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Abstract: The accurate prediction of surface subsidence induced by coal mining is critical to safe-
guarding the environment and resources. However, the precision of current prediction models is
often restricted by the lack of pertinent data or imprecise model parameters. To overcome these limi-
tations, this study proposes an approach to predicting mine subsidence that leverages Interferometric
Synthetic Aperture Radar (InSAR) technology and the long short-term memory network (LSTM).
The proposed approach utilizes small baseline multiple-master high-coherent target (SBMHCT)
interferometric synthetic aperture radar technology to monitor the mine surface and applies the long
short-term memory (LSTM) algorithm to construct the prediction model. The Shigouyi coalfield in
Ningxia Province, China was chosen as a study area, and time series ground subsidence data were
obtained based on Sentinel-1A data from 9 March 2015 to 7 June 2016. To evaluate the proposed
approach, the prediction accuracies of LSTM and Support Vector Regression (SVR) were compared.
The results show that the proposed approach could accurately predict mine subsidence, with maxi-
mum absolute errors of less than 2 cm and maximum relative errors of less than 6%. The findings
demonstrate that combining InSAR technology with the LSTM algorithm is an effective and robust
approach for predicting mine subsidence.

Keywords: InSAR technology; mines; time series subsidence monitoring; deformation prediction;
deep learning; LSTM algorithm

1. Introduction

In recent years, satellite remote sensing images have become increasingly utilized for
monitoring land surface changes due to the continuous development of computer and
space satellite technology. In particular, InSAR has emerged as a popular technology for
monitoring surface subsidence changes, especially goaf deformation, as it is not impacted
by weather and has extensive coverage [1]. Goaf is formed after coal extraction from
underground, and the continuous and efficient monitoring of surface subsidence above
goaf can facilitate the understanding of surface subsidence damage to surface structures,
explore mining subsidence mechanisms, and provide a decision-making basis for geological
disaster prevention and ecological restoration in mining areas [2]. The authors of [3]
estimated that the total economic losses due to subsidence from coal mining in China were
approximately 32 billion CNY (about 4.9 billion USD) from 2001 to 2010. These losses were
primarily due to damage to buildings, roads, and other infrastructure caused by surface
subsidence above goaf. Surface subsidence caused by goaf formation can lead to accidents
such as landslides, rockfalls, and collapses, which can result in injuries and fatalities; [4]
and [5] reported that coal mining-related subsidence caused accidents, resulting in deaths
or injuries every year in the world. Efficient monitoring of surface subsidence above goaf
can help in preventing accidents and reducing economic losses [6–8]. The traditional
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form of goaf surface subsidence monitoring involves point-like monitoring stations, which
are characterized by high consumption, low efficiency, limited coverage, and insufficient
monitoring capability. Thus, it is of immense theoretical value and practical significance
to use the new monitoring method of goaf surface subsidence (InSAR) to explore the
formation mechanism behind subsidence in key mining areas and predict the evolution law
and development trend of subsidence based on new monitoring methods and technology.
Recent advances in deep learning theory have had a significant impact on time series
prediction. As a result, an increasing number of deep-learning algorithms are being utilized
to research long time series prediction, thereby making it possible to obtain mine subsidence
characteristic information and dynamic forecasting in mining areas [9,10]. Deep-learning
algorithms such as artificial neural networks (ANNs) [11] and recurrent neural networks
(RNNs) [12] can be used to analyze long time series data and predict mine subsidence
characteristics and dynamics. However, these methods need further improvement to
improve the accuracy of prediction.

InSAR, an active remote-sensing technology, has been widely used for monitoring sub-
sidence and surface deformation [13]. Initially, this technology was employed for ground
elevation mapping [14] and subsequently extended to surface deformation monitoring [15].
However, the atmospheric phase delay and temporal and spatial decorrelation associated
with two-pass InSAR technology can lead to phase unwrapping failure. Therefore, re-
searchers proposed time series InSAR monitoring technology [16], including PS-InSAR [17]
and SBAS-InSAR [18], with the latter being more suitable for deformation monitoring
in mining areas. SBAS-InSAR technology involves registering interferences in pairs of
SAR data sets covering the same area and selecting interferograms whose temporal and
spatial baselines meet the threshold [19]. The highly coherent points in the images are then
reconstructed based on the interferograms’ phase. SBAS-InSAR has shown high-quality
monitoring results with sub-centimeter monitoring accuracy [20,21]. G. Herrera et al. [22]
demonstrated the monitoring capacity of InSAR technology using multi-sensor and multi-
temporal SAR data in very slow landslides. Dario Peduto et al. [23] used DInSAR tech-
nology to analyze building deformation and presented a multi-scale procedure tailored
to analyze the settlement-induced building damage; it could forecast building damage in
urban areas. M. P. Sanabria et al. [24] proposed a methodology to produce subsidence activ-
ity maps based on PSInSAR data; these displacement map measurements are interpolated
based on conditional Sequential Gaussian Simulation complement, and they are helpful for
the identification of wide subsiding areas.

In the context of mining subsidence, InSAR technology has been increasingly rec-
ognized as a valuable tool for monitoring surface deformation. However, predicting
subsidence movement remains a challenge and requires a prediction model that integrates
InSAR data. To date, two broad categories of prediction models have been employed:
traditional and late models. Traditional models use various technical methods to obtain
surface deformation data post-mining and predict the maximum deformation value using
mathematical functions or numerical models. Examples include numerical simulation,
similar material simulation, probability integration, and other static prediction models [25].

The mining subsidence process is a complex spatio-temporal phenomenon, pos-
ing challenges for applying static prediction models that cannot account for dynamic
changes [26]. Alternatively, continuous multi-period surface deformation data obtained
by various technical means can be analyzed to predict the location and timing of maxi-
mum surface movement deformation by incorporating time functions such as Knothe [27],
Weibull [28], and Logistic [29]. However, these models can only capture the linear relation-
ship between two vectors and are limited in their ability to predict nonlinear deformation
in mining areas. Moreover, due to the dynamic changes in mining practices, such as
mode, speed, and roof management, the accuracy of dynamic time function simulations
is often compromised [30]. Due to the complexity of the mining subsidence process in
both time and space, static prediction models have limited practical application as they
cannot simulate the dynamic changes in the subsidence process. In addition, the actual
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surface subsidence is different under different geological and mining conditions, but the
prediction result is the same if the same time function is used, which is contradictory to the
actual situation. Therefore, researchers have focused on “late models”, such as the grey
model [31], regression analysis [32,33], support vector machine regression [9], Bayesian
network [10], wavelet analysis [34], and artificial neural network [35,36]. These models rely
on modern and efficient monitoring means such as GNSS, InSAR, and LIDAR to obtain
long-term series monitoring data and analyze internal statistical laws and trends. However,
these methods are sensitive to model parameters, and adding mining geological parameters
for goaf prediction can be challenging.

Compared to traditional mining subsidence prediction methods and late models, deep
learning offers a novel approach to address this challenge. By formulating the relationship
between response variables in a regression equation, deep-learning algorithms can accu-
rately capture the impact of independent variables influenced by one or more dependent
variables. While previous deep-learning techniques such as BP neural networks [37] and
recurrent neural networks (RNN) [12] have been developed, they have not been ideal
for long-term series prediction [38]. However, recent studies have shown that LSTM
models, which combine RNN and attention mechanisms, are better suited for long-term
prediction [39]. These models use a cellular structure, with the forgetting gate discarding
unnecessary information while the memory gate retains important information.

Homa Ansari et al. [40] conducted an experiment on the Lazufre Volcanic Complex,
situated in the central volcanic region, concluding that signal error associated with InSAR
technology is a crucial factor contributing to inaccurate predictions when combined with
LSTM. Hill et al. [41] focused on the influence of seasonal perturbations on forecasting
outcomes. The LSTM prediction methodology proved efficient for short-term projections
(less than three months). Qinghao Liu et al. [42] proposed a heterogeneous LSTM network
model, which integrates spatial heterogeneity into predicting ground subsidence, success-
fully achieving accurate and efficient large-scale subsidence forecast. Yi Chen et al. [43]
demonstrated the effectiveness of an unimproved LSTM neural network approach for
time-series InSAR land subsidence prediction. Despite using InSAR technology and LSTM
network models to forecast deformation, these studies produce contradictory findings due
to the insufficient recognition of the significance of the InSAR training data, particularly
in areas affected by error signals, such as volcanic and mining regions. Above all, the
traditional InSAR needs to be improved to monitor mine deformation; inaccurate training
data do not help improve the prediction accuracy of deep learning [44,45]. The purpose of
this study is to obtain fine subsidence characteristics and accurate data on mining surfaces
by improving InSAR technology and realize the accurate prediction of mining surface
subsidence combined with the LSTM algorithm. This study presents an integrated monitor-
ing and prediction model for the goaf surface that combines SBMHCT-InSAR and LSTM
algorithms. The utilization of SBMHCT-InSAR technology enhanced multiple aspects of
image processing and interpretation, such as the image registration algorithm, interfer-
ogram filtering method, and high coherence point extraction method. The objective of
these advancements is to mitigate the disruptive influence of noise signal and optimize the
training data of the prediction model, ultimately resulting in an enhanced level of accuracy.
In practice, this technology is leveraged in the monitoring of goaf surface deformation,
facilitating the retrieval of settlement values from equal interval time series training data.
Additionally, the LSTM algorithm is employed to establish a deformation prediction model
for coal mining areas by drawing the global dependence relationship between input and
output and learning the nonlinear patterns and features of the training data. The main aim
of this research is to forecast geological hazards while also addressing practical problems as-
sociated with the prediction of goaf subsidence using InSAR technology with deep learning
theory. The study findings not only offer methodological support for mining subsidence
management but also promote the quantitative application and development of InSAR
technology. Therefore, the proposed model carries significant scientific and practical value.
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2. Materials and Methods
2.1. Site Selection

The Shigouyi (SGY) mine area, one of the Ningdong coalfields situated in the eastern
region of the Ningxia province, is depicted in Figure 1, with its geographical coordinates
falling between 37◦39′15′′–37◦45′17′′N and 106◦27′49′′–106◦30′44′′E. It stretches westward
to the Liupan Mount tectonic zone and eastward to the Erdos coal seam; it comprises a series
of folds and faults. However, the Shigouyi mine experiences a significant, concentrated
distribution of surface damage and subsidence because of its location on the Loess Plateau.
The geological structure above the coal beds susceptible to mining is highly fragile.
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Figure 1. Geographical location of Shigouyi coalfield. The background is optical imagery of
SGY coalfield.

Considering space constraints, this study focuses primarily on monitoring and predict-
ing surface subsidence in the SGY coal mine. In this regard, a total of 13 GNSS observation
stations have been installed above the working face of the mine, and the corresponding
settlement data have been collected for verification of the experimental findings. The
Chinese Southsurvey GNSS receivers were utilized to collect GNSS data in the real-time
kinematic mode. One receiver was situated at the base station, which was positioned
on a stable surface, while the others monitored displacements at the GNSS stations. The
GNSS receiver exhibited horizontal and vertical accuracy of ±

(
10 + 1× 10−6 × D

)
mm

and ±
(
20 + 1× 10−6 × D

)
mm (where D is the distance), respectively. Over the period of

9 March 2015 to 1 July 2016, GNSS-RTK measurements were taken at intervals of 24 days.
Initially, a GNSS receiver with a tripod was installed on the reference station situated on
the stable surface, where the antenna height was measured; receivers were opened; and
the reference station height, antenna height, and WGS84 coordinate were inputted. The
radio channel was then turned on and checked. The roving station GNSS receiver was
subsequently opened with a centering rod, exact parameters were inputted, the radio
channel and number of satellites were checked, and simultaneous observation with the
reference station GNSS receiver was completed. Using the roving station GNSS receiver,
the 12 GNSS stations’ coordinates and heights were measured. Data were obtained at a
sampling rate of 20 Hz, with the observation time being more than 180 s. These 12 GNSS
stations were measured again in the same manner at intervals of 24 days in the ensuing
months, with the deformation value calculated by the difference value of these times, while
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quality control measures were taken each time. Verification of the reliability of the RTK
results was conducted using the method of comparison with quick static measurement,
where at least three points were selected as checkpoints, and the observation time of quick
static measurement exceeded 600 s. After data processing, the maximum error between
quick static measurement and RTK was less than 2 cm in height.

2.2. Data Selection

This study processed 19 SAR images (C-band) obtained from the Sentinel-1 satellite
over a 15-month period from 9 March 2015 to 7 June 2016. Table 1 shows the parameters
of the SAR data used in this study; their temporal resolution is 24 days, and their spatial
resolutions are 20 and 5 m in azimuth and range, respectively.

Table 1. Sentinel-1A data covering SGY mine area used in this work.

No. Acquisition Date
(ddmmyyyy) Track Product

Type Mode Polarization Orbit
Direction

1 9 March 2015 157 SLC IW VV ascending
2 2 April 2015 157 SLC IW VV ascending
3 26 April 2015 157 SLC IW VV ascending
4 20 May 2015 157 SLC IW VV ascending
5 13 June 2015 157 SLC IW VV ascending
6 7 July 2015 157 SLC IW VV ascending
7 31 July 2015 157 SLC IW VV ascending
8 24 August 2015 157 SLC IW VV ascending
9 17 September 2015 157 SLC IW VV ascending

10 11 October 2015 157 SLC IW VV ascending
11 4 November 2015 157 SLC IW VV ascending
12 22 December 2015 157 SLC IW VV ascending
13 15 January 2016 157 SLC IW VV ascending
14 8 February 2016 157 SLC IW VV ascending
15 3 March 2016 157 SLC IW VV ascending
16 27 March 2016 157 SLC IW VV ascending
17 20 April 2016 157 SLC IW VV ascending
18 14 May 2016 157 SLC IW VV ascending
19 7 June 2016 157 SLC IW VV ascending

The SAR data cover a large area, including the SGY mine area, and due to computa-
tional efficiency, SAR data are clipped in pre-processed procedure. The European Space
Agency (ESA) released precise orbit ephemerides (POD) data for all the Sentinel-1 SAR
data. POD data are important for reducing registration errors. These data are used for
phase re-flattening and orbital refinement. To eliminate the impact of topography on the
measured surface deformation, the authors employed the three-arc-second Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) obtained from the National
Aeronautics and Space Administration (NASA).

2.3. Fundamental Principle of SBMHCT-InSAR Technique

The present study puts forward SBMHCT-InSAR technology for precise inversion
of surface deformation. The proposed approach integrates the Permanent Scattering (PS)
and high-coherence target methods. Linear and nonlinear deformation inversion meth-
ods are employed using the coherent target and singular value decomposition methods,
respectively. SBMHCT-InSAR technology comprises key steps such as interference pair
combination of multi-principal images, high-precision image registration, interferomet-
ric phase noise filtering, high-coherence target extraction, and the deformation inversion
method. The SBMHCT-InSAR processing steps are as follows:
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2.3.1. Group the SAR Pairs

There are 19 scenes of SAR images ordered at times (t0, . . . , tN) over the SGY mine
area. M interferograms are constructed using installed multiple thresholds. The quantity
M is such that it adheres to the following inequality:

N + 1
2
≤ M ≤ N

(
N + 1

2

)
(1)

Figure 2 illustrates the experimental setup of the SAR pairs’ connection diagram. The
experiment set thresholds of spatial and temporal baselines as 300 m and 200 days, respec-
tively. The SAR data acquired on 2 April 2015 were selected as the super master image;
others were co-registered and resampled. Other images that meet the threshold condition
also generate interferometric pairs, resulting in 78 differential interferometric images.
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2.3.2. Highly Accurate Image Registration

This paper presents an optimal matching point-based InSAR image registration
method. Initially, an external DEM is emulated as a synthetic SAR image, and match-
ing features are extracted from the SAR image to be registered in the simulated image.
Then, the vector field consistent point set matching algorithm is employed to eliminate
the homonymous feature points between the primary and secondary SAR images, remove
the external points, and compute the polynomial transformation parameters for accurate
registration. Ultimately, high-precision registration of the InSAR image is achieved.

2.3.3. Noise Filtering of Interferometric Phase

This study proposes an interferogram filtering method based on binary decomposition,
which has the potential to effectively address the issue of noise in SAR images. The
proposed approach decomposes the interferogram using a binary empirical mode algorithm
into image and noise information. Filtering is then performed using a local window signal-
to-noise ratio as the filtering factor, with strong filtering applied in regions of high noise
and weak filtering in regions of low noise. Specifically, the method decomposes the
original interferogram into fourth-order intrinsic mode function (IMF) signals and uses
the signal-to-noise ratio of local windows as the filtering factor of the Goldstein filter
to filter the first third-order IMF signals, which contain most of the noise information.
The method demonstrates a strong noise-filtering ability while also preserving the edge
details of interference fringes. As a result, the coherence of the interferogram is improved
significantly after filtering.
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2.3.4. High-Coherence Target Extraction

In 2004, Hooper [46] introduced the StaMPS method, which identifies highly coherent
points based on the stability of their phase values and high coherence and signal-to-noise
ratio. Another method used to identify high-coherence points involves selecting a ra-
dius of a circle around known high-coherence points and then applying the amplitude
dispersion threshold method to find candidate high-coherence points. Next, iterative anal-
ysis is carried out on the phase stability of the candidate points, and the high-coherence
points are determined. This method reduces the computational workload and improves
efficiency [47].

2.3.5. Deformation Inversion

The proposed method aims to generate a Delaunay triangulation network for the
highly coherent points after differential interferogram generation and identification of the
highly coherent points. A linear model of velocity and elevation errors is then established
based on the phase difference between two adjacent highly coherent points on the inter-
ferogram. By solving the coherence coefficient equation of the model, the incremental
values of deformation velocity and elevation error are determined. The absolute value is
obtained by incremental integration of the velocity and elevation error of several points.
Next, the residual phase is unwrapped and calibrated by the discrete point phase after
removing the linear model phase. Subsequently, the residual phase of a single SAR image
is inverted using an interference combination matrix. Finally, nonlinear deformation and
atmospheric influence phases are separated through time and space filtering, and a time
series deformation sequence is obtained by calculating the linear deformation rate and
nonlinear deformation phase.

Above all, the SBMHCT-InSAR technology introduced above is improved on the basis
of SBAS-InSAR technology. Interactive Data Language (IDL) used for programming to
improve the key steps of SBAS-InSAR technology, including image registration, filtering,
and high coherence point extraction, in order to improve the adaptability and accuracy of
SBAS-InSAR technology in mining deformation application.

2.4. Principles of LSTM

The LSTM network introduces a gate mechanism in the hidden layer to regulate
information loss and dynamically adjusts the backpropagation process, enabling the net-
work to learn long-distance time series data. This mechanism is crucial for the successful
application of the LSTM model in large-scale surface subsidence prediction over extended
time periods.

2.4.1. The Framework of LSTM

Figure 3 illustrates the prediction framework for time series mine subsidence based
on LSTM. The original settlement data are pre-processed to meet the network input re-
quirements in the first step, while the hidden layer uses the cell structure to construct
the circulating neural network. Then, predicted values are exported by the output layer.
The network training calculates the loss value between the predicted and true values and
uses the ADAM algorithm to optimize the model. By dynamically adjusting the long
and short-term memory network, the network can fully learn the nonlinear correlation of
different subsidence time series and thus capture the complex subsidence mechanism in
the study area. This approach not only reduces the requirement for high-quality diachronic
data but also improves the accuracy and interpretability of subsidence prediction.
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2.4.2. Cell Structure of LSTM

The LSTM network comprises a set of cell units that serve as the central structure
in the hidden layer. Figure 4 illustrates that the hidden layer contains three cell units. In
the LSTM model, the input data at time t in the sample time series are represented by xt,
while the corresponding output data of the cell unit in the implicit state are represented
by ht. The flow of data in each cell unit is executed sequentially for input, information
forgetting, cell state update, and implicit state output. The forward calculation method can
be expressed as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(3)

ct = ftct−1 + ittanh(wxcxt + whcht−1 + bc) (4)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (5)

ht = ottanh(ct) (6)

where i, f, c, and o represent the input gate, forgetting gate, cell state, and output gate, respec-
tively; W and b represent the corresponding weight coefficient matrix and bias, respectively;
σ and tanh refer to the sigmoid and the hyperbolic tangent activation function, respectively.
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The training process of the LSTM network adopts time backpropagation (BPTT),
which is similar to the traditional backpropagation algorithm [48]. The algorithm involves
four steps: First, the output of the cells is calculated based on the forward-computation
method specified in Equation (5). The error term for each cell is then calculated in reverse,
including time and network level backpropagation. Then, the gradient of each weight is
determined according to the corresponding error term. Finally, the weights are updated
using a gradient optimization algorithm.

2.5. Time Series Prediction Model Combining SBMHCT-InSAR Results and LSTM

Drawing on the fundamental tenets of the LSTM algorithm, the time series of coal
mine subsidence obtained via InSAR technology are leveraged as training samples. Notably,
these data exhibit nonlinear relationships, taking the form of {Ht} = {H1, H2, · · · , Hn}.
As such, the values of these data serve as the training samples for the LSTM algorithm,
whereby a predictive model is established, the model parameters are solved, and the
corresponding predicted values are obtained. The accuracy of the predictive model is
evaluated by comparing the expected value with the corresponding truth value. Ultimately,
the mine forecasting method is implemented in Python language.

Step 1: Data pretreatments. The settlement time sequence data are processed by
extracting a training sample of length L, denoted as Hs, from which the last Y values
are designated as sample labels, and the first (L−Y) values are used as sample inputs,
subject to the constraints of 2 ≤ L < m and 1 ≤ Y < L. Figure 5 depicts the form of sample
division. By implementing this segmentation method, all highly coherent target points are
pre-processed, and n training samples can be extracted. The paper adopts a single-step
prediction method to construct the network model, whereby the length of the output
sequence Y is set to y, and the settlement at the L moment is predicted based on the
settlement information at the first (L−Y) moment.

Step 2: Network training. In Figure 3, the hidden layer output value Ypre is the final
output through all LSTM hidden layer cell units. The input sample {x1, x2, · · · xL−Y} of the
hidden layer is a two-dimensional array; output Ypre of the hidden layer and sample label
Y are both one-dimensional arrays (n,1), where n represents the number of highly coherent
points. In this paper, the statistical error index is the mean square error, and the following
formula is defined as the loss function of the training process:

loss =
n

∑
t=1

(
Ypre −Y

)2/n (7)
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Step 3: Parameter optimization. To construct an accurate LSTM prediction model,
several parameters need to be considered, including the sample partition length (L), net-
work layer number (K), and feature number (S) of each LSTM hidden layer [49,50]. This
paper employs a multi-layer grid search method to explore these parameters and selects the
parameter combination with the highest average prediction accuracy as the optimal choice.
The accuracy is determined by minimizing the prediction error (ε) between the predicted
sample (Ypre) and the actual sample (Y). The objective function is expressed as follows:

minε
(
Y, Ypre

)
=
∣∣Ypre −Y

∣∣ (8)

s.t.


2 ≤ L < M STEPL ‖ L
2 ≤ K < i STEPK ‖ K

10 ≤ S ≤ Smax STEPS ‖ S
L, K, S ∈ N

(9)

where STEPL, STEPK, and STEPS are the grid search STEPS of corresponding parameters,
respectively.

Step 4: Output and accuracy assessment. The LSTM model can adapt the parameters
during the training and validation process simultaneously, leading to the attainment of
the optimal model LSTM∗net. This model is then used to predict the future settlement
amounts by inputting all standardized prediction samples in a sequential manner. The
output of the model is represented as Ypre = {y1, y2, y3 · · · yn}, where Ypre denotes the set of
prediction results of different highly coherent points. Finally, the discrepancy between the
output Ypre and the actual measured data Ysurvey in the course of deep learning prediction
is computed, thereby providing a quantitative assessment of the training and prediction
accuracy of the model.

Above all, the LSTM neural network was built based on Python 3.9 language and the
Pytorch 1.10 deep learning framework [43]. The input dataset includes all highly coher-
ent point feature vectors obtained by SBMHCT-InSAR technology, containing longitude,
latitude, coherence value, cumulative time, deformation rate, and cumulative subsidence
value, among which cumulative subsidence value is the label data predicted in the model.
The grid search algorithm was applied to select the hyperparameters in the LSTM ground
deformation prediction model.

The absolute errors (AE) and the relative error (RE) are defined as follows:

AE =
∣∣mi −m′i

∣∣ (10)

RE =

∣∣∣∣mi −m′i
mi

∣∣∣∣× 100% (11)

where mi represents the truth value and m′i represents the predicted value obtained by
the LSTM model, and the absolute value is taken to avoid negative errors. The absolute
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error reflects the magnitude of the errors between the predicted and truth values, while the
relative error indicates the proportion of the error relative to the truth value.

The relative error of the predicted results was evaluated using the Mean Absolute
Percentage Error (MAPE). The generalization performance and degree of error of the
prediction model were evaluated using the Wilmot Consistency Index (WIA), with values
ranging from 0 to 1. Specifically, the MAPE was defined as the average of the absolute
difference between the predicted and truth values, normalized by the observed value,
expressed as a percentage. On the other hand, WIA was defined as the ratio of the observed
variance to the sum of the observed variance and the variance of the prediction residuals,
which were used to measure the degree of deviation of the model from the true values.
They are defined as follows:

MAPE =
∑n

i=1
∣∣mi −m′i

∣∣/mi

n
× 100% (12)

WIA = 1− ∑n
i=1 (mi −m′i)

2

∑n
i=1
(
|mi −mi|+

∣∣m′i −mi
∣∣)2 (13)

where mi represents the truth value, m′i represents the predicted value obtained by the
LSTM model, n is the number of samples, and mi is the average of m′i.

3. Results and Discussion
3.1. Analysis of InSAR Results

In order to confirm the precision and dependability of our experimental results, we
conducted an analysis and comparison of InSAR data and the GNSS values in the SGY
mining area. As discussed in [51], the study area’s InSAR monitoring and precision
verification outcomes have been documented and will not be reiterated here. Figure 6a
shows the cumulative deformation and coherence maps in the Ningdong coalfield; the
graphs show a broader area to exhibit the mesoscale results, and the SGY mine is located
in an oval area in the southwest. The coherence diagram shows that the coherence of
the interferogram is greater than 0.41, and the coherence is good. Figure 6b shows the
cumulative deformation maps in the SGY mining area from March 2015 to June 2016,
where the red triangle represents the GNSS observation stations and the black rectangles
represent the location of the underground coal seam. Here, a total of 4795 pixels obtained
deformation values from InSAR data; these values were calculated by dividing by the
cosine of the incident angle to obtain the vertical deformations.

Based on this research, a significant deformation basin has emerged in the study area
since March 2015, which is caused by the continuous mining activities in the study area.
The maximum observed deformation in the mining area was as high as −94 cm, which is a
typical example of the subsidence basin commonly observed during the excavation and
mining activities in this area.

The InSAR monitoring of accumulated deformation value error within the study area
satisfies standard specifications, validating the applicability of this research outcome for set-
tlement prediction. In contrast to GNSS scattered point deformation monitoring with time
series values, InSAR technology acquires continuous and planar deformation information,
which can be utilized to predict surface subsidence and provide an effective representation
of both the evolving surface trends and the regional distribution of subsidence.
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3.2. LSTM Prediction Results

In the present study, 15 sets of InSAR monitoring data obtained between 9 March 2015
and 27 March 2016 were utilized as training samples, while 3 sets of InSAR monitoring
data obtained between 27 March 2016 and 7 June 2016 were employed as test samples.
Following the deformation results, the settlement sequence of each observation point was
pre-processed, and 12 observation points were selected for further analysis.

In this study, the settlement time sequence of each observation point was pre-processed
based on the inversion results, and a total of 4795 points were selected as training samples.
To determine the optimal network parameters, a grid search method was utilized to
investigate the impact of the number of network layers K and the number of hidden layer
nodes S on the prediction accuracy. The resulting heatmap of prediction errors, shown
in Figure 7, reveals that the number of network layers and hidden layer nodes are not
solely responsible for prediction accuracy. While increasing the number of network layers
generally enhances the prediction accuracy, and increasing the number of hidden nodes
generally does the same, these correlations are not absolute. The prediction error reaches a
trough when the number of network layers K reaches 5, and the number of hidden nodes S
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reaches 55. Further increasing the number of network layers and hidden nodes results in
decreased efficiency of the prediction model without improving the prediction accuracy.
Therefore, the optimal configuration for this study’s LSTM network consists of 5 layers and
55 hidden layer nodes.
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The focus of this study is on the 12 observation stations located in the center of the
subsidence area. The objective is to investigate the relationship between the length of train-
ing samples and the prediction error. Additionally, the performance of each observation
point in both single-step prediction and multi-step prediction is evaluated.

Figure 8 presents a line chart depicting the relationship between the length of train-
ing samples and the average prediction error. The predicted step is set as a single-step
prediction. The 12 observation stations located in the center of the subsidence area are
analyzed in this study to understand the error performance of each observation point.
The results indicate that when the training sample length is 5, the prediction errors for
all points are considerably higher compared to the prediction results of others. However,
when the training sample length is set to 10, some observation points, such as G1, G2, and
G9, exhibit better prediction results, while others show larger or similar errors with the
prediction results of the blue line. The reason for this could be the fluctuation in subsidence
values at these points. On the other hand, when the training sample length is set as 15, the
prediction errors for all observation points are significantly lower. The line chart highlights
that increasing the number of training samples results in lower prediction errors. Moreover,
the local minimum prediction error of grid search gradually decreases with the increase in
training sample length. Overall, the LSTM model performs better in predicting settlement
values that exhibit stable and orderly changes over a longer period.

Figure 9 presents a line chart depicting the relationship between the predicted step
size and the average prediction error. Based on the analysis, it can be observed that the
prediction error increases with the increase in the predicted step size. This is because
the longer the prediction sequence, the greater the cumulative error, resulting in a larger
error in the predicted values. The error value of the light blue curve, which represents
the predicted value error when the predicted step size is 3, is the largest among the three
curves, indicating that the error accumulates with the increase in the predicted step size.
The red curve and the dark blue curve have similar error values, indicating that the error
accumulation is relatively small for multi-step prediction with a predicted step size of 2,
and the prediction accuracy is still relatively high. However, it is worth noting that for
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some observation points with small cumulative form variables, the single-step prediction
error is slightly smaller than that of multi-step prediction, which may be related to the
characteristics of the subsidence process at these points. Overall, single-step prediction is a
more accurate and reliable prediction method for SBMHCT-InSAR deformation monitoring
values based on the LSTM model.
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In multi-step prediction, the model needs to predict several time steps ahead, which
increases the complexity of the problem. As a result, the prediction error may accumulate
over time, leading to a less-accurate prediction. On the other hand, in single-step prediction,
the model only needs to predict the next time step, which is a simpler problem, and therefore
the average error is better than that of multi-step prediction.

The present study adopts a strategic approach for selecting the sample segmentation
length by leveraging the outcomes of the experiments conducted. Specifically, given the
small ordinal number and equal time interval of the data, and taking into consideration the
LSTM model’s ability to learn long-distance time-series data, longer sample lengths were
preferred to achieve better prediction results. In this regard, 15 sets of InSAR monitoring
data obtained from 9 March 2015 to 27 March 2016 were selected as the training samples,
whereas 3 sets of InSAR monitoring data from 27 March 2016 to 7 June 2016 were chosen
as the test samples. The table below presents the final combination of LSTM prediction
model parameters.
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Table 2 shows the parameters of LSTM. Under the aforementioned parameter config-
uration, the experiment predicting surface subsidence in the SGY coal mine has yielded
favorable results. Specifically, the average absolute difference (cumulative) form variable
error has been effectively constrained to within 3 cm, thereby satisfying the accuracy
standards prescribed within current InSAR data processing protocols.

Table 2. Optimal search results of LSTM parameters.

Parameters
Training
Sample
Length

Test Sample
Length

LSTM
Layers

Hidden
Layer Nodes Optimizer Loss

Function Iterations

Values 15 1 4 55 ADAM MSE 16

Figure 10 presents the settlement prediction results of the SGY mining area at the
overall experimental scale. To obtain these results, the last 15 groups of deformation data
from 20 May 2015 to 14 May 2016 were used as training samples to predict the deformation
results of 7 June 2016. The predicted results were compared with the measured deformation
results of InSAR, and the analysis showed a high degree of consistency between the
predicted and real shape variables, indicating that the predicted settlement center area
was clear and accurate. Moreover, the prediction errors of each monitoring point in the
subsidence area were within 3 cm. Figure 11 presents the prediction errors of LSTM.
Out of 4795 observation points, the maximum difference (cumulative) shape variable
had a prediction error of 2.6 cm, and the average prediction accuracy reached 93.6%.
The calculation method of relevant indicators is given in Equations (9)–(12). Therefore,
the model proposed in this paper has a small deviation when compared with the actual
settlement amount, effectively reflecting the basic law of land surface settlement changing
with time, and the predicted results are reliable.
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4. Discussion

To assess the validity of the prediction model introduced in this study, GNSS ob-
servation stations situated on the surface of the mining area were selected for analysis.
Real-time kinematic (RTK) technology utilizing the double-difference mode was employed
across all stations, with a precision of up to 1 mm for horizontal displacement monitoring.
As previously reported, the measurement error of elevation direction is approximately
twice that of the horizontal displacement error [52]. The monitoring values derived from
the continuous time series deformation of the GNSS observation stations were extracted
to verify the dependability of the prediction results obtained from the fusion of InSAR
technology with LSTM. The table below exhibits the deformation values over time for each
GNSS observation station based on their respective coordinates.

To demonstrate the superiority of the proposed prediction model, a comparison is
made between the LSTM model and the traditional machine-learning model, using model
establishment time and prediction error as evaluation metrics. Specifically, the SVR model
is chosen as the representative of the traditional machine-learning model, which utilizes a
nonlinear kernel function to map multidimensional inputs to higher dimensional feature
space for regression analysis. In this study, the C penalty parameter and g kernel function
parameter are optimized through the cross-verification method and grid search technique
to identify the optimal parameter settings. Further details on the parameter searching
process and experimental methodology can be found in [53].

Table 3 presents the InSAR monitoring deformation cumulants of the SGY coal mine
surface GNSS observation points over 432 consecutive days in the second column, while the
third column displays the GNSS monitoring deformation cumulants over 456 consecutive
days. Additionally, the fourth and fifth columns exhibit the cumulative shape variables
predicted for 456 consecutive days by the LSTM algorithm and SVR algorithm, respectively.
Figure 12 corresponds to the data presented in Table 3, showcasing the close proximity of
the predicted values of the LSTM algorithm and the SVR algorithm to the GNSS monitoring
results. Furthermore, the LSTM algorithm’s predicted values align with the GNSS monitor-
ing values at multiple monitoring points, suggesting a high level of prediction accuracy.
Thus, qualitatively, the results indicate the efficacy of the LSTM method in predicting
cumulative shape variables.
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Table 3. SGY coal mine observation points’ deformation values.

Observation
Stations

InSAR Results
during 13 June

2015–7 June
2016 (cm)

GNSS Results during
13 June 2015–1 July

2016 (cm)

LSTM
Prediction

Results (cm)

SVR
Prediction

Results (cm)

G1 −59 −66 −66 −62
G2 −63 −72 −74 −78
G3 −75 −84 −84 −86
G4 −88 −105 −103 −99
G5 −81 −91 −90 −88
G6 −58 −70 −68 −64
G7 −23 −26 −26 −26
G8 −49 −56 −56 −55
G9 −37 −43 −45 −47

G10 −8 −10 −10 −9
G11 −6 −12 −12 −8
G12 −12 −12 −12 −10
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The bar charts displayed in Figures 13 and 14 demonstrate the error distribution of
prediction results for 12 GNSS monitoring points, revealing both the absolute and relative
prediction errors of the LSTM and SVR prediction methods. These error metrics serve as
quantitative indicators to assess the prediction accuracy of the two methods. The absolute
and relative errors of the LSTM prediction at the 12 monitoring stations are smaller than
those of the SVR prediction results. Specifically, the LSTM prediction method reports a zero
error at G1, G3, G7, G8, G10, G11, and G12, whereas the SVR prediction method only has
a zero error at the G7 observation station. The highest prediction error for both methods
was observed at G2, G4, and G4 observation stations, with the LSTM method reporting an
absolute error of 2 cm and the SVR method reporting an absolute error of 6 cm. This may
be attributed to their central location within the subsidence basin, where mining activities
were intensive over the 456-day inland. The deformation of these measuring points is
influenced by multiple factors, such as geological structure, mining speed, and coal pillar,
resulting in a more complex settlement pattern. The LSTM algorithm, with its superior
learning ability, demonstrated a higher prediction accuracy compared to the SVR algorithm.
Notably, the relative error between the predicted value and the truth value of the SVR
method at the G12 station is at most 14%, with an absolute error of 2 cm. This is because
G12 is situated at the edge of the subsidence basin with a relatively small subsidence value.
However, the prediction accuracy of observation stations such as G1, G11, and G12 located
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in other subsidence basins is relatively high. These findings suggest that the LSTM method
is better equipped to learn the intricate details of the settlement pattern.
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Table 4 compares the prediction accuracy of the LSTM and SVR methods for the SGY
coal mine. The table contains important error metrics such as the maximum absolute error,
maximum relative error, average absolute error, and Wilmot consistency index, which
provide a quantitative assessment of the accuracy of the prediction results.

Table 4. Comparison of prediction accuracy between LSTM and SVR.

Prediction Method MAX.AE (cm) MAX.RE (%) MAPE (%) WIA (0–1)

LSTM 2 6% 1.1% 0.999
SVR 6 33% 8.8% 0.996

The results in Table 4 demonstrate that the LSTM model outperforms the SVR time
series prediction method in terms of prediction accuracy. Specifically, the maximum
prediction error of cumulative deposition using the LSTM model is less than 2 cm, while
the maximum relative error and average relative error are lower compared to the SVR
method. These findings indicate that the deep-learning-based prediction model proposed
in this study is highly accurate and robust. The WIA and MAPE values for the LSTM
model are 0.999 and 1.1%, respectively, and the Wilmot consistency index is close to 1,
demonstrating the effectiveness of the prediction function established by Equation (13). The
mining settlement prediction model based on InSAR monitoring data and LSTM is robust
and outperforms the representative machine-learning model, SVR, in various evaluation
indicators, including the Wilmot consistency index. Based on the above analysis, it is



Remote Sens. 2023, 15, 2755 19 of 22

evident that the LSTM-based prediction method used for large-scale surface subsidence is
highly accurate, efficient, and a better option to ensure production safety.

Comparative with the findings in references [44,45], it shows that the SBMHCT-InSAR
technology improved from SBAS-InSAR is more suitable for deformation monitoring in
mining areas. It can obtain the accurate deformation value of mining area surface, which is
conducive to the training of the LSTM prediction model. The prediction results show that
the prediction of mining area deformation by combining SBMHCT-InSAR technology and
LSTM model is highly reliable and robust.

5. Conclusions

The current study focuses on the surface settlement monitoring of the SGY coal mine
in the SGY mining area, utilizing time series InSAR technology with an optimization
algorithm. Through this technique, the study acquired series settlement values with equal
time intervals. Subsequently, a deep-learning mining settlement prediction model was built,
which utilized InSAR monitoring data to predict the future settlement values of the next
time series. The results of this study suggest that the proposed deep-learning-based method
exhibits higher accuracy, lower time cost, and better performance in various evaluation
indicators than the representative machine-learning-based SVR method. Based on these
findings, it can be concluded that the proposed approach is a superior method for fulfilling
production safety requirements. These conclusions are drawn as follows:

(1) A novel approach, referred to as the SBMHCT-InSAR, is proposed in this study to
address the issue of limited high-coherence points obtained using traditional small
baseline set time series technology. This is achieved by utilizing an optimal matching-
point-based strategy to improve the registration accuracy of interferometric synthetic
aperture radar (SAR) images. Furthermore, the adaptive Goldstein filtering method,
based on bivariate empirical mode decomposition (BEMD), is employed to enhance
the mean coherence of high-coherence points in the interferogram. As a result, this
method provides highly accurate training data for the deep-learning prediction model.

(2) According to the experimental results, the proposed SBMHCT-InSAR technology,
which utilizes an optimization algorithm, has proved to be an effective method for
monitoring surface settlement in mining areas. Specifically, 19 Sentinel-1A satellite
images from 2015 to 2016 were utilized with the SBAS small baseline set technique to
retrieve the cumulative deformation sequence values of the SGY coal mine. As a result,
the settlement time series of 4795 high-coherence points were obtained. The findings
reveal that the surface subsidence of the SGY coal mine gradually sank from northwest
to southeast, forming a long and narrow subsidence basin. The maximum subsidence
occurred near the G4 monitoring site, reaching −94 cm during the monitoring period.

(3) A deep-learning prediction model for mining subsidence based on InSAR monitoring
data is developed, wherein the time series settlement values obtained through InSAR
technology at equal time intervals are utilized as the training data. The LSTM deep-
learning algorithm is employed to establish a nonlinear function relationship between
the InSAR monitoring data and unknown predicted values, thus enabling dynamic
prediction of mining surface and monitoring the change trend of surface settlement.
The resultant deep-learning mining settlement prediction model based on InSAR
monitoring data exhibits accuracy and robustness.

(4) The accuracy of the LSTM-based prediction method for large-scale surface subsidence
is higher, and the evaluation indicators are better than those of the SVR-based method.
The comparative analysis between the LSTM and SVR prediction methods reveals that
the LSTM deep-learning algorithm is more effective in learning surface subsidence
patterns in mining areas. The algorithm can accurately learn the fine deformation rules
of the subsidence basin edge and achieve high-precision prediction for the central
area of the subsidence basin with large subsidence values. The proposed method’s
reliability is verified by comparing it with ground GNSS observation station data,
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thereby providing theoretical support for the expansion and application of InSAR
monitoring technology in mining areas.
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