCR-FLDA [50],
SPHG-LRSC [51]

Extensions of spectral based methods by
incorporating spatial information of HSI.

Object based RMC-OOSSC [52], FHoSSC [53]
Clustering is performed in object level, which
is much faster compared with the pixel-based

algorithms.

Semi-supervised CPPSSC [54], JSSC-L [55],
NNLRR [56,57]

Supervised information is incorporated with a
few labelled data.

Multi-view SSMLC [58], FSP-SSC [59],
K-SSMLC [60], HMSC [61]

Rich information from different data sources
is exploited.

Kernel based
KLRSSC [62], KSSC-SMP [63],

KLRS-SC [64],
KSSC-SMP-TV [65],

EKGCSC [66]

Kernel versions of the traditional
self-representation models by using the kernel

trick.

Graph learning
based UDHLR [67], DAG-SC [68]

Adopt adaptively learned graph in graph
embedding within self-representation

framework.

Dictionary
learning

based

Landmark based
JSCC [69], LSSC-TV [70],

SC-SSC [71],
MOMSSC-L0-TV [72]

Computationally efficient clustering methods
due to the adopted landmark dictionaries.

Sketch based Sketch-TV [73,74], NL-SSLR [75]
More scalable to big data than

self-representation models due to the adopted
sketched dictionary.

Adaptive
dictionary based

SS-SDAR [76], BPG-JSDL [77],
IDLSC [78], SC-SC [79]

More scalable to big data than
self-representation models.

NMF
based

Spectral based H2NMF [80], PH2NMF [81],
RONMF [82], SNMF [83]

The clustering results can be directly obtained
from the factorization matrix of NMF.

Spatial-spectral
based

GONMF [84], ONMFTV [85],
RMMF [86], NMFAML [87],

GCSSC [88]

Extensions of spectral based NMF clustering
methods by incorporating spatial information

of HSI.

Deep
clustering

Self-representation based

DSC [89], LRDSC [90],
GR-RSCNet [91], HyperAE [92],

DMISC [93], DS3C-Net [34],
DDL-SSC [94], SDSC-AI [95],

NCSC [96]

Deep version of the traditional shallow
self-representation clustering models by

integrating deep generative neural networks
with SSC.

AE-based
RNN-AE [97], BCAE [98],

MDC [99], DCIDC [33],
DEC [100], 3D-CAE [101]

The extracted features by autoencoders make
AE-based clustering methods more effective

to cluster data.

Graph convolution based EGCSC [66], HGCSC [102],
FLGC [103]

Aggregate neighbourhood information of
data in the affinity learning by integrating

graph convolution.

Contrastive learning based
ContrastNet [104],

SauMoCo [105], DS3C [106],
SSCC [107]

Compared with AE-based models, the
extracted features by contrastive learning are

more discriminative.
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3. Notation

We denote scalars by lowercase letter, e.g., x, vectors by boldface lowercase letters,
e.g., x, matrices by boldface capital letters, e.g., X, and tensors by capital calligraphic letters,
e.g., X , in this paper. Let X ∈ RB×M×N be a 3D HSI cube with a spatial size of M× N and
a spectral dimension of B. We denote by X ∈ RB×MN the reshaped 2-D matrix from the 3D
HSI tensor X . The definitions of different norms used in this paper are shown in Table 2,
including the `0 norm, `1 norm, Frobenius norm, nuclear norm, etc. Tr(·) represents the
trace of a matrix and D = diag(c) is a diagonal matrix with Dii = ci.

Table 2. The definitions of the symbols used in this article.

Symbols Definition Symbols Definition

X (:, :, i) i-th slice of a 3D tensor X ‖X‖2
F ∑i ∑j X2

ij

xi The i-th column of X ‖X‖∗ The sum of the singular values of X
|c| The absolute value of c ‖X‖2,1 ∑j

√
∑i X2

ij

‖x‖0 The number of non-zeros of x ‖X‖1,2 ∑i

√
∑j X2

ij

‖x‖1 ∑i |xi | Tr(C) ∑i Cii

‖X‖1 ∑i ∑j |Xij| D = diag(c) Dii = ci and Dij = 0 (i 6= j)

4. Model-Based Optimization Methods for HSI Clustering
4.1. Self-Representation Based Clustering Methods

Sparse representation is a landmark technique in dealing with high-dimensional data
and already achieved great success in signal processing [108–110], pattern recognition [111],
image processing [112–114] and computer vision [115,116]. Basically, it represents input sig-
nal by a linear combination of a few atoms from a dictionary. Next to sparse representation,
low-rank representation is another successful technique in signal processing which aims
to learn a representation of data that has a low-rank property. Recently, both techniques
were adopted to learn the similarities between data points within a self-representation
framework where the input data were employed as the dictionary.

Self-representation based clustering methods are in fact built on the framework of
spectral clustering as shown in Figure 5, where the similarity matrix of a graph, i.e., W, is
particularly derived from the coefficients matrix C that is learned by solving sparse coding
or low-rank representation problems with the input data being a dictionary as follows:

arg min
C

F (C) + G(E) s.t. X = XC + E, (1)

where F (C) is a regularization term with respect to C, which can be a sparse constraint,
a low-rank constraint, a smoothing constraint or mixed constraints, G(E) is a function
with respect to the error matrix E. Clustering models (1) are often referred to as subspace
clustering in the literature with the assumption that data points belonging to the same
class are drawn from a linear subspace [37]. Compared with traditional spectral clustering
methods where the similarity matrix is often built with a fully connected graph, k nearest
neighbours (KNN) graph or ε-neighborhood graph, self-representation based methods
have the following advantages in general:

1. The number of nearest neighbours in the graph is adaptively determined for each
data point by sparsity or low-rank constraint in the representation models, which
avoids specifying a fixed number of neighbours for all the data points in KNN graph.

2. Selecting an effective similarity measurement between data points is difficult in gen-
eral, especially for high-dimensional data where “curse of dimensionality” problem
might be suffered. In the self-representation based models, the representation coef-
ficients matrix is utilized to build a similarity matrix, avoiding thereby the ad-hoc
selection of similarity measurements.
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Self-representation model

≈ × ...... ......
Spectral Clustering

Graph construction Clustering

Sparse, low-rank, spatial, or 
combined constraints

Figure 5. Self-representation based clustering methods often consist of three steps: self-representation
model design, graph construction and spectral clustering, where each column of X represents spectral
vector of a pixel.

We classify self-representation based clustering methods into seven sub-categories:
spectral-based, spatial-spectral, object-based, semi-supervised, multi-view, kernel-based and
graph learning based methods. Each of them will be introduced in the following subsection.

4.1.1. Spectral-Based Clustering Methods

Sparse subspace clustering (SSC) [31] and low-rank representation (LRR) [43] are two
pioneer works of self-representation based clustering methods. Following the framework
in Figure 5, SSC obtains a sparse coefficients matrix C = [c1, c2, . . . , cMN ] by solving:

arg min
ci

‖ci‖0 s.t. xi = Xci, cii = 0 (i = 1, 2, . . . , MN), (2)

where ‖ci‖0 represents the number of non-zeros of ci and cii is the i-th element of ci.
The constraint cii = 0 is used to avoid a trial solution of C = I. Minimizing the sparsity of
representation vector ci with `0-norm is NP-hard. However, model (2) can be approximately
solved by relaxing the `0-norm to the convex `1-norm:

arg min
ci

‖ci‖1 s.t. xi = Xci, cii = 0, (3)

where ‖ci‖1 = ∑j |cij|. The essential idea of SSC is that among infinitely many possibilities
to represent a data point xi in terms of other points, a sparse representation will select a few
points that belong to the same class as xi. Thus, the coefficients matrix C can be used to
build a similarity matrix for the input data points by W = (|C|+ |CT |)/2. By applying the
similarity matrix into standard spectral clustering algorithm, one can obtain the clustering
results of data.

LRR learns the coefficients matrix C with a low-rank constraint by solving the opti-
mization problem as follows:

arg min
C,E

‖C‖∗ + λ‖E‖2,1, s.t. X = XC + E, (4)

where ‖C‖∗ denotes the nuclear norm of C, i.e., the sum of the singular values of C, whcih is

used to regularize the rankness of a matrix, ‖E‖2,1 = ∑MN
j=1

√
∑B

i=1 E2
ij and λ is a parameter

to control the balance between different terms. The utilized low-rank constraint makes LRR
robust to noise and outliers [43]. Compared with SSC, LRR is more effective in the learning
of global structure of data.

Due to the sparse constraint, the solution of SSC sometimes is too sparse, resulting in
the over-segmentation of data points within-cluster. Moreover, the performance of LRR
will be degraded if the subspaces of data are not independent. To address these issues,
Wang et al. [44] combine sparse and low-rank constraints in a unified model, called LRSSC,
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yielding improved performance over SSC and LRR. The aforementioned models SSC, LRR
and LRSSC often utilize relaxed convex norms, i.e., `1 norm and nuclear norm, to measure
the sparsity and rankness of the coefficients matrix. However, the approximated solu-
tions are suboptimal to the original sparse or low-rank constrained optimization problems.
In [45], S0/L0-LRSSC was proposed by using non-convex L0 quasi-norm ‖C‖0 for the spar-
sity constraint and Schatten-0 quasi-norm ‖C‖S0 = ‖diag(Σ)‖0 (UΣVT = C is the singular
value decomposition of C) for the low-rank constraint, achieving improved performance
compared with LRSSC. Although these methods outperform traditional clustering meth-
ods such as k-means and fuzzy c-means in terms of accuracy, they only exploit spectral
information of HSI, and neglect spatial dependencies of data points, resulting in a sensitive
performance to the spectral variabilities and sparse noise.

4.1.2. Spatial-Spectral Clustering Methods

It has been demonstrated that using spatial information together with spectral infor-
mation can effectively improve the performance in various HSI processing tasks including
supervised classification [117], denoising [118–120], change detection [121] and super-
resolution [122]. Similarly, incorporating spatial information proves to be beneficial in
HSI clustering as well, resulting in a number of spatial-spectral extensions of SSC and
LRR in recent years [42,46,48–51,123–126]. Spatial-spectral clustering methods take into
account spatial information by introducing local constraints on the coefficients matrix or by
applying post-processing techniques such as filtering to promote piece-wise smoothness of
representation coefficients. As pixels in the local region belong to the same cluster with a
high probability, the improved smoothness of coefficients leads to reduced variance within-
cluster in the representation/feature domain, which facilitates building a better similarity
matrix and thus obtaining an improved accuracy in the standard spectral clustering.

A number of spatial regularizations have been integrated into SSC to promote piece-
wise smoothness of the coefficients matrix, which are summarized in Table 3. Denoting the
spatial regularization by Ψ(C), the related optimization problems can be represented by a
unified form:

arg min
C,E

Θ(C) + λ‖E‖l + βΨ(C), s.t. X = XC + E, diag(C) = 0, CT1 = 1, (5)

where Θ(C) is the sparse or low-rank constraint, diag(C) denotes a vector consisting of
elements Cii and CT1 = 1 constraint indicates an affine subspace of the data.

Table 3. Spatial regularizations in spatial-spectral clustering models.

Methods Spatial Regularization Ψ(C) Remarks

JSSC [46] ∑i ‖Ci‖1,2 Ci is the coefficients corresponding to the pixels within the i-th super-pixel
SpatSC [47] ‖CH‖1 H is a difference matrix for 1-D hyperspectral data
L2-SSC [48] ∑MN

i=1 ∑j∈Ni
‖ci − cj‖2

2 Ni is the index set of horizontal and vertical neighbours of the i-th pixel
TV-CRC-LAD [32] ∑MN

i=1 ∑j∈Ni
‖ci − cj‖1 Ni is the index set of horizontal and vertical neighbours of the i-th pixel

S4C [42] ‖C− C̄‖2
F C̄ is the smoothed matrix of C with a 2-D mean filter

S-SSC [49] ‖C− C̄‖2
F C̄ is the smoothed matrix of C with a 3D median filter

LCR-FLDA [50] Tr(CLCT) L is the Laplacian matrix of a normal graph
SPHG-LRSC [51] Tr(CLHCT) LH is the Laplacian matrix of a hypergraph

Huang et at. [46] take into account spatial dependencies of pixels in the local region by
introducing a joint sparsity constraint Ψ(C) = ∑i ‖Ci‖1,2, where Ci ∈ RMN×Ni is a coeffi-
cients matrix of Ni pixels in a local region defined by super-pixel segmentation of HSI and
‖X‖1,2 = ∑i

√
∑j X2

ij. The utilized `1,2 norm promotes pixels within a super-pixel to select
a common set of samples in the subspace representation, resulting in similar coefficients
of pixels within a super-pixel. The works in [42,49] develop spatial regularizations with
Ψ(C) = ‖C− C̄‖2

F, where C̄ is a smoothed matrix of C by using smoothing filters, such as
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2-D mean filter in [42] and 3D median filter in [49,126]. In [42], 2-D mean filter is applied
on each slice of a reshaped 3D coefficients cube C ∈ RM×N×MN , where C(:, :, i) ∈ RM×N

is obtained by reshaping each row of matrix C. Compared with the slice-by-slice filtering
strategy in [42], a 3D median filter with a 3D moving window is performed on the tensor
cube C in [49,126], which promotes column-wise and row-wise smoothness of C at the
same time.

Instead of approaching a reference matrix obtained by filtering matrix C, total varia-
tion (TV) based spatial regularizations are developed to promote similar representations
of neighbouring data points. For instance, Guo et al. [47,127] introduce a TV-based reg-
ularization, i.e., Ψ(C) = ‖CH‖1, for 1-D hyperspectral data acquired by spectrometer,
where H is a difference matrix. Zhai et al. [32,48] develop TV-based regularizations, i.e.,
Ψ(C) = ∑MN

i=1 ∑j∈Ni
‖ci − cj‖l

l (l = 1, 2) for the clustering of HSI, where Ni is the index
set of adjacent spatial neighbours of the i-th pixel in horizontal and vertical directions.
Minimizing TV-regularized optimization problems in fact facilitates the difference matrices
of C to be sparse, leading to local smoothness of coefficients in the spatial domain. It was
demonstrated in [32,47,48,127], by introducing TV-based spatial regularizations clustering
accuracy is significantly increased compared with SSC.

Another type of spatial regularization is built on manifold learning with graph Lapla-
cian. By considering each pixel as a graph node, a graph built with input data is utilized
to constrain the manifold structure of data in the representation domain to be identical to
that in the original data space. Liu et al. [50] introduced a K nearest neighbours (KNN)
graph-based spatial constraint Ψ(C) = ∑i ∑j Wknn

ij ‖ci − cj‖2
2, where Wknn

ij measures the
similarity between i-th pixel and j-th pixel:

Wknn
ij =

e−
‖xi−xj‖

2

σ2 xj ∈ Ni or xi ∈ Nj

0 otherwise.
(6)

By defining Laplacian matrix by L = D−Wknn, where D = diag(Wknn1), the KNN
graph-based regularization is reformulated as Ψ(C) = Tr(CLCT), where Tr(C) is the trace
of a real square matrix C, i.e., Tr(C) = ∑i Cii. The graph Laplacian constraint promotes
similar pixels to yield similar representation coefficients, facilitating a better similarity
matrix and thus leading to an improved clustering accuracy. The normal graph can only
model the pair-wise connection of nodes. In fact, one node can have connections with
multiple nodes and the connected nodes can be seen as a group. In order to exploit group
information in the subspace representation, Xu et al. [51] introduce a hypergraph-based
graph regularization, i.e., Ψ(C) = Tr(CLHCT), where LH is a normalized hypergraph
Laplacian matrix obtained by:

LH = I−D−
1
2

v HWHD−1
e HTD−

1
2

v (7)

with Dv a vertex-degree matrix, De a hyperedge-degree matrix, H an incidence matrix and
WH a weight matrix. We refer to [51] for details. The hypergraph-based regularization
constrains the pixels (often more than two) connected by one hyperedge to yield similar
representations, yielding thereby better performance than the models using a normal graph.
It should be noted that the construction of graphs in [50,51] is highly important, which
significantly affects their clustering accuracy.

In [123,128,129], post-processing techniques are developed for LRR or SSC. Different
from the aforementioned spatial regularizations, the post-processing step is independent
of the optimization problems with respect to C. In [128], a non-local majority voting
scheme was proposed, which identifies the cluster of a data point by majority voting with
its non-local neighbours, yielding an improved clustering accuracy. In [123], a cascaded
weighting and local bilateral filtering scheme is applied on the coefficients matrix of LRR,
leading to a better similarity matrix and thus achieving improved clustering results in
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spectral clustering. In [129], two different strategies, i.e., cosine-Euclidean (CE) and CE
dynamic weighting (CEDW), are proposed to build more accurate similarity matrices with
the coefficients matrix of SSC. Cosine measure on the sparse coefficients of two pixels is
used to exploit spectral information of HSI and Euclidean distance is adopted to incorporate
spatial information. Both spectral and spatial information are taken into account in CE
and CEDW. In [130], based on the sparse coefficients of SSC, an improved similarity
matrix is built by the multiplication of cosine-measured similarity matrix and Gaussian
kernel dynamic similarity matrix, incorporating both spatial and spectral information of
HSI. In general, post-processing-based clustering approaches have lower computational
complexities compared with the spatial regularizations constrained clustering models.
However, as the post-processing step is performed on the results of LRR or SSC, the
performances of [123,128–130] might be significantly degraded when LRR or SSC fails to
produce a fair result.

4.1.3. Object-Based Clustering Methods

The aforementioned clustering methods classify HSI pixel-by-pixel, which can be
easily affected by impulse noise or outliers. Moreover, due to the huge dictionary in
the self-representation models, the computational complexities of these approaches are
excessively high, which imposes a severe limitation on large-scale data. To alleviate
these problems, object-based clustering methods [52,53] were developed. Compared with
pixel-wise clustering approaches, object-based clustering methods require an additional
pre-processing step to compress the data size of HSI. Super-pixel segmentation techniques
are often applied to achieve this by segmenting HSIs into non-overlapping super-pixels and
considering each super-pixel as an “object”. As the pixels within a super-pixel often belong
to the same cluster, one can cluster an HSI on the super-pixel level, which significantly
reduces the number of data points.

In [52], mean-shift segmentation method [131] is adopted for super-pixel segmentation.
Let p be the number of super-pixels or “objects”. Then, reweighed mass centers of the
3D “objects”, denoted by X̄ = [x̄1, x̄2, . . . , x̄p], are iteratively learned, which serve as input
spatial-spectral features of different “objects”. Next, representation coefficients matrix of X̄
is obtained by solving:

arg min
C̄,E

‖We � C̄‖1 +
λ

2
‖E‖2

F s.t. X̄ = X̄C̄ + E, diag(C̄) = 0, C̄T1 = 1, (8)

where We is a weight matrix to improve the sparsity of C̄ and � represents element-wise
multiplication of two matrices. As the clustering is performed on a super-pixel level, the
clustering speed is much faster than the pixel-wise clustering methods.

Wang et al. [53] employ SLIC [132] for the super-pixel segmentation of HSIs. Com-
pared with [52], the correlation between super-pixels is specially taken into account in the
subspace representation by introducing a new spatial regularization. The objective function
with respect to coefficients matrix C̄ of super-pixels is modelled by

arg min
C̄

‖C̄‖1 +
λ1

2
‖S− SC̄‖2

F +
λ2

2
‖C̄− C̃‖2

F s.t. diag(C̄) = 0, C̄T1 = 1, (9)

where each column of S is the averaged spectral signature of a super-pixel and C̃ is
an estimated coefficients matrix by KNN neighbours, i.e., c̃i = 1

di
∑j∈Ωi

c̄j with Ωi the
neighborhood of the i-th super-pixel, di = ∑j∈Ωi

Tij and Tij = exp(−(‖si − sj‖2
2)/σ2).

By applying similarity matrix W = (|C̄| + |C̄T |)/2 into spectral clustering, clustering
results can be obtained. To alleviate the effect of inaccurate super-pixels segmentation, the
authors of [53] further refine the clustering results by a cumulative Markov random field
(MRF)-based post-processing method, resulting in improved clustering accuracy.
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4.1.4. Semi-Supervised Clustering Methods

Typically, clustering of HSI does not use any labelled data. However, sometimes a few
labelled data points might be accessible, which can provide helpful supervised information
to guide clustering algorithms to better learn the cluster structure of data. By incorporating
supervised information, semi-supervised clustering methods are developed in [54,55,57].
The idea of [54,55] focuses on the refinement of coefficients matrix in self-representation
models with supervised information for a more block-diagonal similarity matrix. In [54], a
class probability propagation of supervised information based on SSC (CPPSSC) algorithm
was proposed, which shares the same form of the objective function in (8). Compared with
the object-based clustering model in (8), CPPSSC is a pixel-level clustering approach where
the input matrix is X and We is obtained with supervised information. CPPSSC first derives
class probabilities of data points by using sparse representation classification [133] with a
dictionary constructed by all labelled data. Then the inner product of class probabilities
is utilized to measure the similarities of data points, resulting in a supervised weight
matrix We. By imposing the weight matrix on the coefficients matrix, the connectivities of
data points can be learned more accurately in sparse coding, facilitating the constructed
similarity matrix to be more block-diagonal. Benefiting from the supervised information,
the semi-supervised model CPPSSC outperforms unsupervised models such as SSC and
S4C. However, due to the lack of spatial regularization, its performance is sensitive to the
amount of labelled data.

In [55], a semi-supervised method, called joint SSC with label information (JSSC-L),
was proposed, which incorporates spatial information and label information in a unified
model. Specifically, a joint sparsity constraint is introduced to regularize pixels within a
super-pixel to select a common set of data points in the subspace representation. To refine
the coefficients matrix, the authors exploit available label information to zero the entries of
the sparse coefficient matrix, which correspond to the data points from different classes.
The objective function of JSSC-L is formulated as follows:

arg min
C

p

∑
i=1

wi‖Ci‖1,2 +
λ

2
‖X− XC‖2

F s.t. CT1 = 1, PG(C) = 0, (10)

where wi is the weight for the i-th super-pixel, p is the number of super-pixels, PG(C) is a
projection operator that extracts the entries in C whose indices are in G, and G is the union
of sets {i, i} and {i, j} where i-th and j-th pixels are labelled pixels from different classes.
In order to make full use of labelled information, label propagation within super-pixels
is carried out, which significantly increases the amount of labelled data. Compared with
the semi-supervised model CPPSSC and other unsupervised models, JSSC-L achieves a
significant improvement of accuracy with 1% labelled data.

Different from [54,55], the authors of [56,57] propagate the label information in a graph
that is obtained by solving a self-representation model. Let Xl ∈ RB×l be the labelled data,
Xu be the unlabelled data, X = [Xl , Xu], Yl ∈ Rc×l be the one-hot label matrix of Xl and
F = [Fl , Fu] be the predicted label matrix of X. The objective function of the semi-supervised
clustering model, non-negative LRR (NNLRR), in [56,57] is formulated as follows:

arg min
F,C,E

∑
i,j
‖fi−fj‖2

2Cij + λ∞‖Fl − Yl‖2
F + γ‖C‖∗ + β‖E‖2,1

s.t. X = XC + E, C ≥ 0, ‖C‖0 ≤ T, (11)

where λ∞ is a sufficiently large value such that ‖Fl − Yl‖2
F = 0 is approximately satisfied.

The first two terms propagate the labelled vectors Yl in a graph with the similarity matrix
C. The non-negative constraint, i.e., C ≥ 0, is utilized to interpret the learned low-rank and
sparse matrix C as a similarity matrix.

Compared with CPPSSC [54] and JSSC-L [55], NNLRR requires much more labelled
data to ensure an effective propagation of labels in the graph. Moreover, because of the
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lack of spatial constraint in NNLRR, the learned similarity matrix can be easily affected by
noise and outliers, leading to a less reliable propagation of labels.

4.1.5. Multi-View Clustering Methods

Multi-view clustering methods, as extensions of aforementioned single-view clustering
models, incorporate rich information from different data sources to cluster data points.
Here, we refer to different sources acquired by heterogeneous sensors, such as HSI, Light
Detection and Ranging (LiDAR) and synthetic-aperture radar (SAR), and features extracted
from single-source or multi-source data, such as morphological profiles (MPs) [134], Gabor
features [135] and local binary patterns [136], as different views of the same scene. Making
use of complementary information from different views can help in discriminating better
between data points from different classes. The essential problems of multi-view clustering
methods are: (1) how to precisely capture the cluster structure of each view; and (2) how to
fuse diverse cluster structures from different views and find a common cluster structure.
A flowchart of multi-view clustering methods is shown in Figure 6.

Hyperspectral images LiDAR data

High-level intrinsic 

feature learning

Highly discriminative 

feature extraction

High-level 

intrinsic feature 

Fusion and classification of multi-modal features

Ground truthClassification map

Accuracy 

assessment

Highly discriminative 

feature

...

Hyperspectral image

LiDAR data (or other views)

Fused coefficients 

matrix

...

Coefficients matrix in 

single view data

Slef-

representation 

model

Slef-

representation 

model

Fusion

Clustering map

Spectral 

clustering

Similarity matrix 

construction

Figure 6. The flowchart of multi-view clustering methods.

Let {Xt ∈ RBt×MN}T
t=1 denote the multi-view data, where Bt is the dimensionality of

the t-th data source and T is the number of data sources. Existing multi-view clustering
methods for HSI can be formulated in a unified form:

min
T

∑
t=1

(λt‖Xt − XtCt‖2
F + βtF (Ct)) + γT ({Ct}T

t=1) s.t. diag(Ct) = 0 (optional), (12)

where the first two terms are used to learn individual cluster structures within a self-
representation model,F (Ct) is a term consisting of different regularizations and T ({Ct}T

t=1)
is a fusion function with respect to {Ct}T

t=1. In [59,137], a multi-view clustering model
was proposed by incorporating polarization information and spectral information of HSIs.
Three schemes are designed to capture the individual cluster structure of data with different
constraints F (Ct) = ‖Ct‖1, F (Ct) = ‖Ct‖2

F or F (Ct) = ‖Ct‖∗ (t = 1, 2). To fuse cluster
structures of the two views, the authors of [59,137] impose a constraint C1 = C2, which
regularizes the cluster structures learned from different views to be the same.

In [58], a spatial-spectral-based multi-view low-rank SSC (SSMLC) was proposed.
It generates spectral views by the partition of spectral bands, spatial views with mor-
phological features and robust views with principle components analysis (PCA). SSMLC
learns cluster structures from different views by using sparse and low-rank constraints,
i.e., F (Ct) = ‖Ct‖1 + α‖Ct‖∗, and regularizes the coefficients matrices {Ct}T

t=1 of different
views to be similar with the constraint:

T ({Ct}T
t=1) = ∑

1≤i,j≤t
‖Ci − Cj‖2

F. (13)

In order to improve the clustering accuracy of SSMLC for the data that is non-linearly
separable, the authors of [58] extend SSMLC to a non-linear version with a kernel trick,
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called K-SSMLC [60]. It learns coefficients matrix in higher dimensional data space with an
implicit projection function Φ(Xt) : RBt → RB̂t , achieving an improved accuracy compared
with SSMLC. Compared with [59,137], which regularizes different views to yield the same
coefficients matrix, the constraints across different views in SSMLC and K-SSMLC are more
flexible as they allow small deviations of Ct across different views, which is often the case in
real data. The disadvantage of [58–60,137] is that the learning of view-specific coefficients
matrix neglects spatial dependencies of pixels, leading to a sensitive performance to noise
and outliers.

In [61], a hybrid-hypergraph regularized multi-view subspace clustering (HMSC)
method is put forward, which integrates local and nonlocal spatial information from each
view in a unified framework. The authors incorporate the spatial content in each view
by developing a hybrid-hypergraph-based manifold constraint F (Ct) = Tr(CtLt

hCtT
),

where Lt
h is the Laplacian matrix of the hybrid-hypergraph consisting of multi-scale local

hypergraphs and a nonlocal hypergraph. Moreover, a new decomposition-based scheme
was proposed to learn the common intrinsic cluster structure from view-specific subspace
representations. The objective function of HMSC is formulated as follows:

arg min
Ct ,Z,Et

T

∑
t=1

(‖Xt − XtCt‖2
F+λ1tr(CtLt

hCtT
) + λ2‖Et‖1) + λ3‖Z‖∗

s.t. Ct =Z + Et (∀t = 1, 2, . . . , T),

(14)

where the first two terms are used to learn view-specific cluster structures within a self-
representation model, and the fused low-rank matrix Z is shared by all the views with
view-specific sparse deviations Et.

Compared with SSMLC and K-SSMLC which integrate a low-rank regularization
for each Ct, HMSC contains only one low-rank related constraint, obtaining thereby a
lower computational complexity. Moreover, as HMSC incorporates local and nonlocal
spatial information in each view, it yields a significant accuracy improvement than SSMLC.
Multi-view clustering methods often outperform single-view clustering models in terms
of accuracy due to the incorporated complementary information from multi-view data.
However, multi-view clustering methods require image registration to ensure an identical
spatial resolution across different views, and sometimes need to generate hand-crafted
“views”. The quality of image registration and generated features can have a significant
effect on the clustering accuracy of multi-view models. Moreover, the learning of coefficient
matrices for different views significantly increases the computational complexity.

4.1.6. Kernel-Based Clustering Methods

Due to the effect of noise, spectral mixing and poor imaging conditions, the cluster
structure of real HSIs can be highly complex, making the acquired data linearly non-
separable. To improve the clustering performance of self-representation-based models in
real applications, efforts have been made to extend the linear representation, i.e., X = XC,
to non-linear versions by using non-linear mappings. Kernel methods are often exploited
to learn the non-linear cluster structure of HSI [62–66,138]. They typically project the raw
data into the reproducing kernel Hilbert space H where the correlation of data points
can be more easily learned in the self-representation model. Representative kernel-based
clustering models [62–64,138] are summarized by:

arg min
C

‖Φ(X)−Φ(X)C‖2
F + λΓ(C) s.t. diag(C) = 0, (15)

where Φ(·) represents a mapping function that projects raw data X to a new higher-
dimensional feature space Φ(X) and Γ(C) is a regularization term with respect to C.
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Kernel trick is often utilized to avoid an explicit mapping of data. We define kernel
function κ : X × X → R as κ(x, y) = 〈Φ(x), Φ(y)〉, and the positive semidefinite Gram
matrix KXX ∈ RMN×MN as:

KXX(i, j) = κ(xi, xj) = 〈Φ(xi), Φ(xj)〉. (16)

Then Equation (15) can be reformulated as follows:

arg min
C

Tr(KXX−2KXXC + CTKXXC) + λΓ(C) s.t. diag(C) = 0. (17)

In [62,64], a kernel low-rank and sparse subspace clustering (KLRS-SC) was proposed,
which learns the correlations of data points within the framework of (17) by imposing joint
low-rank and sparse constraints on the representation matrix C. The sparse constraint pro-
motes a sparse graph, which maximizes inter-cluster separation. The low-rank constraint is
used to improve the connectivities of data points belonging to the same cluster. The joint
constraints enable the model to capture both local and global structures of HSIs, leading
to a more block-diagonal structure of similarity matrix in the Hilbert space. In [63,138], a
kernel SSC method with spatial maximum pooling operation (KSSC-SMP) was proposed,
which extends SSC to a kernel version. Compared with KLRS-SC, KSSC-SMP additionally
incorporates spatial information of HSI by a post-processing technique, i.e., max pooling,
in the representation domain, producing a more smoothed clustering map.

The acquisition of HSIs is often degraded by numerous factors, including sensor
saturation, thermal effects, quantization errors and transmission errors, resulting in dif-
ferent types of noise in HSIs. To alleviate the effect of noise in the clustering of HSIs,
Jorge et al. [65] combine a TV-based noise denoising model and the kernel-based clustering
model KSSC-SMP in a unified framework. Minimizing the TV-based denoising term results
in less noisy data, which facilitates a better clustering performance in KSSC-SMP.

Different from the framework in (17), Cai et al. proposed a more generalized model,
called efficient kernel graph convolutional subspace clustering (EKGCSC) [66], by improv-
ing the self-representation dictionary with graph convolution. The objective function of
EKGCSC is formulated as follows:

arg min
C

‖Φ(X)−Φ(X)ĀC‖2
F + λ‖C‖2

F, (18)

where Ā = D̃−1/2(As + I)D̃−1/2 is a normalized similarity matrix with D̃ = diag((As + I)1)
and As being a similarity matrix. Φ(X)ĀC can be viewed as a special linear graph convolution
operation in the projected high-dimensional feature space. When Ā = I, model (18) is reduced
to the traditional one in (15). The new dictionary Φ(X)Ā constructed by graph embedding
improve the robustness of EKGCSC to noise. Moreover, the optimization problem (18) can
be solved by a closed-form solution, which is more computationally efficient and makes
EKGCSC easily implemented and applied in practice.

Kernel-based clustering methods often perform better than linear representation-
based clustering methods, which benefit from the increased separability of data points in
the projected high-dimensional feature space. However, the selection of a proper kernel
function is challenging and it is not guaranteed that in the implicit data space the data lies in
a union of linear subspaces. Moreover, kernel-based methods need to calculate a predefined
kernel matrix, i.e., KXX , which significantly increases the computational complexity.

4.1.7. Graph Learning Based Clustering Methods

Graph embedding, i.e., Tr(CLCT) = ∑i ∑j ‖ci − cj‖2
2Wij, is an effective technique

to preserve local structure of data in the representation domain by promoting similar
data points to yield similar coefficients vectors. The construction of the similarity matrix
W is essential in graph embedding. Traditional graph-regularized clustering methods
adopt a fixed similarity matrix, which is calculated from the raw data. KNN graph is
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commonly used as defined in (6). However, noise and outliers in HSIs decrease the quality
of the similarity matrix, resulting in an unreliable graph embedding in the representation
domain. To solve this problem, graph learning strategy was proposed recently in the
self-representation-based clustering models [67,68], which iteratively learns a graph from
the representation domain. A basic graph learning model can be formulated as follows:

arg min
C,S,E

∑
i

∑
j
‖Xci − Xcj‖2

2Sij +R(C, E, S) s.t. X = XC + E, S1 = 1, 0 ≤ S ≤ 1, (19)

where S is the adaptive graph and R(C, E, S) is a set of constraints with respect to C, E
and S.

In [68], a clustering method with dual adaptive graphs learning strategy was proposed.
The developed model learns a consensus graph from two adaptive graphs that are derived
from the representation domain, i.e., ∑i ∑j ‖Xci − Xcj‖2

2Sij, and projection domain with
locality preserving projection (LPP) [139], respectively. The dual adaptive graphs learning
strategy learns similarities of data points from two different domains that are less affected by
noise, leading to a more robust clustering performance. In [67], a unified clustering model
is developed by combining hypergraph learning and spectral clustering. The proposed
model leans a hypergraph with constraint Tr(XCLhXCT), where Lh is the Laplacian matrix
of a hypergraph, and embeds the learned adaptive hypergraph in spectral clustering.
The hypergraph learning and spectral clustering benefit from each other in the alternating
optimization algorithm, resulting in improved clustering accuracy.

4.2. Dictionary Learning Based Clustering Methods

Self-representation-based clustering models often yield better performance in the
clustering of HSI compared with traditional clustering methods such as k-means, fuzzy c-
means, density-based clustering methods and spectral clustering. However, as they employ
input data as a dictionary, which is typically huge and redundant in practice, the subspace
representation is less efficient and less informative. Moreover, the resulting optimization
problems are computationally expensive due to the high complexity of O((MN)3), where
MN is the total number of pixels in HSI, posing a severe limitation on large-scale data.
Recent works [69–79] solve this problem by replacing the self-representation dictionary
with a more compact dictionary. Typical ways to obtain the compact dictionary are shown in
Figure 7. With a smaller dictionary, the amount of coefficients to be learned is significantly
reduced, making the resulting clustering models computationally efficient. Denote the
compact dictionary by D ∈ RB×n, where n (n� MN) is the number of atoms. According
to how the dictionary D is constructed, we classify existing dictionary learning-based
clustering methods into three categories: landmark-based, sketch-based and adaptive
dictionary-based clustering methods.

Hyperspectral images LiDAR data

High-level intrinsic 

feature learning

Highly discriminative 

feature extraction

High-level 

intrinsic feature 

Fusion and classification of multi-modal features

Ground truthClassification map

Accuracy 

assessment

Highly discriminative 

feature

...

...

All spectral signatures
Landmark selection

Sketching

Adaptive dictionary 

laerning

or

or

......

Compressed dictionary

Figure 7. Construction of compact dictionary by different schemes.

4.2.1. Landmark-Based Clustering Methods

This type of method builds the compact dictionary by selecting representative data
points from input data. The selected data points are viewed as landmarks of the data,
approximately representing the subspaces associated with the input data. The most ef-
ficient way to select landmarks is through uniformly random sampling [140]. However,
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the randomly selected landmarks are often redundant, which requires more data points to
represent the input data subspaces, resulting in a larger dictionary. Some methods [69,70]
adopt fast clustering algorithms such as k-means to cluster HSI into different groups and
obtain landmarks within each group. Another method [71] combines super-pixel segmen-
tation and sparse coding for the selection of landmarks. Those methods typically yield
a much smaller dictionary compared with the self-representation dictionary, leading to
a more efficient sparse coding problem. After obtaining the coefficients matrix, cluster-
ing results can be obtained either by spectral clustering or by designing post-processing
techniques, e.g., minimizing reconstruction residuals.

In [70], a landmark-based SSC model with TV regularization (LSSC-TV) was proposed
for the clustering of large-scale HSIs. LSSC-TV replaces the self-representation dictionary
with a landmark dictionary, which is obtained by over-clustering of HSI with k-means
where the centroid of each cluster is collected as a landmark. The size of the landmark
dictionary is small, reducing significantly the number of optimization variables compared
with self-representation models. Thus, LSSC-TV has lower computational complexity and
is more scalable to big data. Moreover, LSSC-TV incorporates spatial information with a TV
regularization, which improves the local smoothness of coefficients, leading to improved
accuracy. The objective function of LSSC-TV is formulated as follows:

arg min
A

1
2
‖X−DA‖2

F + λ‖A‖1 + λtv ∑
i

∑
j∈Ni

‖ai − aj‖1 s.t. A ≥ 0, AT1 = 1, (20)

where A ∈ Rn×MN is the sparse coefficients matrix, λ and λtv are the penalty parameters
for the sparsity level and spatial smoothness, respectively, and the non-negative and sum-
to-one constraints are used to interpret the coefficients as the probability to select landmarks
in the sparse coding. Based on the theory of AnchorGraph in [141], a similarity matrix is
constructed by W = ATΛ−1A, where Λ ∈ Rn×n is a diagonal matrix with Λii = ∑j Aij.
Then, fast spectral clustering algorithm [142] is adopted to obtain the clustering results of
HSI, reducing further the computational complexity of LSSC-TV.

Zhai et al. [69] proposed a sparsity-based clustering method for large-scale HSIs. Com-
pared with existing subspace clustering methods, which often rely on spectral clustering to
yield clustering results with representation coefficients, the developed clustering methods
in [69] use sparse representation recovery residual to cluster HSIs, resulting in a much
lower computational complexity. Firstly, a structured dictionary D = [D1, D2, . . . , Dc]
is constructed by using k-means and k-nearest neighbours (KNN) where Di is a subdic-
tionary corresponding to the i-th cluster that is built by the KNN of the i-th cluster centroid.
Inspired by sparse representation classification [133], they obtain discriminative sparse
coefficients of all data points by solving a sparsity-based optimization problem, which are
further fed into a representation residual-based clustering algorithm to yield clustering
results. To reduce the effect of salt-and-pepper noise, a spatial-spectral version, called
the joint-sparse-coding-based clustering (JSCC) method, was proposed by introducing
an `1,2 norm-based joint sparsity on the coefficients matrix of pixels within a super-pixel,
yielding an improved performance in terms of accuracy and time complexity. In [72], a
multi-objective SSC was proposed for the clustering of HSIs. A compact dictionary is first
constructed by using k-means to reduce the overall computation burden. Different from
other subspace clustering methods, which obtain coefficients matrix by solving a single
objective function, the authors of [72] simultaneously optimize multiple objective functions,
i.e., sparsity term, data fidelity term and spatial TV term, resulting in a parameter-free
clustering model.

More recently, Hinojosa et al. develop a computationally efficient clustering method
with a small landmark dictionary obtained by super-pixel segmentation and sparse cod-
ing [71]. The landmark dictionary enables a fast calculation of sparse coefficients. Spatial
filtering is used to post-process the coefficients matrix, promoting the connectivity of neigh-
bouring pixels in the representation domain. To obtain clustering results of large-scale
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HSIs, fast spectral clustering is applied with the coefficients matrix, reducing further the
computational complexity of the clustering method.

4.2.2. Sketch-Based Clustering Methods

Sketch-based clustering methods compress the self-representation dictionary by us-
ing a random sketching technique, i.e., D = XR, where RMN×n is a random matrix.
The compressed dictionary D, referred to as sketched dictionary, is originally developed
for computer vision tasks where clustering of faces, digits and scenes is of interest [143].
Same as the landmark dictionary, the size of the sketched dictionary is much smaller than
the self-representation dictionary, making the resulting clustering model computationally
efficient. It has been theoretically proved that the sketched dictionary is as expressive as the
self-representation dictionary with a proper sketching matrix R. Thus, the sketched dictio-
nary can well represent the subspaces associated with the input data. Recent works [73–75]
apply sketched dictionary in the clustering of HSIs, achieving state-of-the-art performance
in terms of efficiency and accuracy. The objective function of sketch-based clustering
methods is formulated as

arg min
A

1
2
‖X−DA‖2

F + Θ(A) + Ψ(A), (21)

where D = XR, Θ(A) is the sparsity or low-rankness related constraints and Ψ(A) is a
spatial regularization. After obtaining matrix A, KNN graph is built and further fed to
spectral clustering to yield clustering results.

In [73], a TV regularized sketch subspace clustering method was proposed for hy-
perspectral remote sensing images. It adopts Johnson-Lindenstrauss transform to sketch
the self-representation dictionary as a compact dictionary, which significantly reduces the
number of sparse coefficients to be solved, thereby reducing the overall complexity. In
order to alleviate the effect of noise and within-class spectral variations of HSIs, a TV spatial
constraint is used on the sparse coefficients matrix, which accounts for the spatial depen-
dencies among the neighbouring pixels. Compared with the traditional SSC model, the
sketch-based clustering model obtains significant improvements in accuracy and running
speed. Another sketch-based clustering method [75] adopts the same sketching technique
of [73,143] to build the compressed dictionary. To better capture the structural information
of HSIs in the representation domain, joint sparsity and low-rankness constraints were
introduced, which account for the underlying local and global information of HSIs at the
same time. Moreover, a nonlocal means regularization is used to incorporate the spatial
correlation information, which improves further the clustering accuracy. The objective
function of the sketch-based clustering model [75] is shown as follows:

arg min
A

‖Wa �A‖1 + β‖A‖∗ +
λ

2
‖X−DA‖2

F +
α

2
‖A− ĀNL‖2

F, (22)

where Wa is an adaptive weight matrix calculated by Waij = ε2/(Aij + ε1), which leads to
an improved sparsity, ε1 and ε2 are two small constants and ĀNL is a filtered matrix of A
by a nonlocal means filter.

4.2.3. Adaptive Dictionary Based Clustering Methods

Motivated by the success of dictionary learning in signal processing and high-
dimensional data analysis [144–149], recent works [76–79] replace the self-representation
dictionary with an adaptive dictionary that is leaned from the input data, resulting in
computationally efficient clustering models. The developed models often consist of three
steps, joint dictionary learning and sparse coding, similarity matrix construction and
spectral clustering.

In [76], a novel clustering method based on sparse dictionary learning and anchored
regression was proposed. The proposed method first builds a sparse dictionary by mul-
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tiplying a fixed wavelet dictionary with a learned sparse matrix in a double sparsity
constraint-based optimization framework. To improve the efficiency of sparse dictionary
learning, an efficient scheme is adopted by using a few randomly selected data points. Then,
based on atoms clustering within sparse dictionary and anchored regression, class-specific
projection matrices are obtained, which allows a fast calculation of the coefficients matrix.
A spatial smoothing filter is applied to the coefficients matrix, which is utilized to build
a similarity matrix. Finally, spectral clustering is applied to obtain the clustering results
of HSI. The developed model in [76] achieves a low computational complexity. However,
the underlying fixed wavelet dictionary might not fit well with the input data. Instead,
Bruton et al. [79] proposed an efficient online dictionary learning-based clustering model
for HSIs. It obtains a compact dictionary and sparse coefficients simultaneously in a unified
model. The learned dictionary is more adaptive to the input data compared with the one
in [76]. The sparse coefficients are viewed as extracted features, which are demonstrated to
be more discriminative compared with the raw spectral data. The new features facilitate a
better similarity matrix, improving thereby the accuracy of spectral clustering. However,
only spectral information of HSI is exploited in [79], making the clustering model less
robust to the degradations of HSIs.

In [78], a dictionary learning-based clustering method is put forward with an adap-
tive spatial regularization. Specifically, a weighted joint total variation is formulated by
adopting a reweighed `1,2 norm penalty on the difference matrix of coefficients, which en-
codes effectively the dependencies of spatially neighbouring pixels in the low-dimensional
subspaces and promotes the coefficients vectors of neighbouring pixels to be similar. Thus,
the variation of data within-cluster is significantly reduced in the representation domain,
leading to an improved clustering accuracy in spectral clustering. The objective function of
the dictionary learning model is formulated as follows:

arg min
D≥0,A

1
2
‖Y−DA‖2

F + λ‖A‖1 + λtv‖WhHAT‖1,2, (23)

where D ≥ 0 requires that the atoms are nonnegative in agreement with the positive spectral
intensities of HSIs, H is a combined TV operator in horizontal and vertical directions and
Wh is a diagonal weight matrix for the difference matrix HAT that is iteratively calculated
by using the difference matrix of A. Compared with self-representation models, the
complexity of the model in [78] is much lower. Compared with the commonly used TV
regularization, the weighted `1,2 norm-based TV promotes row sparsity on the difference
matrices of A, preserving better the local spatial structure of HSI in the representation
domain. This makes the constructed similarity matrix with representation coefficients more
block-diagonal, yielding better results in spectral clustering.

Huang et al. [77] proposed a dictionary learning-based clustering method with a
joint sparsity constraint, which accounts for local spatial information of HSIs in the sparse
coding. It first segments HSI into nonoverlapping square patches and imposes an `1,2
norm-based constraint on the coefficients matrix of pixels within each patch. Minimizing
the joint sparsity constraint promotes selecting a common set of atoms in the sparse coding
of similar data points. The objective function of joint sparse coding and dictionary learning
is formulated as follows:

arg min
D,A

1
2
‖Y−DA‖2

F +
s

∑
i=1

wi‖Ai‖1,2, (24)

where s is the number of square patches, Ai is the coefficients matrix of pixels belonging to
the i-th patch and {wi}s

i=1 are the weights for the joint sparsity constraint. After obtaining
coefficients matrix A, different from the work of [78,79], which applies the KNN graph built
with A into spectral clustering to obtain clustering results, the clustering method of [77]
adopts a coclustering approach based on a bipartite graph, achieving simultaneous cluster-
ing of dictionary atoms and spectral data. An undirected bipartite graph G = (D, X, E)
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is built where all dictionary atoms di and input data points xi are viewed as nodes and E
represents the edges between nodes. As sparse coefficient Aij represents the correlations
between input data point xj and dictionary atom di, the adjacent matrix of the bipartite
graph G is built by

Wb =

[
0, |A|
|AT |, 0

]
∈ R(MN+n)×(MN+n), (25)

where |A| represents the absolute value of A. To obtain clustering results of HSIs, the
adjacent matrix of the bipartite graph is applied into normalized cut [150].

In summary, benefiting from the compact dictionaries, the number of variables to
be optimized in dictionary learning-based clustering methods is significantly reduced
compared with self-representation models, resulting in low computation and memory cost.
However, the clustering accuracies of dictionary learning-based clustering methods are
sensitive to the built compact dictionary. Moreover, adaptive dictionary-based clustering
methods learn the compact dictionary and sparse coefficients simultaneously, leading to
non-convex optimization problems where global optimal solutions are not guaranteed. The
obtained sub-optimal solutions may degrade the performance of these models.

4.3. NMF-Based Clustering Methods

Nonnegative matrix factorization (NMF) [151], which decomposes a nonnegative
matrix into the product of two nonnegative factor matrices, has been demonstrated to be an
effective tool in many applications including unmixing [152–154], source separation [155],
compression [156], medical imaging [157], clustering [83,88,158–160], etc. For a given
nonnegative matrix X, NMF finds two nonnegative matrices U ∈ RMN×r and V ∈ Rr×MN

such that

X ≈ UV =
r

∑
i=1

U(:, i)V(i, :), (26)

where U(:, i) is the i-th columns of U and V(i, :) is the i-th row of V. In general, NMF is
NP-hard and highly ill-posed due to the non-uniqueness of the solutions [161]. Therefore,
suitable regularizations are typically introduced to shrink the solution space and to promote
additional properties of factorization matrices. The optimization problems of NMF are
formulated as

arg min
U≥0,V≥0

D(X, UV) + ∑
i

αiΦi(U, V), (27)

where D(·, ·) is a discrepancy term, Φi(·) represents the i-th regularization term and αi ≥ 0
are the regularization parameters to control the influence of Φi(·). Typical choices of
D(·, ·) is Frobenius norm, i.e., ‖ · ‖2

F, `1 norm, i.e., ‖ · ‖1, and `2,1 norm, i.e., ‖ · ‖2,1. For the
regularization, `1 norm, `2 norm and other smoothing terms are commonly used.

NMF can be used for data clustering in two different ways as shown in Figure 8.
The first strategy is to consider NMF as a representation learning technique, where the
representation matrix V is viewed as new features of data. By applying the new features
to existing clustering methods, clustering results can be obtained. As normally r � B
and r � MN, NMF with UV is a low-rank approximation of X. Clustering in the feature
space can be more effective than that in the raw data space. The second strategy views the
factorization matrix U as a cluster centroids and V as a cluster membership matrix by setting
r to the number of clusters and imposing orthogonal constraint VVT = I. This directly
obtains clustering results through each column of V. Without other regularization terms, the
second strategy is known as orthogonal NMF (ONMF) problems, which is equivalent to a
weighted variant of the spherical k-means [162]. Compared with k-means, NMF clustering
approaches are more flexible considering that different prior information of data can be
easily incorporated by introducing suitable regularizations on the factorization matrices.
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Figure 8. The flowchart of NMF-based clustering methods. The factorization matrix V can be viewed
as a cluster label matrix with proper orthogonal constraints, allowing a direct clustering of data points
(bottom in the right), or viewed as new clustering-friendly features (top in the right).

The earliest work of NMF-based clustering can date back to 2003 [163], which applies
NMF to the clustering of document and obtains superior performance compared with
spectral clustering. Subsequent development of NMF-based clustering methods mainly
focuses on computer vision tasks and the research on the clustering of HSIs with NMF just
appears in recent three years. Depending on whether spatial information is incorporated,
we categorize NMF-based clustering approaches of HSIs into spectral-based and spatial-
spectral-based methods.

4.3.1. Spectral-Based NMF Clustering Methods

Spectral-based NMF clustering methods treat pixels of HSI independently without
considering their spatial dependencies. In [80], a hierarchical clustering method based on
rank-two NMF (H2NMF) is put forward. The method starts with a single cluster containing
all the data points and performs the following two steps iteratively, (1) cluster selection
for further division and (2) split of the selected cluster with rank-two NMF. The major
advantage of the method is that the tree-structured clustering results avoid rerunning
the algorithms from scratch if the number of clusters required by the user is modified.
Compared with k-means, spherical k-means and standard NMF, H2NMF yields better
performance in terms of clustering accuracy. In [81], Manning et al. extend H2NMF to a
version that supports parallel computing with distributed memory, compute nodes and
processors, resulting in a scalable clustering algorithm for big data.

In [82], Fernsel et al. proposed elastic net regularized ONMF clustering models where
the factorization rank r is set to the number of clusters. Compared with the traditional NMF,
orthogonal constraint VVT = I is introduced for the factorization matrix V, leading to the
interpretation of V as a cluster membership matrix. Moreover, the elastic net regularization
with `1 norm and Frobenius norm is introduced to promote the factorization matrices to be
sparse. Specifically, the objective function of the models in [82] is formulated as

arg min
U≥0,V≥0

D(X, UV) + λU‖U‖1 + µU‖U‖2
F + λV‖V‖1 + µV‖V‖2

F, s.t. VVT = I, (28)

where D(·, ·) is an `1 norm or Frobenius norm-based discrepancy term and λU , λV , µU ,
µV ≥ 0 are regularization parameters. It has been proved in [82] that the regularized
ONMF in fact equals to generalized k-means model with suitable distance measures
and centroids.

Different from [80–82], which obtain clustering results via asymmetric NMF of the
input data, the work of [83] develops a symmetric NMF (SNMF) clustering model for HSI
by decomposing data covariance matrix K as MMT , where M ∈ RMN×c is a nonnegative
matrix and is viewed as a cluster membership matrix. The objective function of SNMF is
formulated as

arg min
M≥0

‖K−MMT‖2
F +

MN

∑
ρ=1

λρ‖M(ρ, :)‖1, (29)
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where λρ are the regularization parameters for the sparsity of the rows of M. To solve
the non-convex matrix factorization problem (29), the work of [83] converts it to a mixed
integer linear programming problem. SNMF is shown to perform better than the standard
clustering methods such as k-means and NMF. It should be noted that even compared with
supervised classifier such as kernel support vector machine (SVM), which is trained with
25% of labelled data, SNMF often yields far better classification accuracy. However, the
computational complexity of SNMF is excessively high, posing limitations on the clustering
of large-scale data.

4.3.2. Spatial-Spectral-Based NMF Clustering Methods

Instead of using only the spectral information in [80–83], spatial information is incor-
porated in NMF to improve the clustering accuracy [84–88]. In [84], Tian et al. proposed a
graph regularized ONMF (GONMF), which employs a graph built in the raw data space
to preserve local geometrical structure in the cluster membership matrix. In addition,
morphological spatial features of HSIs are extracted and concatenated with spectral data,
obtaining more discriminative input data, X̃, for NMF. The objective function of GONMF is
formulated as

arg min
U≥0,V≥0

‖X̃−UV‖2
F + λTr(VLVT), s.t. VVT = I. (30)

GONMF directly obtains clustering results from the cluster membership matrix V.
Compared with SSC, GONMF yields improved performance in terms of both accuracy and
efficiency. In [85], a similar work to GONMF was proposed, which also takes account of
the spatial information of HSIs. Specifically, a total variation regularized spatial constraint
is imposed on the cluster membership matrix of ONMF, which promotes neighbouring
pixels to be grouped in the same cluster, resulting in improved local homogeneity in the
clustering maps.

Zhang et al. [86] proposed a semi-NMF clustering framework of HSIs, which works
efficiently on the clustering of large-scale data. Specifically, dimensionality reduction by
using orthogonal projection is performed jointly with clustering in a unified framework.
The transformed data with dimensionality reduction has a much lower dimension, which
facilitates fast clustering of data. To increase the robustness of model to sparse noise
and outliers, `2,1 norm is utilized for the loss of dimensionality reduction and semi-NMF
clustering. Moreover, a graph Laplacian-based manifold constraint is introduced in the
low-dimensional feature space and label space, which promotes similar data points to yield
similar features and clustering labels. The objective function of the semi-NMF clustering
model is formulated as

arg min
U,V,P,Y

‖X− PY‖2,1 + ‖Y−UV‖2,1 + α(Tr(YLYT) + Tr(VLVT))

s.t. PTP = I, VVT = I, V ≥ 0, (31)

where P is the projection matrix to generate new features of X, i.e., Y, L is the Laplacian
matrix of a similarity matrix and V is the cluster membership matrix. Note that to improve
the scalability of the clustering model (31), only a small portion of pixels in HSI are selected
for the input matrix X and the clustering of the rest pixels is performed by using a KNN
classifier according to the clustering results of X. This avoids complicated optimization
procedure in (31) for the unselected pixels, making the clustering of HSIs much faster.

It is observed that most NMF-based clustering methods view the factorization matrix
V as a label matrix by setting the factorization rank of NMF to the number of clusters.
Although this enables a direct clustering result with V, the linear representation ability
of NMF limits their applications on the data that is linearly non-separable. To deal with
this problem, in [87] the authors adopt NMF as a feature extraction tool and apply the
extracted features to spectral clustering to obtain clustering results. To improve the feature
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learning in NMF, a graph regularized constraint is introduced in the feature space, which
promotes the manifold structures in the raw data space and feature space to be identical.
The objective function of the resulting model is shown as follows:

arg min
U≥0,V≥0

‖X−UV‖2
F + λ1‖V−VZ‖2

F, (32)

where Z is a spectral-spatial similarity matrix that is constructed by using super-pixel
segmentation with special attention on exploring intra-superpixel and inter-superpixel
connectivities. With the new features V, the similarity matrix of a KNN graph with binary
weights {0, 1} is built, which is further fused with the spectral-spatial similarity matrix Z by
a weighted strategy. The fused similarity matrix is demonstrated to be more block-diagonal,
improving thereby the clustering accuracy of spectral clustering.

Recently, a co-clustering approach based on NMF was proposed for the clustering of
large-scale HSIs [88], which integrates affinity matrix learning and spectral coclustering
into a unified model. Specifically, a joint sparsity regularized sparse representation model
was used to learn the correlations between data points and anchors, based upon which a
bipartite graph was built as in (25). According to the equivalence between bipartite graph
kernel k-means and NMF, a co-clustering module for HSIs and anchors was designed by
solving double orthogonal constraints regularized NMF optimization problem. The unified
co-clustering model is formulated as follows:

arg min
A,U,V

Co-clustering via NMF︷ ︸︸ ︷
‖A−UV‖2

F +

Joint sparse coding within super-pixel︷ ︸︸ ︷
γ‖X−DA‖2

F + α
s

∑
i=1
‖As‖1,2

s.t. UTU = I, VVT = I, U ≥ 0, V ≥ 0, (33)

where A is the sparse coefficients matrix of X obtained by joint sparse coding within each
super-pixel. Matrix A can be used to measure the correlations between input data X and
representative anchors, i.e., dictionary D. Benefiting from the `1,2-norm regularized spatial
constraint in sparse coding, the coefficients matrix encodes better the correlations between
input data and dictionary, leading to a more accurate clustering result in the NMF. In
the model (33), the clustering results of X and D can be directly obtained via the cluster
membership matrices V and U. Compared with self-representation methods such as SSC
and LRR, the co-clustering model via NMF in [88] yields significant improvements in terms
of accuracy and computational complexity.

In summary, NMF-based clustering models are more efficient than self-representation-
based models as there are much less variables to be optimized. As the factorization
matrix V of NMF indicates the cluster membership of data points, post-processing via
other clustering algorithms is not needed, which is different from the aforementioned
clustering approaches. According to [164], there are strong correlations between NMF,
k-means and spectral clustering such that with mild relaxations of constraints NMF equals
to the other two clustering methods. Considering the high flexibility in prior information
modelling, low computational complexity and good interpretability, NMF is promising in
the clustering of HSIs. However, current research in the field is limited. The disadvantage
of NMF is that the related optimization problems are non-convex, which makes their global
optimal solutions difficult to be obtained. Moreover, the linear representation ability of
NMF limits the clustering performance on the data that are linearly non-separable.

5. Deep Clustering Methods

The model-based clustering methods often require to devise rational constraints
according to domain-specific prior information to avoid ill-posed optimization problems.
However, the incorporation of prior information highly relies on the experience and domain
knowledge of experts, which greatly limits the application of model-based clustering
methods. In addition, the added penalty parameters of constraints often vary across



Remote Sens. 2023, 15, 2832 23 of 43

different data sets. There is a lack of theoretical guidance to set the parameters adaptively.
Moreover, the extracted features by shallow models might not be discriminative enough
for clustering especially when dealing with remote sensing images which are often highly
complex. Benefiting from the powerful feature extraction capacity, data-driven deep
learning technique has achieved great success in a number of applications, including
classification [165,166], clustering [167], image denoising [168], spectral unmixing [169]
and anomaly detection [170]. However, the research on the clustering of HSIs with deep
learning is at a very early stage. This is a new and rapidly emerging domain within
the last few years, showing impressive clustering performance and attracting increasing
attention and interest in the field [104]. According to the mechanism of feature learning
and clustering, current deep learning-based clustering approaches of HSI are categorized
into self-representation-based, autoencoder (AE)-based, graph convolution-based and
contrastive learning-based methods. Figure 9 shows the main idea of each category.
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Figure 9. Four types of deep clustering models of HSI: (a) self-representation-based, (b) AEs-based,
(c) graph convolution-based and (d) self-supervision-based models.
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5.1. Self-Representation Based Deep Clustering (SDC)

Basically, SDC methods integrate deep generative neural networks with aforemen-
tioned self-representation clustering models, such as SSC [31], and can be seen as the deep
versions of the shallow clustering models in Section 4.1. As shown in Figure 9a, AEs are
often used to generate latent features, which are expected to be more effective in clustering
tasks. The loss of AEs is formulated as

LAE = ‖X− X̄‖2
F +

λ1

2
Θ(Z), (34)

where X is the input data, X̄ is the reconstructed data by the AEs, Z = E(X) denotes the
latent feature extracted by the encoder E(·) and Θ(Z) is a regularization term with respect
to Z. The encoder of AE is cascaded with a self-representation layer, i.e., E(X) = E(X)C,
where C is the self-representation coefficients matrix. The loss of self-representation layer
is formulated as follows:

LSR =
λ2

2
‖Z− ZC‖2

F +
λ3

2
Ψ(C), (35)

where Ψ(C) is a regularization term to avoid trivial solution of C = I. Combining the
reconstruction loss of AE with the loss of self-representation layer, the overall loss function
is derived by

L = LAE + LSR. (36)

The training of SDC models often consists of two steps: pre-training of AEs by min-
imizing LAE and fine-tuning step by minimizing (36). Once the coefficients matrix C is
obtained, a similarity matrix can be built as in SSC by W = (|C|+ |CT |)/2. Finally, the
similarity matrix is fed into spectral clustering to obtain clustering result.

The first SDC model [89] was proposed in 2017, which introduces a self-representation
layer between the encoder and decoder to model the self-expressiveness of data in the
nonlinear feature space, achieving remarkable performance in the clustering of faces and
objects. Motivated by [89], Laplacian regularized SDC models [90–92] were recently pro-
posed for the clustering of HSI, which yield significant improvements compared with the
shallow representation-based clustering methods. Basically, graph Laplacian constraint
is employed to encode the correlations of data points either in the latent feature space
or in the self-representation domain, making the manifold structure of learned features
to be more consistent with that in the original domain. In [90], the authors introduced a
graph Laplacian-based manifold constraint on the representation coefficients of the self-
representation layer to enhance the geometric structure consistency between the input
domain and the representation domain. Moreover, skip connections between encoder and
decoder are utilized to extract the spatial-spectral information. Experimental results on real
data sets show an improved accuracy compared with SDC. The cost function of the model
in [90] is formulated as:

1
2
‖X− X̄‖2

F +
α

2
‖Z− ZC‖2

F +
λ

2
‖C‖P +

β

2
Tr(CLCT), s.t. diag(C) = 0, (37)

where L is the Laplacian matrix of a KNN graph.
In [91], Cai et al. replaced the regular convolutional autoencoder of [90] with a residual

convolutional autoencoder, leading to a more easily trained model from scratch. More
recently, Cai et al. proposed a hypergraph regularized deep clustering model, called
HyperAE [92], which incorporates group structure information of data in the learning of
deep latent features. The objection function of HyperAE is formulated as:

1
2
‖X− X̄‖2

F +
α

2
‖Z− ZC‖2

F +
λ

2
‖C‖2

F +
β

2
Tr(ZLZT), (38)
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where Z is the deep latent features of X and L is the normalized hypergraph Laplacian
matrix. HyperAE is further extended to a semi-supervised version by making use of
supervised information from a few labelled data. Specifically, the latent features of AE
are fed to a softmax classifier for label prediction, and a cross-entropy-based classification
loss is introduced as a task-specific loss function. The cost function of the semi-supervised
HyperAE is formulated as:

1
2
‖X− X̄‖2

F +
β

2
Tr(ZLZT)− γ

2Nl

Nl

∑
i=1

c

∑
j=1

yijlog(ȳij), (39)

where the last term is the cross-entropy loss, Nl is the number of labelled data, yi ∈ R1×c

is the one-hot label vector of xi and ȳi is the predicted label vector of xi. Benefiting from
the hypergraph regularization, the extracted deep latent features of HyperAE are more dis-
criminative than [89], resulting in a better clustering performance both in the unsupervised
mode and semi-supervised modes. Recently, Li et al. [93] proposed a mutual information
subspace clustering network for the clustering of HSI by embedding contrastive learning
and self-representation of data into AE. A contrastive loss, which maximizes the mutual
information between input data and latent features, was designed, improving effectively
the nonlinear feature learning of data. Experimental results show that the developed model
yields improved clustering accuracy compared with other deep clustering approaches.

In [34], a multi-scale SDC model was proposed for the clustering of HSI, which leverages
multi-scale convolutional AEs to extract spatial-spectral features of HSI in different scales. By
incorporating the self-expressiveness property of features in each scale, the extracted spatial-
spectral features are transformed to representation domain and fused further by minimizing
the difference of the representation coefficients matrices across all the scales. Although this
method obtains improved performance in terms of accuracy, the computational complexity is
significantly increased due to the multiple self-representation layers.

Different from previous SDC models which commonly utilize AEs for deep feature
extraction, Goel et al. [94] learned discriminative features with deep dictionary learning
(DDL), which nonlinearly transforms the input data into a new data space where the data
can be separable into different subspaces. The DDL is followed by a self-representation
layer where representation coefficients are used to build a similarity matrix for spectral
clustering. The objective function of the proposed model in [94] is formulated as:

arg min
D1 ,D2 ,D3 ,Z

DDL︷ ︸︸ ︷
‖X−D1D2D3Z‖2

F +

SSC︷ ︸︸ ︷
µ ∑

i
‖zi − Zic ci‖2

2 + λ‖ci‖1 s.t.

ReLU activation︷ ︸︸ ︷
D2D3Z ≥ 0, D3Z ≥ 0, Z ≥ 0, (40)

where D1, D2 and D3 are three layers of dictionaries, Z is the corresponding representation
matrix and Zic represents a sub-matrix of Z by removing zi in SSC. The experimental results
show significant improvement over state-of-the-art clustering methods.

The aforementioned SDC methods separate feature learning from clustering, where the
obtained features from deep learning might not be optimal for the clustering task. In [95],
a unified self-supervised SDC model combing feature learning and spectral clustering
was proposed for the clustering of HSI. It makes use of an AE and a self-representation
layer to learn the similarity matrix of data and employs cluster assignments with high
confidence from spectral clustering as pseudo-labels to supervise feature learning process.
Moreover, a KNN graph built in the original domain is used to guide the initialization of
self-expressive coefficient matrix, achieving significant improvement of clustering accuracy.
The experimental results in [95] show that the proposed model yields comparable clustering
performance to the state-of-the-art supervised deep classification methods with overall
accuracy of 97.43%, 100% and 100% on the data sets Indian Pines, Pavia University and
Salinas_A, respectively.
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Pixel-level self-representation of HSI suffers from high computational complexity and
high memory cost in practice, making the aforementioned SDC models on large-scale HSI
infeasible. Recently, Cai et al. [96] proposed a super-pixel guided contrastive subspace
clustering network (NCSC) for the clustering of large-scale HSIs. By designing a super-pixel
pooling autoencoder, the local spatial information of HSI is efficiently encoded, allowing
an effective object-level feature extraction. Moreover, contrastive loss, which maximizes
the similarity between positive samples generated by KNNs, is introduced to NCSC to
promote intra-class similarity of extracted features. Benefiting from super-pixel pooling
and contrastive loss, the accuracy and computational cost of NCSC are simultaneously
improved, achieving the current state-of-the-art performance in the clustering of HSI.

5.2. AE-Based Deep Clustering (AEDC)

AEDC methods utilize AEs as unsupervised deep data representation to extract latent
features for clustering. Due to the nonlinear mapping function of encoders, AEDC is more
effective at dealing with complex data compared with traditional linear representation
models. Clustering can be performed separately from the latent feature learning, which
leads to clustering methods such as those in [97–99] consisting of two steps: deep feature
learning and clustering. In the first step, reconstruction loss is used to train the AEs.
Different types of AEs can be utilized in AEDC, including stacked AE, the traditional AE,
convolutional AE and variational AE. With the latent features learned by AEs, classical
clustering methods such as k-means and Gaussian mixture models (GMM) are applied to
yield clustering results.

A recurrent neural network-based (RNN) asymmetric AE was proposed for the clus-
tering of HSI [97]. The RNN built with long short-term memory (LSTM) or gated recurrent
units (GRUs) is utilized as an encoder. By interpreting separate bands of HSI as consecutive
steps within a sequence, the high correlation between adjacent bands can be effectively
captured by RNN. A multilayer perceptron is utilized as a decoder. With the asymmetric
AE, one can obtain a nonlinear mapping function modelled by RNN from input data to
latent feature space. The obtained latent features are further fed to GMM to yield clustering
results of HSI. As the first attempt to use RNNs in the clustering of HSI, the proposed model
in [97] performs comparably to other deep clustering approaches in terms of accuracy, but
achieves a faster running speed.

In [98,99], multi-sensor AEDC models were proposed, which make use of rich infor-
mation from multi-modal remote sensing data, yielding improved clustering performances.
Rahimzad et al. [98] developed a boosted convolutional AE with concatenated hand-crafted
features as input data for extracting more effective deep features for clustering. Compared
with the deep models using raw data as the input of AEs, the network used in [98] is less
complex for feature extraction. In [99], Shahi et al. proposed a multi-stream-based AEDC
model for the clustering of remote sensing images, consisting of three parallel networks:
one spectral network with fully connected AE, one spatial network with convolutional
AE, and one fusion network that reconstructs concatenated images. The latent features
from spectral and spatial network are concatenated and then fed to k-means clustering
algorithm. Experimental results show significant improvement over the traditional SSC
and deep learning methods.

The aforementioned AEDC models separate feature learning from clustering, where
the extracted features might not be suitable for the clustering task. The works in [33,100,101]
integrated deep feature learning and clustering in a unified framework. Apart from
the reconstruction loss in AEs, additional clustering loss was introduced to the overall
training loss. Representative clustering losses include intraclass distance loss, i.e., k-
means loss, and Kullback-Leibler (KL) divergence loss between target distribution and soft
assignments. In [100], a deep embedded clustering (DEC) method was proposed. It first
pre-trains an AE with reconstruction loss to learn the non-linear mapping function from
input data to the latent feature space. Then, the decoder is discarded and the encoder is
used for initial feature mapping. By minimizing the KL divergence loss between target
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distribution and soft assignments, the parameters of encoder and cluster centroids are
jointly optimized. DEC yields remarkable improvement over k-means. However, the
removal of reconstruction loss in the second fine-tuning stage makes feature extraction
via encoder unstable. Nalepa et al. [101] extended DEC by coupling 3D convolutional AEs
with clustering and combining reconstruction loss and KL divergence loss in the second
fine-tuning stage. Although the AEDC model in [101] yields a high clustering accuracy, the
computation time is much longer than others. In [33], an intraclass distance constrained
AEDC model was proposed for the clustering of HSI, which performs feature extraction
and k-means clustering in a unified model. During the training of network, the clustering
error is propagated to the feature learning process of AEs, making the latent features to be
more clustering-friendly. The objective function of the model in [33] is formulated as:

arg min
Wi ,bi ,H,S

‖X− X̄‖2
F + λ1‖Z−HS‖2

F + λ2

M

∑
i=1

(‖Wi‖2
F + ‖bi‖2

2), (41)

where Wi and bi are the weights and bias of AE, M is the total number of layers of AE, Z is
the latent features of AE and H and S are the cluster centroid matrix and cluster label matrix
in k-means, respectively. The second term is k-means clustering loss, which promotes
the intraclass distance of data to be smaller in the latent feature space. Experimental
results show that the unified model in [33] outperforms both traditional shallow clustering
methods and state-of-the-art deep clustering methods.

5.3. Graph Convolution Based Deep Clustering (GCDC)

Graph neural networks extend convolutional neural networks to process the data
represented in the graph domain [171]. The feature representation of a node is updated by
recursively aggregating representations of its neighbours. GCDC methods integrate graph
convolution in the self-representation-based clustering models, which aggregates neigh-
bourhood information of data in the affinity learning, leading to a robust similarity matrix
to noise and outliers. Compared with traditional self-representation-based clustering meth-
ods, GCDC is more effective in dealing with graph-structured data in the non-Euclidean
domain. A typical graph convolution propagation layer [172] can be defined by

X(r+1) = σ(PX(r)W(r)), (42)

where X(r) is the r-the layer’s graph embedding and W(r) is a weight matrix to be trained, P
is a propagation matrix built with a similarity matrix of input data and σ(·) is a non-linear
activation function. Cai et al. [66] removed the nonlinear activation function of (42) and
employed the graph convolution in the traditional self-representation model, leading to a
novel GCDC model as follows:

arg min
C

1
2
‖X− XPC‖2

F +
λ

2
‖C‖2

F, (43)

where the representation matrix C can be seen as the parameters of a simplified neural
network. A closed-form solution of (43) can be obtained, which makes the model computa-
tionally efficient and more applicable. Moreover, the model in (43) was extended to a kernel
version, which was demonstrated to perform better than existing clustering methods in
terms of clustering accuracy.

Zhang et al. [102] replaced the normal graph convolution of (43) with a hypergraph
convolution to exploit the group structure of data that is beyond pairwise correlations.
Moreover, a multi-hop aggregation strategy with the K power of the propagation matrix,
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i.e., PK, was employed to incorporate the long-range interdependence between hyperedges
and vertices. The resulting model is formulated as

arg min
C

1
2
‖X− XPk

hC‖2
F +

λ

2
‖C‖2

F, (44)

where Ph is the propagation matrix of a hypergraph and k is the number of hypergraph
propagations. The developed model outperforms (43) and achieves state-of-the-art cluster-
ing accuracy on five benchmark HSI data sets.

In [103], Cai et al. proposed a more generalized linear graph convolutional network,
consisting of a parameter-free neighbourhood propagation and a task-specific linear model
with a closed-form solution. As in [102], the non-linear activation function of (42) is
removed, resulting in a simplified linear graph convolutional network. Moreover, an
improved propagation scheme over [102] was devised by considering the initial node
features, which is formulated as:

H(r+1) = (1− α)H(r)P + αX s.t. H(1) = X, r = 1, · · · , K. (45)

It is observed that the initial feature X also contributes to the update of graph em-
bedding H(r) with a fixed proportion α. By setting α = 0, the derived propagation matrix
of (45) equals to the one in [102]. With the graph propagation scheme (45), a subspace
clustering model is formulated as:

arg min
C

1
2
‖X−H(K+1)C‖2

F +
λ

2
‖C‖2

F, (46)

where H(K+1) is the final graph embedding with the linear graph convolution network and
C is the parameter matrix of the overall deep clustering network. Final clustering result can
be obtained by applying the affinity matrix C into spectral clustering. It is demonstrated
that the developed model outperforms traditional shallow representation-based methods
and deep clustering methods.

5.4. Contrastive Learning Based Deep Clustering (CLDC)

Contrastive learning, as a recent new self-supervised learning technique, has achieved
remarkable performance in feature learning [173,174] and classification of HSIs [175,176].
It promotes different augmentations of the same data point, called positive pairs, to
yield more similar deep representations compared with the augmentations of other in-
put data points, leading to improved discrimination between data points in the feature
space. To achieve this, different contrastive loss functions were designed, including the
instance-level InfoNCE loss [177,178] and between-cluster loss [179,180]. Compared with
the aforementioned AE-based deep clustering models, which lean features by minimizing
data reconstruction loss, contrastive learning is more effective in the learning of discrimi-
native features for classification tasks with contrastive losses. Contrastive learning in the
clustering of HSIs is at a very early stage. The initially obtained clustering performance is
remarkable and demonstrates that contrastive learning is highly promising in the domain.

In [104], Cao et al. proposed an effective classification framework for HSIs by com-
bining contrastive learning and AEs. It consists of three steps: (1) generations of two
augmentations of data by variational AE (VAE) and adversarial AE (AAE), (2) feature
extraction via contrastive learning and (3) clustering or classification of the generated deep
features. In the first step, two different AEs are employed as transform functions for data
augmentation. In the second step, the authors developed an adaptive InfoNCE contrastive
loss by incorporating group information of features, promoting the within-cluster features
to be close to the centroids. Experimental results show that contrastive learning is able
to extract more discriminative features even compared with supervised models. In [105],
Kang et al. adopted random patch cropping to generate anchor images and generate
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augmented images by selecting patches that are close to the central pixels of anchor images.
CNNs were employed to extract deep features of anchor images and augmented images.
With the InfoNCE contrastive loss, the parameters of CNNs are obtained. Finally, the
authors fed the learned features from CNNs into classifiers or clustering algorithms to
obtain classification results. In [106], Hu et al. generated augmented images for contrastive
learning by image flipping and random removal of non-central pixels. Moreover, a two-
branches-based CNN was proposed to extract the spectral and spatial features of HSIs. By
combing the instance-level contrastive loss and cluster-level contrastive loss, an overall
contrastive learning loss function was obtained, which minimizes the distances between
positive pairs and maximizes the distances between negative pairs. Benefiting from the
improved discrimination between data points with contrastive learning, the proposed
model yields significant accuracy improvement compared with the traditional shallow
clustering models and the state-of-the-art deep clustering models.

The aforementioned CLDC models need a separate clustering algorithm, such as
k-means or spectral clustering, to cluster the extracted deep features, which makes them
unscalable to big data. In [107], Cai et al. developed an end-to-end and scalable CLDC
model by combining a symmetric twin CNN-based feature learning neural network with a
projection head. The twin CNNs were used to extract deep features of augmented data,
which were fed further into the projection head to directly obtain label representation.
Moreover, a novel contrastive loss function, consisting of within-cluster contrastive loss
and between-cluster contrastive loss, was designed to train the neural network, which
promotes a reduction of the within-cluster similarity and an increase of the inter-cluster
differences in the feature domain. Experimental results show that the proposed model
outperforms the state-of-the-art approaches by large margins.

In general, benefiting from the powerful nonlinear data fitting ability, deep learning-
based clustering approaches are more effective for dealing with complex data compared
with traditional clustering models. The extracted features by deep learning are often more
clustering-friendly, leading to improved clustering accuracy. However, most deep clus-
tering models separate clustering from feature learning, which encounters the problem
that the extracted features by deep learning might not fit well with the adopted clustering
algorithms. In addition, existing deep clustering methods often need to apply dimensional-
ity reduction techniques to reduce the dimension of HSIs to avoid a high computational
complexity. However, this results in the loss of spectral information of HSIs, degrading
their clustering accuracy to a certain degree. Moreover, the lack of explainability of deep
learning, uninvestigated robustness to noise and high requirement on computing resources
pose limitations of deep clustering models in real applications.

6. Experiments

In this section, we conducted extensive experiments with different clustering algo-
rithms on two real HSIs to investigate their clustering performance. Systematic com-
parisons between different methods and deep analysis were provided. A toolbox that
contains the implementations of different clustering methods can be accessed via https:
//github.com/shhuang-1767/HSI_clustering.git (accessed on 20 May 2023).

6.1. Data Sets
6.1.1. HYDICE Urban

The first data set we used for evaluation was HYDICE Urban, which was captured
by Hyperspectral Digital Imagery Collection Experiment (HYDICE) during a flight cam-
paign over Copperas Cove, near Fort Hood, TX, USA. The data size of HYDICE Urban is
307× 307× 210, which captures spectral information from 400 nm to 2500 nm. Due to the
serious degradation by atmosphere and water absorption, the bands 1–4, 76, 87, 101–111,
136–153 and 198–210 are removed and the remaining 162 bands are used in the experiments.
For computational efficiency, a typical subset of data with a size of 150× 160× 162 was

https://github.com/shhuang-1767/HSI_clustering.git
https://github.com/shhuang-1767/HSI_clustering.git
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used as the test data, which included seven classes as shown in Table 4. The false-color
image and ground truth are shown in Figure 10.

Table 4. The classes in the data sets HYDICE Urban and University of Houston.

No. HYDICE Urban University of Houston

1 Roof Concrete
2 Parking lot Grass-1
3 Grass Grass-2
4 Trees Parking lot
5 Sparse vegetation Roof
6 Asphalt road Trees
7 Concrete road Asphalt

Unlabelled

Roof

Parking lot

Grass

Trees

Sparse vegetation

Asphalt road

Concrete road

Unlabelled

Roof

Parking lot

Grass

Trees

Sparse vegetation

Asphalt road

Concrete road

(a) (b) (c)

Figure 10. HYDICE Urban: (a) false−color image, (b) ground truth and (c) feature visualization of
HSI via t-SNE.

6.1.2. University of Houston (Houston)

The second benchmark data set was acquired by the ITRES-CASI 1500 sensor over the
University of Houston campus and the neighbouring urban area. A representative region
with the image size of 130× 130× 144 was selected as the test data, which contains seven
classes as shown in Table 4. The false-color image and the ground truth of Houston are
shown in Figure 11.

Unlabelled

Concrete

Grass-1

Grass-2

Parking lot

Roof

Trees

Asphalt

Unlabelled

Concrete

Grass-1

Grass-2

Parking lot

Roof

Trees

Asphalt

(a) (b) (c)

Figure 11. University of Houston: (a) false−color image, (b) ground truth, and (c) feature visualization
of HSI via t-SNE.

6.2. Compared Methods

We selected twelve representative clustering methods for experiments, including
seven shallow clustering models, i.e., k-means [19], NMF [36], ONMF-TV [85], SSC [31],
JSSC [55], ODL [79] and Sketch-TV [73] and five recent deep learning-based clustering
models, i.e., GCSC [66], AEC [100], DEC [100], RNNC [97] and HyperAE [92]. The source
codes provided by the authors are used in the experiments. All related parameters were
carefully tuned to yield the best overall accuracy. A detailed introduction of the compared
methods is given as follows:
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1. K-means [19]: a commonly used clustering algorithm due to its simplicity and efficiency.
2. NMF [36]: a classical clustering method based on NMF.
3. ONMF-TV [85]: a spatial-spectral NMF clustering method which integrates orthogo-

nal constraint and TV spatial regularization.
4. SSC [31]: a self-representation-based subspace clustering model with a sparsity constraint.
5. JSSC [55]: a spatial-spectral SSC model with joint sparsity on the coefficients of

segmented super-pixels.
6. ODL [79]: a scalable subspace clustering model with online dictionary learning.
7. Sketch-TV [73]: a scalable spatial-spectral subspace clustering model by integrating

dictionary sketching and a TV spatial regularization.
8. GCSC [66]: a graph convolution-based subspace clustering model.
9. AEC [100]: an autoencoder-based clustering model where a three-layers stacked

denoising AE was used to extract deep features of HSI and k-means was adopted to
obtain the final clustering result.

10. DEC [100]: a symmetric AE-based deep clustering model, which is an extended
version of AEC by introducing a KL divergence clustering loss to jointly learn the
encoder and cluster centroids.

11. RNNC [97]: an asymmetric AE-based clustering model where recurrent neural nets
(RNNs) are employed to build the encoder and a multilayer perceptron was used
as the decoder. In our experiments, RNNs were built with long short-term memory
(LSTM). The extracted latent features by the encoder of RNNC were fed to k-means to
yield clustering results.

12. HyperAE [92]: a recent self-representation-based deep clustering model, which inte-
grates the self-expressiveness of data points and graph-based manifold regularization
in the autoencoder, resulting in an improved similarity matrix for spectral clustering.

6.3. Evaluation Metrics

We adopt six evaluation metrics to measure the performance of clustering methods,
including overall accuracy (OA), average accuracy (AA), Kappa coefficient (κ), normalized
mutual information (NMI), adjusted rand index (ARI) and Purity. To calculate OA, AA
and κ, we first find the best match between the clustering results and ground truth by an
optimal mapping function obtained by the Kuhn-Munkres algorithm [181]. For a data set
with N samples, the OA is obtained by:

OA =
1
N

N

∑
i=1

δ(map(ri), li), (47)

where ri is the label of the i-th data point obtained by clustering and li is the corresponding
true label, δ(x, y) = 1 if x = y and is zero otherwise; map(·) is a mapping function obtained
by [181]. Let ni,j be the number of samples in class i that are labelled as class j. The accuracy
of the i-th class is computed by pi = ni,i/ni,+, where ni,+ = ∑j ni,j is the number of samples
in class i. Then, AA is calculated by

AA =
1
C

C

∑
i=1

pi, (48)

where C is the number of clusters. The Kappa coefficient κ is defined as:

κ =
1
N ∑i ni,i − 1

N2 ∑i ni,+n+,i

1− 1
N2 ∑i ni,+n+,i

, (49)
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where n+,i = ∑j nj,i is the number of samples that are identified as class i. The NMI score is
calculated as:

NMI =
I(l; r)

max(H(l), H(r))
, (50)

where I(l; r) denotes the mutual information between l and r, and H(l) and H(r) are their
entropies. The ARI score is obtained by:

ARI =
∑i ∑j (

ni,j
2 )− (∑i (

ni,+
2 )∑j (

n+,j
2 ))/(N

2 )
1
2 (∑i (

ni,+
2 ) + ∑j (

nj,+
2 ))− (∑i (

ni,+
2 )∑j (

n+,j
2 ))/(N

2 )
. (51)

Let Ω = {w1, w2, . . . , wK} be the clusters obtained by the clustering algorithm and
C = {c1, c2, . . . , cC} be the ground truth, where wi is the set of samples that are grouped
into the i-th cluster and ci is the set of samples belonging to the i-th cluster according to the
ground truth. In the experiments, we assumed that the number of clusters is known, which
means K = C. Then, the Purity score is obtained by

Purity =
1
N

C

∑
k=1

max
j
|wk ∩ cj|. (52)

The evaluation metric ranges between [−1, 1] for κ, [0, 1] for NMI, [−1, 1] for ARI and
[0, 1] for Purity. A larger value indicates a better performance. We also report the running
time of different clustering methods. Note that k-means, NMF, NMF-TV, SSC, JSSC and
Sketch-TV are implemented in MATLAB on a computer with an Intel core-i7 3930K CPU
with 64 GB of RAM. The ODL and GCSC methods are implemented in Python on a server’s
node with an Intel core-i7 4930K CPU with 64 GB of RAM. The AEC, DEC, RNNC and
HyperAE are implemented in python and run on NVIDIA GeForce GTX 1080Ti with 11 GB
of RAM.

6.4. Performance Comparison

We report the quantitative evaluation of clustering methods on the two data sets in
Tables 5 and 6 and the corresponding clustering maps in Figures 12 and 13. In the tables, the
best result is annotated in bold and the second best result is underlined. We set the number
of columns of U, i.e., r, to C for NMF and ONMF-TV, the dictionary size to 70 for Sketch-TV,
the dimensionality of latent feature to C for AEC and DEC and the dimensionality of latent
feature to 18 for RNNC. For all the methods, we first performed PCA [182] to reduce the
spectral dimensionality of HSI to eight for computational efficiency and then extract the
spatial patch of each central pixel cross all the bands with a 3× 3 square window, which
serves as the input data point of each clustering method.

It is observed in Tables 5 and 6 that k-means and NMF do not perform well on both
data sets in terms of accuracy. The reason can be attributed to the non-spherical cluster
distribution of HSI as shown in Figures 10c and 11c, which cannot be effectively handled
by k-means. NMF performs clustering via k-means in a representation domain. However,
the representation of pixels are learned independently from each other, making NMF
sensitive to noise and outliers. Moreover, the representation learned via NMF is separated
from k-means, which might obtain unmatched features for k-means, leading to degraded
clustering accuracy. In terms of running time, NMF and k-means are much faster than
others, demonstrating their superior efficiency. The results in Tables 5 and 6 show that
ONMF-TV outperforms NMF by a large margin with OA improvements of 9.58% on
HYDICE Urban and 4.97% on Houston. The improved performance mainly benefits from
the orthogonal constraint and the incorporation of spatial information.
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Table 5. Quantitative evaluation of different clustering methods on the data set HYDICE Urban *.

No.
Shallow Models Deep Models

k-Means NMF ONMF-
TV SSC JSSC ODL Sketch-

TV GCSC AEC DEC RNNC HyperAE

1 87.07 87.30 98.94 86.15 90.83 82.96 89.00 93.15 91.70 91.55 92.37 97.64
2 100.00 90.37 93.17 68.87 97.72 48.12 94.80 100.00 89.38 84.45 99.96 95.68
3 39.27 72.56 67.81 85.44 72.97 47.74 67.34 60.73 79.64 55.97 84.63 67.69
4 94.41 46.89 0 1.76 89.54 89.03 91.30 91.93 77.64 82.09 85.51 77.95
5 56.44 65.21 95.69 75.83 67.00 68.84 66.21 99.00 94.06 78.56 97.69 59.96
6 0 22.56 53.04 51.74 24.62 81.13 91.59 0 6.02 72.72 0 59.22
7 62.86 2.88 28.60 80.38 0 0 0.22 84.37 89.80 83.92 92.68 99.00

OA 63.67 62.91 72.49 68.17 68.98 62.06 77.51 75.92 75.46 78.64 79.10 79.61
AA 62.86 55.40 62.46 64.31 63.24 59.69 71.50 75.60 75.46 78.47 78.98 79.59

κ 0.5665 0.5528 0.6696 0.6277 0.6322 0.5514 0.7325 0.7100 0.7068 0.7484 0.7485 0.7582
NMI 0.6341 0.5111 0.6928 0.6338 0.6175 0.5273 0.7022 0.7746 0.7284 0.6893 0.7865 0.7321
ARI 0.5290 0.4344 0.6326 0.5447 0.5754 0.4100 0.6409 0.6472 0.6416 0.6337 0.6848 0.6619

Purity 0.6630 0.6507 0.7436 0.7443 0.7104 0.6216 0.7841 0.7648 0.7683 0.7864 0.7952 0.7961
Time 3 1 12 3997 8518 190 37 283 422 476 136 1029

* Note: The best result is marked in bold and the second best result is underlined.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 12. Visual clustering results on the data set HYDICE Urban. (a) The ground truth of HYDICE
Urban and the clustering maps obtained by (b) k-means, (c) NMF, (d) ONMF-TV, (e) SSC, (f) JSSC,
(g) ODL, (h) Sketch-TV, (i) GCSC, (j) AEC, (k) DEC, (l) RNNC and (m) HyperAE.
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Table 6. Quantitative evaluation of different clustering methods on the data set Houston *.

No.
Shallow Models Deep Models

k-Means NMF ONMF-
TV SSC JSSC ODL Sketch-

TV GCSC AEC DEC RNNC HyperAE

1 47.99 8.12 48.66 46.57 45.90 45.31 46.50 53.50 46.42 52.01 46.50 53.50
2 96.41 99.88 100.00 9.18 99.77 43.34 100.00 100.00 100.00 100.00 100.00 100.00
3 27.42 25.81 10.57 86.20 78.85 54.30 63.08 56.45 46.42 78.85 65.59 0
4 99.75 99.25 65.00 92.36 94.36 97.40 99.85 96.66 64.90 76.24 99.90 97.10
5 76.92 92.31 100.00 77.69 100.00 0 0 100.00 92.31 0 100.00 100.00
6 27.36 33.17 0 0.24 18.64 9.69 68.04 0 25.42 0 0 87.65
7 0 11.57 94.09 0.75 49.18 8.05 68.30 68.30 76.35 80.5 0 75.72

OA 62.91 56.55 61.52 72.03 72.17 54.72 76.39 73.80 63.52 68.28 65.27 75.69
AA 53.69 52.87 59.76 66.14 69.53 36.87 63.68 67.84 64.55 55.37 58.86 73.43

κ 0.5180 0.4169 0.5296 0.6425 0.6567 0.3882 0.7101 0.6721 0.5491 0.6157 0.5513 0.6953
NMI 0.5904 0.5706 0.5945 0.6498 0.7129 0.3985 0.7864 0.7710 0.5942 0.6693 0.7171 0.8067
ARI 0.5089 0.3811 0.4078 0.5459 0.7178 0.2569 0.7827 0.7125 0.4639 0.5921 0.5717 0.7374

Purity 0.7187 0.5685 0.6171 0.7448 0.8096 0.5686 0.8568 0.8403 0.6473 0.7846 0.7703 0.8591
Time 2 1 6 735 3098 191 29 91 207 267 116 210

* Note: The best result is marked in bold and the second best result is underlined.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 13. Visual clustering results on the data set Houston. (a) The ground truth of Houston and
the clustering maps obtained by (b) k-means, (c) NMF, (d) ONMF-TV, (e) SSC, (f) JSSC, (g) ODL,
(h) Sketch-TV, (i) GCSC, (j) AEC, (k) DEC, (l) RNNC and (m) HyperAE.

NMF performs similarly to k-means on the data set HYDICE Urban, but much worse
than k-means on the data set Houston. This might be caused by the small value of r in NMF,
which resulting in non-discriminative features for clustering. Sparse representation-based
clustering methods SSC and JSSC perform consistently better than the classic methods
k-means and NMF. Compared with k-means-based methods, SSC and JSSC do not assume
the cluster distribution of data. Particularly, they uncover the cluster structure of HSI
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in a graph, which is adaptively learned in a sparsity-driven self-representation model.
The results demonstrate that self-representation models are very effective in the learning of
cluster structure of complex data. However, the high computational complexity of SSC and
JSSC makes their running time much longer than others. The spatial-spectral JSSC method
yields higher accuracy than SSC. However, due to the imprecise super-pixel segmentation
of HSI, the accuracy improvement of JSSC is rather limited. Compared with SSC, the
clustering maps of JSSC are smoother, as shown in Figures 12 and 13. Scalable subspace
clustering methods ODL and Sketch-TV obtain much faster running speeds compared
with SSC and JSSC due to the introduced compact dictionary, which significantly reduces
the amount of parameters to be optimized. However, the running speed improvement
of ODL is at the cost of accuracy. Due to the incorporation of spatial information of HSI,
Sketch-TV yields improvement both in accuracy and running speed. Among shallow
representation-based clustering methods, Sketch-TV performs the best in terms of OA, κ,
NMI, ARI, and Purity. The main reason can be attributed to the reduced feature variance
within clusters caused by the adopted TV-based local spatial constraint. Compared with
JSSC, which also incorporates spatial information of HSI, Sketch-TV performs considerably
better, indicating the importance of an effective spatial constraint.

Deep learning-based clustering methods GCSC, AEC, DEC, RNNC and HyperAE
outperform the shallow clustering methods in most cases on the data set HYDICE Urban.
On the data set Houston, deep learning-based methods do not consistently yield better
performance than the shallow methods. HyperAE performs the best in terms of accuracy
among the deep clustering methods, but slightly worse than Sketch-TV on Houston. As both
HyperAE and Sketch-TV need to feed the constructed similarity matrix to spectral clustering
to yield the final clustering results, the worse accuracy indicates that the extracted deep
features via deep neural networks do not always guarantee a superior performance than
the traditional shallow clustering methods. It also verifies the importance of incorporating
prior information of HSI, such as spatially local smoothness, global non-local structure, low-
rankness, sparsity, etc., to learn clustering-friendly features instead of purely relying on data
driven technique. Compared with k-means and NMF, AEC obtains improved performance
in terms of accuracy, which demonstrates that the features extracted by AE are more
discriminative than that in the original domain and in shallow feature extraction model
NMF. However, the improvement is limited, which might be attributed to the separated
feature extraction from clustering. DEC extends AEC to jointly fine tune the weights of AE
and perform clustering by introducing a clustering loss function, resulting in an improved
performance as shown in Tables 5 and 6. The trade-off for accuracy improvement is a slight
increase in run time. Benefiting from the graph convolution of the dictionary, GCSC obtains
improved accuracy compared with SSC and JSSC. Moreover, the employed collaborative
representation with an `2 norm allows GCSC to obtain a closed-form solution, avoiding
to derive the optimal solution in an iterative update fashion. This leads to a much lower
computational complexity of GCSC compared with SSC and JSSC. RNNC yields improved
performance compared with AEC in terms of accuracy, demonstrating the potential of
asymmetric AE in unsupervised feature extraction. Figures 12l and 13l show that the
clustering maps of RNNC are much smoother than AEC. It is observed that HyperAE takes
the longest running time among deep clustering methods, which can be mainly attributed
to the introduced self-representation layer, resulting in a huge coefficient matrix to be
optimized as in the traditional methods SSC and JSSC.

7. Summary and Conclusions

In parallel to supervised classification of HSI, the clustering of HSI is another important
research topic in the field of remote sensing. Model-based optimization methods have
achieved remarkable performance in the clustering of HSI, which has attracted increasing
attention in recent years. Meanwhile, powered by deep learning, emerging deep clustering
methods extend model-based methods and yield huge breakthroughs in the clustering
of HSIs. However, a comprehensive and systematic overview is absent for researchers,
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especially for beginners to quickly get into the field and to develop their own models, which
hinders the development of new techniques in the field. In this paper, we showed the
evolution of model-based methods and deep learning-based approaches for HSI clustering,
and provided a systematic overview for each category of the methods. Moreover, we
discussed the advantages and disadvantages of each subcategory of the clustering methods.

We conducted extensive experiments on two real HSIs to compare the performance
of twelve representative clustering methods, including the shallow clustering methods,
k-means, NMF, ONMF-TV, SSC, JSSC, ODL, and Sketch-TV, and the deep clustering meth-
ods GCSC, AEC, DEC, RNNC, and HyperAE. Source codes of different methods were
provided to boost the research in the field. Important observations were made through the
experiments as follows:

1. Recent deep clustering methods outperform the shallow clustering methods in most
cases. The experimental results show that some traditional shallow clustering methods
such as Sketch-TV can yield competitive or even better clustering accuracy compared
with the state-of-the-art deep clustering methods.

2. Deep feature extraction by autoencoder indeed improves the discriminability between
different clusters compared with using raw data. However, the accuracy improve-
ment might be limited by the employed inappropriate clustering algorithm or by the
unconsidered spatial information of HSI. Our results show that the traditional NMF
feature extraction fails to yield improved performance.

3. It is shown that spatial-spectral clustering methods often perform better than the
spectral-based clustering methods. However, the degree of performance improvement
highly relies on the adopted spatial regularizations, demonstrating the importance of
an effective spatial constraint.

4. Self-representation-based shallow and deep clustering methods are very competitive
compared with other clustering methods. However, the computational complexities of
self-representation models are much higher than others, which limits their applications
on large-scale data.

5. Clustering methods, which combine representation learning and clustering in a uni-
fied model, yield improved accuracies compared with the methods that perform
the two steps separately. This demonstrates that introducing clustering-related loss
function improves the clustering performance.

Finally, we pointed out unsolved important problems and future trends in the field
as follows:

1. Most existing clustering methods assume that the number of clusters is known, and
very few studies in remote sensing focus on the estimation of the number of clusters.
Thus, there is an urgent need to design an effective method to calculate the number of
clusters for real applications.

2. As data-driven deep clustering methods are typically trained on a specific target data
set, the trained models often cannot be well generalized to new data sets. When the
trained neural network is applied to a different HSI, the learned features might not
be discriminative for clustering due to the different ground objects, varying spatial
resolutions and different levels of noise. Improving the robustness and generalization
of deep clustering methods is crucial in the domain.

3. Although deep clustering methods often yield better clustering results, theoretical
explanation of the superior performance is still absent, which means that existing deep
clustering methods of HSI still lack interpretability for experts to deal with occasional
failures on some data sets. A deeper and more clear understanding of the mechanism
of deep clustering models is needed. Thus, explainable AI on the clustering of HSI is
a very interesting research direction.

4. Current clustering methods of HSI rely on a single clustering algorithm, whose
performance is highly limited by the separability of features and the clustering ability
of the selected clustering algorithm. It is known that different clustering methods have
different advantages. Thus, it is more desirable to combine the clustering results of
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different clustering methods (also known as ensemble clustering) to find a consensus,
which will effectively improve the clustering accuracy and robustness to noise.

5. Clustering methods of HSI are mostly designed for a single data source, which is
vulnerable to noise and other degradations. Recent advances in remote sensing
greatly increase the types of sensors for Earth observation, resulting in different
data modalities such as LiDAR, SAR, multispectral image, etc. Moreover, various
hand-crafted features, which capture different data properties of HSI from different
views, are demonstrated to be helpful in the classification of HSI. Incorporating the
complementary information from different image modalities in the clustering of HSI
can break the performance limitation of single-source clustering methods, which also
improves the robustness of model to various degradations.

6. Current advanced clustering methods either perform feature extraction and clustering
of data separately or integrate the two steps in a unified clustering framework. All of
them still rely on the conventional clustering algorithms, such as k-means, spectral
clustering, GMM, and density-based methods, to yield the final clustering results.
Designing a completely data-driven deep clustering model, which gets rid of the con-
ventional clustering algorithm, might lead to a significant performance improvement.
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