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Abstract: A rich and effective dataset is an important foundation for the development of AI algo-
rithms, and the quantity and quality of the dataset determine the upper limit level of the algorithms.
For aerospace remote sensing datasets, due to the high cost of data collection and susceptibility to
meteorological and airway conditions, the existing datasets have two problems: firstly, the number
of datasets is obviously insufficient, and, secondly, there is large unevenness between different
categories in datasets. One of the effective solutions is to use neural networks to generate fake data by
learning from real data, but existing methods still find difficulty in generating remote sensing sample
images with good texture detail and geometric distortion. To address the shortcomings of existing
image generation algorithms, this paper proposes a gradient structure information-guided attention
generative adversarial network (SGA-GAN) for remote sensing image generation, which contains
two innovative initiatives: on the one hand, a learnable gradient structure information extraction
branch network can be added to the generator network to obtain complex structural information in
the sample image, thus alleviating the distortion of the sample geometric structure in remote sensing
image generation; on the other hand, a multidimensional self-attention feature selection module is
proposed to further improve the quality of the generated remote sensing images by connecting cross-
attentive modules as well as spatial and channel attention modules in series to guide the generator to
better utilize global information. The algorithm proposed in this paper outperformed other methods,
such as StyleGAN-XL and FastGAN, in both the qualitative and quantitative evaluation, whereby the
FID on the DOTA dataset decreased by 23.927 and the IS was improved by 2.351. The comparison
experiments show that the method proposed in this paper can generate more realistic sample images,
and images generated by this method can improve object detection metrics by increasing the number
of single-category datasets and the number of targets in fewer categories in multi-category datasets,
which means it can be effectively used in the field of intelligent processing of remote sensing images.

Keywords: remote sensing image generation; generative adversarial networks (GANs); structural
information; attention mechanism; object detection; deep learning

1. Introduction

In recent years, aerospace remote sensing imaging technology has been applied to
many fields, such as land and mineral resource management and monitoring, traffic and
road network safety monitoring, geological disaster early warning, and national defense
system construction [1–3]. Meanwhile, deep learning technology has also greatly promoted
the research of remote sensing images in detection and classification [4]. A sufficient
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amount of data is the cornerstone for achieving high-performance deep learning algo-
rithms, and large high-quality datasets can greatly improve the algorithm performance [5].
However, there are two constraints in the construction of existing remote sensing image
datasets: on the one hand, compared with natural image datasets captured by ground-
based equipment [6,7], the capture of remote sensing images requires high-cost imaging
platforms such as aircraft or satellites, and the acquisition process is limited by aircraft
routes and satellite orbits; on the other hand, the influence of factors such as light, rain,
fog, and clouds [8] makes it difficult to collect effective high-quality images due to the high
proportion of invalid data in each acquisition [9]. The above factors mean that existing
datasets cannot meet the demand of artificial intelligence algorithm training in the field of
remote sensing [10], which is mainly reflected in two aspects:

Issue 1: Insufficient data size. Take the commonly used DOTA dataset as an example.
It includes 15 object classes with nearly 190,000 objects, while the non-remote sensing
natural image dataset COCO contains 80 classes with more than 1.5 million objects in
total, a size 8 times that of DOTA. The lack of data scale leads to a high risk of overfitting
the model.

Issue 2: Large differences in the samples within and between classes. There are more
than 20,000 ships in the DOTA dataset but only 6000 planes, and the specific classes and
sizes of planes are not uniform. The lack of image diversity and unbalanced numbers
between classes in the existing dataset [11] can bias the model toward majority class
prediction [12], limiting further improvement in the performance of network models in
target detection and classification, for example [13].

In recent years, some mitigation approaches have been proposed at the algorithm
level for issue 2 [14,15]. Zhou et al. [16] proposed a dynamic balancing weighting method
based on the number of effective samples for remote sensing image segmentation tasks
with data imbalance. CBCL [11] dynamically constructs a class-balanced memory queue
during the training of object detection models by memorizing training samples to alleviate
class imbalance. However, these approaches are unable to mitigate issue 1.

Data enhancement is an effective approach that can alleviate both of these problems
at the same time [17], can obtain large amounts of data from a limited dataset, and can
effectively alleviate the problems of insufficient data size and class imbalance, especially
in aerospace remote sensing applications, which are widely used by researchers [18,19].
However, many traditional data enhancement methods, such as flipping, scaling, cropping,
rotating, or adding noise, only increase the number of remotely sensed images and cannot
improve the quality of semantic information as well as the diversity of remotely sensed
images in applications. In interpretation tasks such as object detection of remote sensing
images, geometric transformation or randomly varying pixel values can no longer meet the
increasing accuracy requirements. Therefore, it has become an urgent and indispensable
task to use artificial neural network methods for data enhancement to generate sample
data of remote sensing images.

Generative adversarial networks (GANs) [20] have led to technological breakthroughs
in many areas of deep learning and have been rapidly applied in many directions in the
field of aerospace remote sensing [21,22]. Remote sensing images usually contain feature
information with a large amount of texture and structure information, which is complex [23],
and existing natural image generation models rarely consider the structure information
in the generation process. Therefore, if they are used in remote sensing image generation,
they will lead to geometric structure distortion in the generated sample images, and the
generated pseudo-sample images are often poorly realistic and insufficiently diverse to
be reliably used as the basis for various analyses and applications in remote sensing [24].
Additionally, almost all existing related studies in the direction of remote sensing are
focused on tasks such as image classification and segmentation, and there are few studies
on object detection tasks.

To address the above problems, based on StyleGANv2 [25], this paper innovatively
proposes a gradient structure information-guided attention generative adversarial network
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improvement method for remote sensing image generation to alleviate the model perfor-
mance degradation problem due to insufficient remote sensing data. This paper uses a
multidimensional self-attentive feature selection module (MAFM) to guide the generator
to make better use of global information, which can help the generator to better control
the generation process and generate higher-quality remote sensing images. Meanwhile,
the gradient structure information branching network is used to guide the generator body
network, so that the generated images have more realistic structure information, thus alle-
viating the structural distortion phenomenon existing in remote sensing image generation.
The mode seeking [26] regularization term is introduced to increase the ratio of the distance
between the generated images to the distance between the corresponding latent codes to
solve the problem of insufficient diversity.

The main contributions of this paper are as follows:

1. Multidimensional self-attentive module

A multidimensional self-attentive module applicable to remote sensing image genera-
tion is proposed to enhance the convolution and improve the generator model performance.
Contextual information is captured by tandemly connecting two cross-attentive modules
and modeling the importance of feature maps and interdependencies in three dimensions
of the spatial and channel domains. The attention model is embedded into the generative
adversarial network to guide the generator to utilize global information while adaptively
focusing on important regions.

2. Gradient structure information guidance model

Adding a branching network to the remote sensing image generation network and
using the gradient structure information guidance method to improve the generation
quality of remote sensing images can better preserve the structural information of the
samples, allowing the generation network to output remote sensing images with high
perceptual quality and less geometric distortion.

2. Related Work
2.1. Generative Adversarial Networks

Since they were proposed by Goodfellow et al., generative adversarial networks have
become a popular research direction. A large number of variant structures based on genera-
tive adversarial networks have emerged and are widely used in various fields such as image
generation, transformation, editing, and super-resolution [27–29]. Despite the great success
of GANs in various applications, existing methods suffer from the mode collapse problem,
which leads to a lack of diversity in the generated images. ModeGAN [30] alleviates the
lack of diversity by introducing additional encoders to enhance the bidirectional mapping
between the input noise vector and the generated images. Ghosh et al. [31] used multiple
generators and forced different generators to generate samples with different patterns, thus
increasing the diversity of the generated images. MSGAN [26] encourages generators to
explore more patterns by maximizing the ratio of the distance between generated images
to the distance between corresponding latent vectors, thus increasing the diversity of the
generated images.

2.2. Image Generation

Image generation is an important research direction in the field of computer vision.
The early image generation methods mainly focus on the explicit approximate estimation of
the probability density function of the image distribution, but it is difficult to learn a model
that can fit the data distribution due to the high-dimensional nature of the probability
density distribution of the sample data. In contrast, GANs, as generative models based on
implicit density estimation, can provide an effective solution to the problem of sampling and
training under high-dimensional probability density distributions by means of adversarial
learning, meaning that GANs have been widely used in image generation tasks.
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With the continuous development and innovation of deep learning technology, GAN-
based image generation methods are constantly being updated and improved. ProGAN [32]
starts training from low-resolution image generation and gradually increases the image
resolution, which both speeds up the training and stabilizes the training process while
still being able to generate high-quality images. SAGAN [33] helps GANs to learn the
global dependencies of images and generate higher-quality images by introducing an
attention mechanism to GANs. BigGAN [34] substantially improves the quality of the
generated images by adding orthogonal regularization to the generator, increasing the
number of batch processes, and introducing spectral normalization based on SAGAN.
StyleGAN [35] achieves controlled image generation by decoupling the hidden space
vectors and separating the different style attributes that control the generated images.
StyleGANv2 [25] further improves the quality of the generated images by disassembling
AdaIN into Norm and Mod parts to eliminate artifacts.

SiftingGAN [36] introduced the GAN method to remote sensing image generation,
proposing a GAN-based method to generate and filter labeled samples to increase the
sample dataset. MARTA [37] applies DCGAN to remote sensing images and proposes
an unsupervised model of multilayer feature matching to generate adversarial networks.
EEGAN [38] proposes an edge-enhanced GAN algorithm that can combine the enhanced
edges to generate images with clearer content. GAN-RSIGM [39] introduced the Wasserstein
distance to the field of remote sensing image generation, proposing a remote sensing image
generation method based on generative adversarial networks for creating high-resolution
annotated samples for scene classification. Gu et al. [24] proposed an attention mechanism-
based pseudo-annotated sample generation method and applied it to the scene classification
of remote sensing images, which can be learned from a single natural image and can
effectively generate enough pseudo-annotated samples from a single remote sensing scene
image sample. MCGAN [40] uses multi-branch expansion convolution and classification
branches to help the generator produce diverse and high-quality remote sensing images.

2.3. Feature Attention

Convolutional operations are processed under local neighborhoods with finite percep-
tual fields, which are prone to lose global information, and self-attention has become the
latest advancement in capturing remote interactions [41]. Attention mechanisms enable
deep learning to be more targeted in extracting features from samples [42], leading to an
improvement in the accuracy of related tasks.

SENet [43] proposes a channel attention substructure, where the network model
automatically obtains the importance of each feature channel by learning and models the
interdependencies between feature channels. GSoP [44] proposes a simple and effective
GSoP module that captures global second-order statistics. ECANet [45] proposes an
ultra-lightweight attention module for local channel interactions. GCT [46] implements a
channel-gated attention mechanism by gating weights and biases. FcaNet [47] proposes a
multispectral channel attention approach to fully exploit image information by introducing
more frequency components.

In the field of aerospace remote sensing, attention mechanisms also play an important
role in many directions [48–50]. LMNet [51] proposes the Residual Transformer 3D-spatial
Attention Module (RT3DsAM), which can learn feature representations from global infor-
mation and filter important information.

3. Method

In this paper, we propose a gradient structure information-guided attention generative
adversarial network (SGA-GAN). The structure sketch is shown in Figure 1, including the
generator and discriminator. The generator network generates fake images from some
random numbers extracted from a uniform distribution, and the discriminator network,
as the adversary of the generator, tries to distinguish real images from fake images; both
are trained iteratively. Finally, the generator network can perfectly generate realistic fake
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images, and the discriminator network can effectively determine whether the images are
real or fake [20].
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In order to improve the performance of the model in remote sensing images, this
paper introduces the multidimensional self-attentive feature selection module (MAFM in
Figure 1) into the generator network. Additionally, this paper uses the gradient structure
information to guide the model to generate more realistic sample images.

3.1. Multidimensional Self-Attentive Module

The generator is the core part of the whole generative adversarial network, and
the performance of this part determines the final quality of the generated images. The
convolutional layer can only operate on the local proximity context of each spatial location
in the feature map, which does not make good use of the contextual information.

CCNet [52] proposes the Criss-Cross Network to obtain contextual information in a
more effective and efficient way, based on which this paper proposes a multidimensional
self-attentive feature selection module (MAFM) for remote sensing image generation, which
can improve the generator model performance by modeling the attentional feature map
and connecting the localized convolutional feature map to a farther range. The data flow is
shown in Figure 2a,b, which are two parts in series.

As shown in Figure 2a, the cross-attention module captures contextual information
by obtaining the relationship of each point on the feature map with each of its points hori-
zontally and vertically. This vertical and horizontal attention module is more lightweight
and uses two cross-attention modules in series for the self-attention calculation on each
feature map in the channel domain. The Pi and P′i weights are shared, and the relationship
between each point and all points on that feature map can be obtained via cross-attention
twice, which can capture dense global contextual information.

However, it is difficult to capture the relationship between feature maps; therefore, in
order to learn the long-distance dependencies within the channel dimension of the feature
maps, F′′ is passed sequentially through the spatial attention module and the channel
attention module. The feature attention selection module shown in Figure 2b is added
after Figure 2a to model the importance and interdependence of the feature maps in three
dimensions: two in the spatial domain and one in the channel domain. Fws and Fhs are the
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spatial attention maps and Fcs is the channel attention map, which are obtained in the same
way, the only difference being that the dimensions are different.
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As shown in Figure 3, taking channel attention as an example, F is first reduced to a one-
dimensional vector along the channel dimension, using the maximum pooling operation.
Then, the importance of each channel feature map is obtained by a 1 × 1 convolutional
layer, ReLU activation function, 1 × 1 convolutional layer, and sigmoid activation function
in turn. Subsequent to multiplying the features after the spatial attention module, they are
summed with F′′ after the 1 × 1 convolutional layer and ReLU activation function in turn
to obtain the final output feature Fo. Fo contains not only the long-range dependencies of
all spatial locations within the whole spatial dimension but also the correlations between
channel dimensions and the importance of each feature map under that dimension, which
enables the generator to better use the global information to generate high-quality remote
sensing images.
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3.2. Gradient Structure Information Guidance Model

Since the gradient map reveals clear details of each local region in the sample im-
age [53], the gradient structure information can be used to guide the generation process of
the image generation network. However, the sample gradient map extracted by the conven-
tional operator can only reflect one aspect of the sample structure (i.e., the value difference
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of neighboring pixels), and it is difficult to obtain richer and more general information (e.g.,
more complex structural textures) in the sample structure.

In this paper, we propose a learnable gradient structure information branching net-
work, GSNet, to generate high-quality remote sensing images with clear structures by
extracting the gradient structure information of samples in real remote sensing images
and guiding the generator to pay attention to the sample structure information during the
generation process.

A structural diagram of the gradient structure information branching network used in
this paper is shown in Figure 4. Since most of the area of the gradient map is close to zero
and the convolutional neural network can focus more on the spatial relationships of the con-
tours, the network model may capture structural dependencies more easily. To ensure that
GSNet can learn the geometric structural information of the samples rather than the deep
semantic information of the samples, GSNet does not use too many convolutional layers,
and the conv block is a residual block consisting of three layers of convolution. GSNet is
divided into three stages to extract the sample image structure tensor, and the spatial size of
the structure information feature map is downsampled by a factor of 2 each time and incor-
porated into the corresponding position of the main structure of the generative network.
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The gradient block is used to obtain the gradient map of the original image of the
sample without considering the gradient direction information but using a convolutional
layer with a fixed kernel, as shown in Equation (1). The gradient calculation formula used
is shown in Equation (2).

Ky =

0 −1 0
0 0 0
0 1 0

 , Kx =

 0 0 0
−1 0 1
0 0 0

, (1)

GI′ = ‖(( f (x + 1, y)− f (x− 1, y)), ( f (x, y + 1)− f (x, y− 1)))‖2, (2)

After obtaining the gradient map, it is first fed into the first convolutional block to
extract simple structural features, which consists of a 3 × 3 convolutional layer with a step
size of 1 and an instance normalization layer. It is then fed into three modules consisting
of a convolution block and a multidimensional feature selection module (FSM) in turn to
further extract structural features. The convolutional block consists of three dense residual
blocks, each consisting of five 3 × 3 convolutional layers using dense connections and the
Leaky-ReLU activation function. The specific structure of the multidimensional feature
selection module (FSM) is shown in Figure 5, which uses transposition operations to select
features from three dimensions, namely the spatial dimension W, spatial dimension H, and
channel dimension C, respectively. Each feature selection module consists of a maximum
pooling layer, a 1× 1 convolutional layer, a ReLU activation function, a 1× 1 convolutional
layer, and a sigmoid activation function.
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The structural features at different scales are obtained in the branching network of the
gradient structural information, and they are input into the generator as a priori structural
information to guide the generation process. Using a learnable attention graph, we assign
each part of the input different weights to extract more critical and important information
so that the branching network can output structural information with more details. The
branching network can effectively extract the structural information of the preserved
sample images, allowing the generative network to obtain results with high perceptual
quality and less geometric distortion. In addition, the obtained gradient information can
highlight the sharpness and structural regions that need more attention, thus implicitly
leading to the high-quality generation of remote sensing images.

3.3. Loss Function

In order to train the algorithm in this paper, it is necessary to compare the image
in the training phase, the reconstructed image, and the original image under certain
metrics. We designed a loss function L consisting of three components. It is denoted by the
following equation:

Ltotal = λLGAN + µLpl + γLms, (3)

where LGAN is the adversarial loss, Lpl is the perceptual length regularization term, Lms is
the mode seeking regularization term, and λ, µ, and γ are the weight coefficients.

The work in this paper is mainly based on StyleGANv2 for improvement, and thus
the loss function in StyleGANv2 is retained, while the mode seeking regularization term is
added to improve the diversity of the generated images.

3.3.1. Adversarial Loss

This paper uses the adversarial loss to make the image distribution of the generated
image match the image distribution of the real image with the following equation:

min
G

max
D
L(G, D) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))], (4)

where G tries to generate images that look similar to the real image, and D tries to dis-
tinguish the generated images from the real image. The goal of G is to minimize the
adversarial loss, while the goal of D is to maximize the adversarial loss.

3.3.2. Path Length Regularization

The perceptual path length (PPL), proposed in StyleGANv2 [25], which measures
the degree of feature coupling between different random input vectors, representing the
perceptual distance length, is also found to be correlated with the quality of the generated
images, and thus the quality of the generated images can be improved using the PPL
regularization term.

Lpl = Ew, y∈N(0,1)(‖JT
wy‖2 − α)2, (5)

where w ∈ W, W is the intermediate potential space [35], w ∼ f (z), z obeys a normal
distribution, Jw denotes the Jacobian matrix, α denotes the exponential moving average,
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which aims to preserve the expected length of the vector regardless of the vector direction,
and y is a random image whose pixel (numerical) intensities obey a normal distribution.

3.3.3. Mode Seeking Regularization

GANs can easily fall into mode collapse, which leads to a loss of diversity in the
generated images. Therefore, additional regularization terms need to be introduced to
alleviate mode collapse and thus ensure the diversity of the generated images.

When mode collapse occurs, two different random input vectors, z1 and z2, are mapped
to images I1 and I2 with similar patterns, which means that the GAN learns only a few
patterns and loses the diversity of the generated images. Therefore, we introduce the mode
seeking regularization term to maximize the ratio of the distance between I1 and I2 relative
to the distance between z1 and z2 with the following equation:

Lms = max
G

(
dI(G(z1), G(z2))

dz(z1, z2)
), (6)

where z1 and z2 are two different random vectors, G(z1) and G(z2) denote the correspond-
ing generated images of z1 and z2, respectively, and dI(·) and dz(·) are distance metrics.

4. Experiments

In order to verify the effectiveness and generalizability of the model proposed in this
paper, the model proposed in this paper and other advanced models were tested on two
remote sensing datasets and compared. To quantitatively evaluate the performance of
the different network models, the IS (Inception Score), FID (Frechet Inception Distance),
and KID (Kernel Inception Distance) were used to evaluate the quality of the images
generated by the different models. These are widely used metrics for image generation
quality evaluation.

In addition, in this paper, the generated remote sensing sample images were tested
in practical applications using current commonly used object detection models, including
single-object class experiments as well as multi-object class experiments. The object detec-
tion models included YOLOv5 [54], YOLOX [55], and Efficientdet [56]. The results of object
detection using the DOTA and UCAS-AOD datasets were used to verify the effectiveness
of the generated images.

In this paper, we conducted an ablation study, which is presented in Section 4.5, to
verify the effectiveness of the gradient structure information guidance model proposed in
this paper and explore the effect of adding a multidimensional self-attentive module on
the algorithm.

4.1. Evaluation Metrics

The larger the value of the Inception Score (IS) [57], the better the image quality and
diversity. Specifically, the generated image x is fed into the Inception [58] classification
network, which outputs a 1000-dimensional vector y. It is desired that the entropy p(y|x) of
the generated image over the conditional distribution is small, and that the edge distribution
p(y) of the generated image over all class probabilities is large. IS is the average KL
divergence of these two distributions, and is expressed as follows:

IS(x) = exp(Ex[DKL(p(y|x) ‖ p(y))]) = exp(H(y)−Ex[H(y|x)]), (7)

The FID [59] determines the quality of the generated image by calculating the distance
between the feature vectors of the real image and the generated image, which is extracted
and calculated using an image classification model (e.g., Inception v3). A lower FID
score means that the two sets of images, or the statistics of the two, are more similar. The
calculation formula is as follows:

FID(r, g) = ‖ur − ug‖2
2 + Tr

(
Σr + Σg − 2

(
ΣrΣg

)1/2
)

, (8)
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where ur and ug represent the mean values of the real image and the generated image on a
certain layer of features of Inception v3, respectively; Σr and Σg represent the variance of
the real image and the generated image on a certain layer of features, respectively.

The KID [60] is used to evaluate the realism of the generated image, and the lower the
KID, the higher the visual similarity between the real image and the generated image. It
calculates the square of the maximum mean discrepancy (MMD) of the higher perceptual
features of the image (the last layer of the Inception model). The two data distributions
of the real and generated images are Pr and Pg, respectively. The KID between the two
distributions can be expressed as follows:

KID
(

Pr, Pg
)
= Ex,x′∼Pr [K(x, x′)]− 2Ex∼Pr ,y∼Pg [K(x, y)]+

Ey,y′∼Pg [K(y, y′)], (9)

where x ∼ Pr and y ∼ Pg denote the high-level perceptual features of the real image and
the generated image, respectively, and K(·, ·) denotes the kernel function used for feature
transformation:

K(x, y) =
(

1
d

xTy + 1
)3

, (10)

4.2. Datasets

1. DOTA dataset [61,62]: This is a large image dataset for aerial image object detection.
The image sources include different sensors and platforms, including Google Earth, the JL-1
satellite, and the GF-2 satellite of the China Resource Satellite Data and Application Center.
The dataset consists of a total of 2806 aerial images, each with pixel sizes ranging from
800 × 800 to 4000 × 4000, containing objects of different scales, orientations, and shapes,
and the images are annotated by experts using 15 common target categories. In this paper,
the images were cropped to a 640 × 640 pixel size for testing.

2. UCAS-AOD dataset [63]: Remote sensing images were collected from Google Earth
and used for plane detection. The plane dataset consists of 600 images of 3210 planes, and
all the images are carefully selected so that the target directions in the dataset are evenly
distributed. In this paper, the images were cropped to a 640 × 640 pixel size for testing.

4.3. Image Generation Comparison Results

In order to evaluate the performance of the algorithm in this paper, the method in this
paper was compared with other SOTA image generation methods on two datasets. All
comparison procedures and test results of the compared models were obtained from their
authors’ official websites.

DOTA dataset: The results of the algorithm proposed in this paper and the other
algorithms were quantitatively analyzed on the DOTA dataset. The FID, KID, and IS
metrics of different image generation algorithms are shown in Table 1. Compared with
the other five image generation models, the SGA-GAN algorithm proposed in this paper
returned the optimal results for the three metrics, i.e., FID, KID, and IS. Compared with the
baseline model StyleGANv2, the SGA-GAN algorithm proposed in this paper reduced the
FID value from 85.967 to 72.924, the KID value from 0.059 to 0.047, and the IS value from
4.581 to 4.815. Compared with StyleGAN-XL, the FID and KID of SGA-GAN decreased
by 23.927 and 0.003, respectively, and the IS improved by 2.351 on the DOTA dataset. The
quantitative comparison in terms of the FID, KID, and IS indicates that the SGA-GAN
algorithm proposed in this paper can generate higher-quality remote sensing images.
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Table 1. FID, KID, and IS metrics for different methods on the DOTA dataset.

Model FID KID IS

ProGAN [32] 174.600 0.141 4.419
StyleGANv1 [35] 148.882 0.112 4.712
StyleGANv2 [25] 85.967 0.059 4.581

FastGAN [64] 77.918 0.049 4.798
StyleGAN-XL [65] 96.851 0.050 2.464
SGA-GAN (Ours) 72.924 0.047 4.815

The qualitative evaluation of the results of the different algorithms on the DOTA
dataset is shown in Figure 6. The remote sensing sample images generated by ProGAN
and StyleGANv1 were more seriously distorted, and the partial structures of the wings
of some planes in the images were severely distorted. The StyleGANv2, FastGAN, and
StyleGAN-XL methods generated a few clearer sample images, but there was also distortion
in the partial structures of the wings and tails. In contrast, the method proposed in this
paper generated sample images with realistic visual effects, and the image structure was
more realistic and reliable.
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UCAS-AOD dataset: The results of the algorithm proposed in this paper and the other
algorithms were quantitatively analyzed on the UCAS-AOD dataset. The FID, KID, and
IS metrics of the different image generation algorithms are shown in Table 2. Compared
with the other five image generation models, SGA-GAN again returned the optimal results
for the three metrics, i.e., FID, KID, and IS. Compared with StyleGANv2, the SGA-GAN
algorithm proposed in this paper decreased the FID value from 58.405 to 54.096, the KID
value from 0.047 to 0.042, and the IS value from 3.493 to 3.728. Compared to StyleGAN-XL,
the FID and KID of SGA-GAN on the UCAS-AOD dataset decreased by 41.464 and 0.009,
respectively, and the IS improved by 1.646. The quantitative comparison of the three
metrics, i.e., FID, KID, and IS, shows that the SGA-GAN algorithm proposed in this paper
can generate higher-quality remote sensing images.
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Table 2. FID, KID, and IS metrics for different methods on the UCAS-AOD dataset.

Model FID KID IS

ProGAN 158.0978 0.154 3.285
StyleGANv1 117.276 0.128 3.537
StyleGANv2 58.405 0.047 3.493

FastGAN 63.469 0.049 3.342
StyleGAN-XL 95.560 0.051 2.082

SGA-GAN (Ours) 54.096 0.042 3.728

The qualitative evaluation of the results of the different algorithms on the UCAS-
AOD dataset is shown in Figure 7. The target types in the UCAS-AOD dataset are more
concentrated with less inter-class variation. ProGAN, StyleGANv1, and StyleGAN-XL
generated a small number of sample target images with a clear structure, but most of the
images were severely distorted. The StyleGANv2 and FastGAN methods generated clearer
sample images, but there was structural distortion. The method proposed in this paper
generated more realistic sample images with clearer and more reliable structures.
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Comparing the results of all algorithms on the DOTA and UCAS-AOD datasets, it can
be seen that the algorithms in this paper have good performance metrics and visual effects
on both datasets.

4.4. Object Detection Test Results

To evaluate the performance of the algorithm in this paper, target samples generated
using the method in this paper were added to the training set of two publicly available aerial
remote sensing object detection datasets, while the test set was left unchanged. Comparative
experiments were conducted on three different types of generic object detection models,
namely YOLOv5 [51], YOLOX [52], and Efficientdet [53], to verify the ability of this paper’s
method to solve the problems of insufficient image diversity and unbalanced numbers
between classes in existing datasets.
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4.4.1. Multi-Class Object Data

Adding single-class targets to multi-class target data: The DOTA airborne remote sens-
ing dataset contains 15 common object classes. The number of plane targets is significantly
lower than that of ships and vehicles, and the plane targets are of different sizes. We added
1000 samples of plane targets of different sizes generated by the method in this paper to the
training set of the original dataset, as shown in Figure 8; the left subfigure (a) shows the
image slices of the original dataset, and the right subfigure (b) shows the added generated
data to compare the experimental results of object detection.
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To verify the effectiveness of SGA-GAN in improving the performance of remote
sensing object detection, the YOLOv5 and YOLOX detection networks were used to verify
the effectiveness on the DOTA dataset. The test results are shown in Table 3.

Table 3. Comparison of object detection results (Single-Class) before and after data augmentation on
the DOTA dataset.

Model Train
All Plane

P (%) R (%) mAP (%) P (%) R (%) AP (%)

YOLOv5
DOTA 75.4 67.4 70.6 87.5 84.1 88.5

DOTA + ORI1000 75.6 67.8 70.9 86.9 84.3 88.6
DOTA + GEN1000 76.6 67.5 71.6 90.6 85.8 90.2

YOLOX
DOTA 81.3 80.3 84.7 90.8 86.9 91.0

DOTA + ORI1000 81.5 80.9 85.0 89.3 87.7 91.2
DOTA + GEN1000 82.1 81.1 85.6 90.1 89.3 92.3

ORI1000 represents 1000 plane target images in the original DOTA data with conven-
tional data enhancement (random cropping, scaling, rotation, etc.). GEN1000 represents
1000 plane target samples generated using this paper’s method, SGA-GAN, stitched into a
640 × 640-size image and added to the training set. From Table 3, it can be seen that, for
YOLOv5, the mAP and AP of plane objects were improved by 1.0% and 1.7%, respectively,
after adding the plane target images generated by SGA-GAN. For YOLOX, the mAP and
AP of plane objects were improved by 0.9% and 1.3%, respectively, after adding the plane
target sample images generated by SGA-GAN. It can also be seen from the table that, com-
pared with the traditional data enhancement methods, the SGA-GAN-generated images
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had a greater enhancement effect on remote sensing object detection, which can effectively
alleviate the inter-class and intra-class imbalance problems existing in the dataset.

Adding multi-class targets to the multi-class target data: A total of 1000 images each
of swimming pools, storage tanks, and planes were added to the training dataset of the
original dataset, as shown in Figure 9; the left subfigure (a) shows the image slices of
the original dataset, and the right subfigure (b) shows the added generated data. The
experimental results of multi-class object detection were compared and observed using the
YOLOv5 and YOLOX detection networks.
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the generated image.

The test results are shown in Table 4, where ORIm1000 represents the multi-class target
images in the original DOTA data with conventional data enhancement, and GENm1000
represents the multi-class target samples generated using the SGA-GAN method proposed
in this paper. As can be seen from the table, for YOLOv5, the mAP and AP of the three
classes of objects were improved by 2.1%, 1.9%, 0.9%, and 2.4% after adding the target
images generated by SGA-GAN. For YOLOX, the mAP and AP of the three classes of objects
were improved by 1.7%, 0.9%, 1.7%, and 3.1% after adding the target images generated
by SGA-GAN.

Table 4. Comparison of object detection results (multi-class) before and after data augmentation on
the DOTA dataset.

Model Train
All Plane Swimming

Pool Storage Tank

mAP (%) AP (%)

YOLOv5
DOTA 70.6 88.5 54.5 77.8

DOTA + ORIm1000 70.9 88.6 54.6 78.2
DOTA + GENm1000 72.7 90.4 55.4 80.2

YOLOX
DOTA 84.7 91.0 61.2 83.6

DOTA + ORIm1000 85.0 91.1 61.8 83.7
DOTA + GENm1000 86.4 92.0 62.9 86.7

4.4.2. Single-Class Data

Using the UCAS-AOD dataset, which contains only a single plane target, 1000 gen-
erated plane targets of different sizes were added to the original dataset, as shown in
Figure 10, with the original dataset on the left (a) and the added generated data on the right
(b), to compare the experimental results of the observed object detection.
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Figure 10. Schematic of the dataset, (a,b) are the original and generated images, respectively.

The test results are shown in Table 5. ORI1000 represents 1000 plane target images in
the original UCAS-AOD data, and GEN1000 represents 1000 plane target samples generated
by the method proposed in this paper. The AP of plane objects was significantly improved
by 1.6% for YOLOv5, 0.3% for YOLOX, and 1.8% for Efficientdet, after adding the plane
objects generated by the method proposed in this paper, which proves that this paper’s
method can effectively alleviate the problem of the model performance being limited by
the size of the dataset.

Table 5. Comparison of object detection results before and after data augmentation on the
UCAS-AOD dataset.

Model Train
Plane

P (%) R (%) AP (%)

YOLOv5
UCAS-AOD 96.8 92.5 95.5

UCAS-AOD + ORI1000 96.6 93.1 95.8
UCAS-AOD + GEN1000 96.8 94.4 97.1

YOLOX
UCAS-AOD 95.1 96.3 96.8

UCAS-AOD + ORI1000 95.2 96.5 96.7
UCAS-AOD + GEN1000 95.4 97.3 97.1

EfficientDet
UCAS-AOD 98.8 83.6 91.8

UCAS-AOD + ORI1000 98.7 85.2 92.6
UCAS-AOD + GEN1000 98.1 88.3 93.6

4.5. Ablation Experiments
4.5.1. The Effectiveness of Mode Seeking Regularization (Lms)

During the model training, mode seeking regularization (Lms) was removed, and the
network was retrained on the DOTA dataset using the same training scheme to verify its
effect on the model.

As can be seen from Table 6, the addition of Lms reduced the FID from 74.421 to 72.924,
the KID from 0.049 to 0.047, and the IS from 4.710 to 4.815. Thus, the effectiveness of mode
seeking regularization in the image generation process is verified, showing that it can
increase the diversity of the generated images.
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Table 6. FID, KID, and IS metrics on the DOTA dataset. (Lms ablation experiments).

Model FID KID IS

SGA-GAN without Lms 74.421 0.049 4.710
SGA-GAN 72.924 0.047 4.815

4.5.2. The Effectiveness of Path Length Regularization (Lpl)

During the model training, path length regularization (Lpl) was removed, and the
network was retrained on the DOTA dataset using the same training scheme to verify its
effect on the model.

As can be seen from Table 7, the addition of Lpl reduced the FID from 103.777 to 72.924,
the KID from 0.076 to 0.047, and the IS from 4.560 to 4.815. Thus, the effectiveness of path
length regularization in the image generation process is verified.

Table 7. FID, KID, and IS metrics on the DOTA dataset. (Lpl ablation experiments).

Model FID KID IS

SGA-GAN without Lpl 76.561 0.050 4.761
SGA-GAN 72.924 0.047 4.815

4.5.3. The Effectiveness of the Attention Module (MAFM)

The attention module (MAFM) was removed from the generator structure, and the
network was retrained on the DOTA dataset using the same training scheme to verify the
effectiveness of the MAFM.

As can be seen from Table 8, the addition of the MAFM reduced the FID from 85.967 to
80.156, the KID from 0.059 to 0.054, and the IS from 4.581 to 4.643, thus verifying the
effectiveness of the MAFM in the image generation process.

Table 8. FID, KID, and IS metrics on the DOTA dataset. (MAFM ablation experiments).

Model FID KID IS

Baseline 85.967 0.059 4.581
Baseline + MAFM 80.156 0.054 4.643

4.5.4. Impact of the Gradient Structure Information-Guided Model on the Algorithm
(GSNet)

GSNet was removed, and the network was retrained on the DOTA dataset using the
same training scheme to verify its effectiveness.

As can be seen from Table 9, the FID was decreased from 80.156 to 72.924, the KID was
decreased from 0.054 to 0.047, and the IS was decreased from 4.643 to 4.815 after adding the
branching network, which verifies the effectiveness of the gradient structure information
guidance in the image generation process.

Table 9. FID, KID, and IS metrics on the DOTA dataset. (GSNet ablation experiments).

Model FID KID IS

SGA-GAN without GSNet 80.156 0.054 4.643
SGA-GAN 72.924 0.047 4.815

5. Conclusions

The distortion phenomenon exists in remote sensing images generated by existing
image generation methods. To address this problem, this paper proposed an attention
generative adversarial network based on gradient structure information guidance (SGA-
GAN) for remote sensing image generation. The gradient structure information extraction
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branching network can effectively alleviate the structure distortion phenomenon existing in
remote sensing image generation and improve the quality of the generated remote sensing
images. Comparison experiments were conducted on two remote sensing datasets, namely
UCAS-AOD and DOTA. Compared with five other advanced image generation models,
the SGA-GAN algorithm proposed in this paper returned the optimal results for the three
studied metrics, i.e., FID, KID, and IS, and generated reliable structures and realistic visual
sample images. At the same time, experiments were conducted on two datasets using
three different object detection models, namely YOLOv5, YOLOX, and EfficientDet. After
adding aircraft target images generated by SGA-GAN to the DOTA dataset, the APs of
YOLOv5 and YOLOX for aircraft objects were improved by 1.7% and 1.3%, respectively.
The comparison experiments show that the algorithm in this paper can effectively alleviate
the problems of the insufficient scale of existing remote sensing datasets and the imbalance
within and between categories, meaning it can be useful in practical applications.

In the next step, we will jointly train the remote sensing image generation and ob-
ject detection networks to improve the performance of the model in practical applica-
tions and provide data and experimental support for the interpretation of satellite remote
sensing images.
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