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Abstract: Climate change has a significant impact on forest ecosystems worldwide, but it is unclear
whether forest responses to climate fluctuations are homogeneous across regions. In this study, we
investigated the impact of climatic fluctuations on forest growth in a complex terrain, in Anhui
Province of China, using Enhanced Vegetation Index (EVI) data from the Moderate-Resolution
Imaging Spectroradiometer (MODIS), while considering the impact of terrain characteristics and
forest types. Our regional-scale analysis found that the forest response to climatic drivers in Anhui
Province is not homogeneous, with only 69% of the forest area driven by temperature (TEM), while
11% is precipitation (PRE) driven and 20% is solar radiation (SWD) driven. We also found with
random forest models that terrain traits (elevation and slope) contributed significantly (29.47% and
27.96%) to the spatial heterogeneity of forest response to climatic drivers, with higher elevation
associated with a stronger positive correlation between the EVI and temperature (p < 0.001), a weaker
positive correlation between the EVI with precipitation (p < 0.001), and a stronger negative correlation
between the EVI with solar radiation (p < 0.01), while forest type contributed the least (4.21%). Our
results also imply that in a warmer and dryer climate, some forest patches may switch from TEM
driven to PRE driven, which could lead to a decrease in forest productivity, instead of an increase as
predicted by existing climate models. These results highlight the heterogeneous response of forests
within close vicinity to climate fluctuations in a complex terrain, which has important implications
for climate-related risk assessments and local forest management.

Keywords: forest; climate fluctuations; divergent response; complex terrain; random forest model;
MODIS-EVI

1. Introduction

Forests are a vital natural resource for humans and play a crucial role in the global
carbon cycle as a terrestrial carbon sink [1–3]. However, climate change, including global
warming and changes in precipitation patterns, poses a significant threat to forest structures
and functions [4]. Addressing this issue requires accurate estimation of the relationship
between forest dynamics and climate factors, which can be challenging due to the spatial
variability of these relationships [5,6]. Understanding how forests respond to climate
fluctuations is critical for reducing climate-related risks.

Previous studies have found that forest responses to climate change vary across
latitudes at the global scale, with the default assumption that regional responses are
homogeneous [5–7]. Specifically, increasing temperatures may facilitate forest growth
in high-latitude regions, while exacerbating drought conditions in arid and semi-arid
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regions which can hinder forest growth in low- to middle-latitude regions that rely on
precipitation [6,8]. While global warming at higher latitudes may lead to more water
available from melting snow and ice, which would facilitate forest growth [9], heatwaves
and droughts at mid or lower latitudes have caused widespread tree mortality and forest
degradation in recent decades [10,11]. Regional-scale climate conditions may have a
consistent impact on forest growth, particularly in geographically close regions. However,
non-climatic factors, such as terrain [12], soil quality [13], and nutrient [14], can also
significantly affect forest growth, and their spatial heterogeneity can lead to divergent
forest responses to climate fluctuations. Unfortunately, potential divergent responses
at regional scales have received less attention in scientific literature. Therefore, further
research is needed to better understand forest responses to climate fluctuations at multiple
scales, which would be valuable for local forest management.

Remote sensing observations can provide valuable spatiotemporal data which can be
used to monitor forest dynamics at regional scales. Vegetation growth is closely related
to leaf reflectance in the red and near-infrared (NIR) bands during the photosynthesis
process, and vegetation absorbs light in the red spectral region and reflects light in the
near-infrared spectral region [15]. Leaf reflectance at these two bands could sufficiently
capture the influence of climatic drivers on vegetation growth [15]. Previous studies
have demonstrated that biophysical parameters, such as net primary productivity (NPP),
the leaf area index (LAI), crown closure, tree ring width, chlorophyll content, and water
content of leaves, have strong relationships with leaf reflectance in these two bands [16–18].
Vegetation indices (VI) based on the red and NIR bands are therefore commonly used
as indicators of forest growth [19–21]. A negative impact of climate perturbation can
be detected with a decrease in VI, while a positive influence of climate conditions can
be reflected with an increase in VI [17,19,20]. There are various satellite sensors that
provide earth observation data free of charge, e.g., the Moderate-Resolution Imaging
Spectroradiometer (MODIS), Thematic Mapper (TM), and the Medium-Resolution Imaging
Spectrometer (MERIS). Several vegetation indices have been commonly used to monitor
vegetation change based on these satellite data. The most widely used indices include the
Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI)
and the MERIS Terrestrial Chlorophyll Index (MTCI). The NDVI is calculated based on
the reflectance of the near-infrared and red bands. The NDVI is sensitive and appropriate
for monitoring areas with middle to low vegetation cover, but less sensitive to areas with
high vegetation cover (e.g., forest area) due to saturation problems [22]. The EVI added
a blue band to the near-infrared and red bands to enhance the vegetation signal, so it is
more sensitive for monitoring vegetation changes in the area with high vegetation cover
such as forests [22]. The MTCI was designed to estimate chlorophyll content, especially
from MERIS datasets. The MTCI uses data in three red/NIR wavebands (bands 8, 9
and 10 in the MERIS standard band setting). The MTCI is easy to calculate and some
preliminary indirect evaluation using model, field and MERIS data suggested its sensitivity
to chlorophyll content at high values [23]. There are two scenarios where vegetation indices
(VI) are commonly used on forest responses to climate fluctuations. One is to compare and
contrast VI before, during and after climate events in order to quantify forest resistance [24],
recovery [25], and resilience [26] to short-term disturbance events. Another is to analyze
the response of vegetation growth to long-term climate change at a regional scale using VI
time series data [6,27].

Previous global studies of vegetation responses to climate change that used coarse-
resolution data (e.g., 0.5◦ × 0.5◦) often resulted in homogeneous results for local regions
within close vicinity that could contain only one or a few pixels [5–7]. Factors such as
terrain within pixels were ignored, which may lead to various forest response to climate
fluctuations and may require different management strategies from local forest management
departments. In this study, we chose a mountainous-hilly region in Anhui Province, East
China, to assess the roles of various climate factors and their relationship with forest
responses to climate fluctuations, using satellite data. We developed a protocol to partition
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local pixels into three regions, each with different climatic drivers. The objective of this
study is to understand how forest responses to climate fluctuations vary in a region with
complex terrain, which may shed new light on regions with similar topography around
the world.

2. Materials and Methods
2.1. Study Area
2.1.1. Climate and Vegetation

The study area is located in Anhui Province (114◦54′–119◦27′E, 29◦41′–34◦38′N), a
landlocked province located in eastern China (Figure 1a). The province is characterized by
a temperate monsoon climate with distinctive seasonality [28]. In this study, we focused
on the forested area with no forest-type change during 2001–2020 in Anhui Province,
hereafter referred as “the study area” (Figure 1b). The total area of our study area is
approximately 8363 km2, with a mean annual temperature range of 14.66–17.43 ◦C, a mean
annual cumulative precipitation range of 836.14–1685.37 mm, and a mean annual solar
radiation range of 193.22–196.10 w m−2 (Figure 2d–f). Figure 2 describes the seasonal
dynamics (Figure 2a–c) and the spatial distribution (Figure 2d–f) of climatic variables.
Temperature, precipitation, and solar radiation all reach their peaks during summertime
(Figure 2a–c). The forest types found in the province include evergreen needleleaf forest
(ENF, 3.21%), evergreen broadleaf forest (EBF, 1.20%), deciduous broadleaf forest (DBF,
18.76%), and mixed forest (MF, 76.84%). Forests are mainly distributed in the southern and
western regions, characterized by complex terrain which will be described in more detail in
Section 2.1.2.
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Figure 1. Distribution of elevation (a) and forest types (b) in the study area (i.e., forested pixels with
no forest-type change during 2001–2020 in Anhui Province, hereafter referred as “the study area”).
Panel (a): the digital elevation model (DEM, resampled to 500 m resolution) of the study area with
four meteorological stations (Huoshan, Ningguo, Huangshan, and Tunxi). Panel (b): the distribution
of forest types (EN: evergreen needle-leafed forest, EB: evergreen broad-leafed forest, DB: deciduous
broad-leafed forest, and MF: mixed forest) in the study area (500 m resolution).

2.1.2. Complex Terrain

The forested area comprises numerous basins and valleys scattered around mountains,
with steep elevation differences of over 1000 m. The Terrain Ruggedness Index (TRI)
was used to quantify the terrain heterogeneity in the study area. The TRI highlights the
amount of elevation difference between adjacent pixels and measures the square root of the
averaged sum of squared elevation difference between a pixel and eight neighboring pixels
for each pixel [29]. A detailed description of the digital elevation model (DEM) can be
found in Section 2.2.3. Based on the TRI value, the terrain can be divided into 6 categories:
level (0–80 m), nearly level (81–116 m), slightly rugged (117–161 m), intermediately rugged
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(162–239 m), moderately rugged (240–497 m), and highly rugged (498–958 m) [29]. Over
94% of the forest areas are intermediately rugged to highly rugged (Figure 3a,b), and the
TRI in forest areas (342.71 ± 123.10 m) is significantly higher than that in non-forest areas
(60.76 ± 102.30 m) (p < 0.001, Figure 3c). The aforementioned factors make this region ideal
for investigating the divergent forest responses to climate fluctuations in complex terrain
within close proximity.
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Figure 2. Seasonal dynamics (panel (a–c)) and spatial heterogeneity (panel (d–f)) of climatic variables
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monthly precipitation (mm). Panel (c): Mean monthly radiation (w m−2). Panel (d): Mean annual
temperature (◦C). Panel (e): Mean annual precipitation (mm). Panel (f): Mean annual radiation (w m−2).
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Figure 3. Distribution of the Terrain Ruggedness Index (TRI) in the study area. In Panel (a,b):
the six TRI categories include level (0–80 m), nearly level (81–116 m), slightly rugged (117–161 m),
intermediately rugged (162–239 m), moderately rugged (240–497 m), and highly rugged (498–958 m).
Panel (a): Spatial distribution of the Terrain Ruggedness Index. Panel (b): Percentage of pixels in
each TRI category. Panel (c): TRI contrast between forest area (the focus of this study) and non-forest
area in Anhui Province. *** indicates highly significant difference between means with p < 0.001.
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2.2. Data Preparation
2.2.1. Satellite Data

In this study, the Enhanced Vegetation Index (EVI) was used to indicate forest re-
sponses to climate factors. Compared to the conventional Normalized Difference Vegeta-
tion Index (NDVI), the EVI is more sensitive to quantifying vegetation greenness in areas
with dense vegetation, adding a blue band to the near-infrared and red bands to further
enhance the vegetation signal [22]. MODIS-EVI (MOD13A3, Version 6) during 2001–2020
with a spatial resolution of 500 m and a temporal resolution of 16 days was used in this
study. The average of EVI maximums in July and August was calculated to represent forest
growth for each growing season [20,25,30].

The forest distribution map (Figure 1b) was derived from MODIS land cover product
(MCD12Q1) during 2001–2020 with a spatial resolution of 500 m and IGBP (International
Geosphere-Biosphere Programme) classification scheme [31]. Only pixels that consistently
belonged to the same forest type during 2001–2020 were included in the analysis to min-
imize the confounding effect of land cover change on the EVI [6,7]. MODIS products
could provide continuous time series of both vegetation index and land cover data for this
study, so we used their spatial resolution (500 m) for data analyses instead of a higher one
(e.g., Landsat image, 30 m).

2.2.2. Climate Data

Temperature and precipitation data (2001–2020) were downloaded from the Climate
Research Unit (CRU) of the University of East Anglia version TS4.06 (https://www.uea.
ac.uk/groups-and-centres/climatic-research-unit, accessed on 5 March 2021), which had
a monthly temporal resolution and a spatial resolution of 0.5◦. The CRU dataset was
one of the most commonly used climate datasets at regional scales [32,33], which was
obtained via a combination of in situ meteorological station observations with anomy
processing, and modeling interpolation of angular distance weighting [34]. It was well
correlated with meteorological station data from China Meteorological Data Network (https:
//data.cma.cn/, accessed on 30 May 2022) in Anhui Province (correlation coefficients of
0.85–0.97 for temperature and 0.84–0.93 for precipitation, Figure 4). The in situ temperature
data from the meteorological stations also were consistently lower than the CRU data
(from the 0.5 degree grid where the stations were located), especially in the Huangshan
station (Figure 4d). This is because all stations were located at their local peaks. The
Huangshan station is located at the top of the Huangshan mountain 1800 m above sea
level, which is much higher than the average elevation of 0.5 degree grid where the station
was located. The solar radiation data (2001–2016) was downloaded from the CRU-NCEP
(Climate Research Unit-National Centre for Environmental Prediction) version 7 dataset
(https://rda.ucar.edu/datasets/ds314.3/, accessed on 9 May 2022), which was obtained
and reprocessed from the CRU TS3.2 climate dataset and NCEP reanalysis [35]. It had
a temporal resolution of 6 h, a spatial resolution of 0.5◦, and the monthly average was
derived for data analysis.

2.2.3. The Digital Elevation Model

The digital elevation model (DEM) used in this study was derived from the NASA
Shuttle Radar Topography Mission (SRTM) data of the US Space Shuttle Endeavour with a
90 m resolution (https://srtm.csi.cgiar.org/, accessed on 12 June 2022). Based on DEM data,
we calculated slope and aspect to analyze the effects of terrain on forest growth. In addition,
a topographic roughness index (TRI) was calculated to quantify the terrain heterogeneity
in the study area. All spatial data were reprojected with the WGS-84 geographic coordinate
system and resampled to 500 m spatial resolution with the nearest neighbor algorithm.
All satellite image processing was conducted in Envi5.3 (L3Harris Geospatial, Melbourne,
FL, USA). All statistical analyses were con-ducted in R4.1.2 and Origin2022. All figures
were created with Origin2022 (OriginLab, Northampton, MA, USA) and ArcGIS10.8 (ESRI,
Redlands, CA, USA).

https://www.uea.ac.uk/groups-and-centres/climatic-research-unit
https://www.uea.ac.uk/groups-and-centres/climatic-research-unit
https://data.cma.cn/
https://data.cma.cn/
https://rda.ucar.edu/datasets/ds314.3/
https://srtm.csi.cgiar.org/
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Figure 4. Time series of mean monthly temperatures of July and August (TMP, ◦C) and accumula-
tive precipitation of March and April (PRE, mm) from in situ meteorological stations (green lines:
(a,e). Huoshan station; (b,f). Ningguo station; (c,g). Tunxi station; (d,h). Huangshan station) and from
reanalyzed Climate Research Unit (CRU) data (red lines for TMP; blue lines for PRE). r presents the
Pearson correlation coefficient of temperature (panel (a–d)) and precipitation (panel (e–h)) between
in situ data and CRU data for each meteorological station.
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2.3. Research Methods
2.3.1. Identifying Time Lags of Forest Response to Different Climate Factors

It is already known that temperature, precipitation, and solar radiation can affect
forest growth [5,36]. However, there are time lags between climate fluctuations and forest
growth change, which can be identified with the Pearson correlation analysis [37]. For each
pixel, forest growth of each growing season between 2001–2020 was indicated with the
average EVI of July and August (EVIJul–Aug). Monthly average temperature (◦C, 2001–2020),
monthly accumulative precipitation (mm, 2001–2020), and monthly average incident solar
radiation (w m−2, 2001–2016) for the same growing season has been calculated for different
time windows relative to the peak growing season of July and August: Same time window
(July and August), 1-month prior (June and July), 2-month prior (May and June), 3-month
prior (April and May), 4-month prior (March and April), and 5-month prior (February and
March) [28]. For each pixel, Pearson correlation coefficients (r) were calculated between
the EVIJul–Aug of the year and each of three climate factors (TEM, PRE, and SWD) for
each of six time windows (same, 1-month, 2-month, 3-month, 4-month, and 5-month
prior). Correlation coefficients (r) between the EVIJul–Aug and three climate variables during
six different time windows were averaged across all forested pixels in the study area where
the EVI and climate factors are significantly correlated (p < 0.05). For each climate factor,
the time window with the highest correlation coefficient would be chosen as the time lag of
that climate factor for the following analyses.

2.3.2. Identifying the Dominating Climatic Driver for Forest Growth for Each Pixel

The relative influence of temperature, precipitation, and solar radiation on forest
growth may change drastically across complex terrain within close vicinity [38,39]. For
each pixel, we calculated three correlation coefficients between the EVIJul–Aug and each
of three climate factors (TEM, PRE, and SWD) of their chosen optimal time windows
(determined in Section 2.3.1) over 20 years. The climate factor with the maximum absolute
r value with statistical significance (p < 0.05) would be considered the dominating climate
diver for the pixel. According to the dominant factor in each pixel, the study area was
divided into three regions: predominantly temperature-driving, precipitation-driving, and
solar radiation-driving regions. These three regions were from close vicinity but with
different dominant climatic drivers, which may respond to climate fluctuations differently.

2.3.3. EVI Responses to Different Climate Factors

To analyze divergent forest responses to climate fluctuations, we contrasted the EVI
response to different climate conditions in predominantly temperature-driving (TMP-
driving), precipitation-driving (PRE-driving), and solar radiation-driving (SWD-driving)
regions. In each region, the 30-year (1991–2020) average of mean temperature during
optimal time windows (TOpt) and its standard deviation (TSD) were calculated to represent
the long-term average and its fluctuation [40]. Out of 2001–2020, the years with the
maximum TOpt, the minimum TOpt, and the TOpt closest to the 30-year average TOpt
were selected to be the “hot” year, the “cold” year, and the “normal” year for the region,
respectively. In the “hot” year, only pixels that had TOpt higher than average TOpt of the
year and the region were included for data analysis. In the “cold” year, only pixels that had
TOpt lower than average TOpt of the year and the region were included for data analysis. In
the “normal” year, only pixels that had TOpt within the range of 30-year average TOpt ± 1
TSD were included for data analysis. Additionally, for each region, two pair-wise t-tests
were conducted among matched pixels; one to contrast hot vs. normal conditions, and one
to contrast cold vs. normal conditions, in order to determine divergent forest responses to
temperature change among climate-driving regions.

Similarly to temperature, the “wet” and “dry” years were chosen based on precip-
itation. In each region, the 30-year (1991–2020) average of accumulative precipitation
during optimal time windows (POpt), and its standard deviation (PSD) were calculated
to represent the long-term average and its fluctuation. Out of 2001–2020, the years with
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the maximum POpt, the minimum POpt, and the POpt closest to the 30-year average POpt
were selected to be the “wet” year, the “dry” year and the “normal” year for the region. In
the “wet” year, only pixels that had POpt higher than the average POpt of the year and the
region were included for data analysis. In the “dry” year, only pixels that had POpt lower
the than average POpt of the year and the region were included for data analysis. In the
“normal” year, only pixels that had POpt within the range of 30-year average POpt ± 1 PSD
were included for data analysis. Additionally, for each region, two pair-wise t-tests were
conducted among matched pixels; one to contrast wet vs. normal conditions, and one to
contrast dry vs. normal conditions, in order to determine divergent forest responses to
precipitation changes among our regions.

When we looked for the years with the maximum and minimum solar radiation ROpt
using SWD data (“bright” vs. “dim” year), it was found that they coincided with the PRE
data (Figure S1): the “bright” year is also the “dry” year (2011), and the dimmest years
(i.e., 2002–2003 and 2010) were also the wettest years. The pixel-level correlation between
POpt and ROpt during 2001–2016 was −0.822 ± 0.034 (n = 33,453 for all forested pixels).
Given such a strong negative correlation between accumulative precipitation and total inci-
dent solar radiation, our analyses afterwards only focused on temperature and precipitation.

2.3.4. Partitioning the Effects of Climatic and Topographic Variables on the EVI

To quantitatively assess the effects of climate and terrain on forest growth, we used
the random forest (RF) model to analyze the importance of temperature, precipitation,
elevation, slope, aspect, and forest type to the EVI. RF is a classification tree-based machine-
learning algorithm that is widely used in geography and ecology [41–43]. The %IncMSE
(percentage increase in Mean Squared Error) is a metric used in random forest regression
modeling to assess the importance of each independent variable. The %IncMSE is computed
by randomly permuting each variable and measuring the resulting increase in mean square
error (MSE) of the model predictions [43,44]. A higher %IncMSE value for a variable
indicates that permuting that variable results in a larger increase in MSE, which suggests
that the variable is more important for explaining forest growth in the out-of-bag cross-
validation process [43,44].

Upon building the random forest model, a post hoc partial correlation analysis on
elevation and slope with the EVI was conducted to further partition the impact of these
two terrain variables on forest responses to climate fluctuations (i.e., r of the EVI and
three climate factors calculated in Section 2.3.2). We matched the elevation data and
slope data with the correlation coefficients of the EVI and climate data pixel by pixel, and
then calculated the Partial correlation coefficient (R) between either elevation or slope
and the Pearson correlation coefficient (r) between the EVI and climate factors. Partial
correlation coefficients ρXY.Z were used to analyze the correlation between elevation (X)
and the correlation coefficients (Y) between the EVI and three climate factors, in control
the effect of slope (Z), hereafter referred to as ρelevation; or the impact of slope (X) on the
correlation coefficients (Y) between the EVI and three climate factors, in control the effect
of elevation (Z), hereafter referred to as ρslope.

We also compared the EVI at the top and the foot of the Huangshan Mountain within
close vicinity (about 1000 m apart), and for each we sampled a continuous 3 pixel × 3 pixel
window. The Huangshan meteorological station is located at the top of the mountain
with forest cover and has the highest elevation in the study region. We compared the EVI
differences between a hot year and a cold year for both hill top and hill foot sampling areas.

3. Results
3.1. Time-Lag Effects of the EVI Response to Climate Factors

Correlation coefficient (r) between the EVIJul–Aug and temperature, precipitation, and
solar radiation data within six time windows (same, 1-month, 2-month, 3-month, 4-month,
and 5-month prior to July and August) are shown in Figure 5. The average EVI of July
and August had the highest absolute spatial average r, with temperature in the same
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period (r = 0.53, indicating no time lag), with precipitation and solar radiation in 4-month
prior (r = 0.46 for precipitation, r = −0.54 for solar radiation, indicating 4-month time lag).
This means that forest growth in July and August had the strongest positive correlation
with mean temperature in July and August, and had the strongest positive or negative
correlation with accumulative precipitation or mean solar radiation in March and April,
respectively. Furthermore, these results also enabled us to identify the most dominating
climatic factor for each pixel.
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6). The climate factor with the maximum absolute r value with statistical significance (p < 
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Figure 5. Correlation coefficients (r) between the Enhanced Vegetation Index (EVIJul–Aug) and climate
factors (panel (a) TMP: two-month mean temperature (red lines). Panel (b) PRE: two-month accumu-
lative precipitation (blue lines). Panel (c) SWD: two-month mean solar radiation (green lines) during
six different time windows (same, 1-month, 2-month, 3-month, 4-month, and 5-month prior to the
two-month period of July and August), averaged across all forested pixels in the study area where
the EVI and climate factors are significantly correlated.

3.2. Dominant Climate Factors Driver of the EVI

The impact of different climate factors on forest growth was not always equivalent, and
there might be one dominating climatic driver which affects forest growth most strongly.
We compared three correlation coefficients between the EVIJul–Aug and the climate factors
of their chosen optimal time windows from Section 3.1 in each forest pixel (Figure 6). The
climate factor with the maximum absolute r value with statistical significance (p < 0.05) had
the strongest relationship with the EVI among the three climate factors, and was chosen
as the dominating climatic driver for the pixel. Based on the correlation analyses between
the EVI and climate factors, about 88.11% of the study area had a positive correlation with
temperature with 18.74% being statistically significant (p < 0.05), and 11.89% showed a
negative correlation with 0.19% being statistically significant (p < 0.05); 74.51% of the study
area had a positive correlation with precipitation with 4.87% being statistically significant
(p < 0.05), and 25.49% showed a negative correlation with 0.25% being statistically signifi-
cant (p < 0.05); 28.66% of the study area had a positive correlation with solar radiation with
0.20% being statistically significant (p < 0.05), and 71.34% showed a negative correlation
with 5.70% being statistically significant (p < 0.05) (Figure 6). These results suggested that
temperature and precipitation promote forest growth in most areas, while radiation limits
forest growth. The spatial distribution of the dominating climatic driver in the study area
is shown in Figure 7a, it can be seen that the relative influence of temperature, precipita-
tion and solar radiation on forest growth changed drastically from pixel to pixels, despite
them being in close vicinity. Among the climate factors, 69% of the forest pixels EVI had
the strongest correlation with temperature, and the maximum correlation coefficient of
0.86; 11% of the forest pixels EVI had the strongest correlation with precipitation, and a
maximum correlation coefficient of 0.77; 20% of the forest pixels EVI had the strongest
correlation with radiation, and a maximum correlation coefficient was −0.88. These results
suggest that temperature, precipitation, and radiation can affect forest growth significantly
in east China; however, the dominant climatic drivers vary from region to region.



Remote Sens. 2023, 15, 2749 10 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

of the study area had a positive correlation with precipitation with 4.87% being statisti-
cally significant (p < 0.05), and 25.49% showed a negative correlation with 0.25% being 
statistically significant (p < 0.05); 28.66% of the study area had a positive correlation with 
solar radiation with 0.20% being statistically significant (p < 0.05), and 71.34% showed a 
negative correlation with 5.70% being statistically significant (p < 0.05) (Figure 6). These 
results suggested that temperature and precipitation promote forest growth in most areas, 
while radiation limits forest growth. The spatial distribution of the dominating climatic 
driver in the study area is shown in Figure 7a, it can be seen that the relative influence of 
temperature, precipitation and solar radiation on forest growth changed drastically from 
pixel to pixels, despite them being in close vicinity. Among the climate factors, 69% of the 
forest pixels EVI had the strongest correlation with temperature, and the maximum cor-
relation coefficient of 0.86; 11% of the forest pixels EVI had the strongest correlation with 
precipitation, and a maximum correlation coefficient of 0.77; 20% of the forest pixels EVI 
had the strongest correlation with radiation, and a maximum correlation coefficient was 
−0.88. These results suggest that temperature, precipitation, and radiation can affect forest 
growth significantly in east China; however, the dominant climatic drivers vary from re-
gion to region. 

 
Figure 6. The Pearson correlation coefficients (r) of the Enhanced Vegetation Index (EVI) with each 
of the three climate factors—mean monthly temperature (TMP, (a)), accumulative precipitation 
(PRE, (b)), and mean monthly solar radiation (SWD, (c)) in the study area. 

 

Figure 6. The Pearson correlation coefficients (r) of the Enhanced Vegetation Index (EVI) with each
of the three climate factors—mean monthly temperature (TMP, (a)), accumulative precipitation
(PRE, (b)), and mean monthly solar radiation (SWD, (c)) in the study area.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

of the study area had a positive correlation with precipitation with 4.87% being statisti-
cally significant (p < 0.05), and 25.49% showed a negative correlation with 0.25% being 
statistically significant (p < 0.05); 28.66% of the study area had a positive correlation with 
solar radiation with 0.20% being statistically significant (p < 0.05), and 71.34% showed a 
negative correlation with 5.70% being statistically significant (p < 0.05) (Figure 6). These 
results suggested that temperature and precipitation promote forest growth in most areas, 
while radiation limits forest growth. The spatial distribution of the dominating climatic 
driver in the study area is shown in Figure 7a, it can be seen that the relative influence of 
temperature, precipitation and solar radiation on forest growth changed drastically from 
pixel to pixels, despite them being in close vicinity. Among the climate factors, 69% of the 
forest pixels EVI had the strongest correlation with temperature, and the maximum cor-
relation coefficient of 0.86; 11% of the forest pixels EVI had the strongest correlation with 
precipitation, and a maximum correlation coefficient of 0.77; 20% of the forest pixels EVI 
had the strongest correlation with radiation, and a maximum correlation coefficient was 
−0.88. These results suggest that temperature, precipitation, and radiation can affect forest 
growth significantly in east China; however, the dominant climatic drivers vary from re-
gion to region. 

 
Figure 6. The Pearson correlation coefficients (r) of the Enhanced Vegetation Index (EVI) with each 
of the three climate factors—mean monthly temperature (TMP, (a)), accumulative precipitation 
(PRE, (b)), and mean monthly solar radiation (SWD, (c)) in the study area. 

 

Figure 7. The spatial distribution of forested regions predominantly driven by different climate
factors (a), and their differential responses of the Enhanced Vegetation Index (EVI) to changes in
temperature (b–d) and precipitation (e–g). In panel a, predominantly temperature-driving (TMP, red),
precipitation-driving (PRE, blue), and solar radiation-driving (SWD, green) regions were determined
by the climate factor that had the highest correlation coefficient with the EVI. In panel b–d, the EVI in
the high-temperature year (hot, in red, year 2013) or in the low-temperature year (cold, in red, year
2015) were contrasted with the normal-temperature year (normal, in green, year 2011) in TMP-driving
(b), PRE-driving (c), and SWD-driving (d) regions. In panel e–g, the EVI in the high-precipitation year
(wet, in blue, year 2010) or the low-precipitation year (dry, in blue, year 2011) were contrasted with
the normal-precipitation year (normal, in green, year 2009) in TMP-driving (e), PRE-driving (f), and
SWD-driving (g) regions. n represents the number of pixels. *** indicates p < 0.001 for pairwise t-tests.

3.3. Impact of Climate Fluctuations on the EVI

In the hot year (2013), pixels with TJul–Aug > 28.52 ◦C in the TMP-driving region,
TJul–Aug > 28.36 ◦C in the PRE-driving region, TJul–Aug > 28.65 ◦C in the SWD-driving region
were selected for data analysis. For the cold year (2015), the pixels with TJul–Aug < 25.47 ◦C
in the TMP-driving region, TJul–Aug < 25.35 ◦C in the PRE-driving region, TJul–Aug < 25.63 ◦C
in the SWD-driving region were selected. For the normal year (2011), the pixels with
TJul–Aug ∈ 26.71 ± 0.83 ◦C in the TMP-driving region, TJul–Aug ∈ 26.59 ± 0.83 ◦C in the
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PRE-driving region, TJul–Aug ∈ 26.77 ± 0.84 ◦C in the SWD-driving region were selected.
Then, for each region, two pair-wise t-tests were conducted among matched pixels, one to
contrast hot vs. normal conditions (n = 2406 for the TEM region, n = 570 for the PRE region,
n = 490 for the SWD region), and one to contrast cold vs. normal conditions (n = 189 for the
TEM region, n = 194 for the PRE region, n = 472 for the SWD region), to reveal divergent
forest responses to temperature change among the climate-driving regions. The pixels
in wet, dry and normal years were selected in the same way based on Tables S1 and S2.
Then, for each region, two pair-wise t-tests were used to contrast wet vs. normal conditions
(n = 4848 for the TEM region, n = 475 for the PRE region, n = 854 for the SWD region) and
dry vs. normal conditions (n = 2646 for the TEM region, n = 495 for the PRE region, n = 411
for the SWD region), to reveal divergent forest responses to precipitation changes among
the regions.

The results of our t-test showed the EVI response to temperature and precipitation
changes in Figure 7b–g: (1) In the TMP-driving region (Figure 7b), the EVI in the hot
year was significantly greater than in the normal year, while significantly lower than
the normal year in the cold year. This means that the EVI increased with the increase
in temperature and decreased with a decrease in temperature. This result implies that
warming temperatures may promote forest growth and cooling temperatures may interfere
with forest growth in the TMP-driving regions. However, both the EVI in the hot and
cold years were significantly greater than the normal year in Figure 7c,d. This means
that temperature change (warming or cooling) may not affect the EVI in the PRE-driving
region and the SWD-driving regions. (2) In the TMP-driving region (Figure 7e), the EVI in
the wet and dry years was significantly greater than in the normal year. This means that
precipitation change (wetness or drying) may not affect the EVI. However, both the EVI
in the wet year was significantly greater than the normal year in the PRE-driving region
and the SWD-driving region, while significantly lower than the normal year in the dry
year (Figure 7f–g). This means that the EVI increased with an increase in precipitation and
reduced with a decrease in precipitation. This result implies that increased precipitation
may promote forest growth whereas decreased precipitation could interfere with forest
growth in the PRE-driving region and the SWD-driving region.

A further graphic analysis on how the EVI responded to temperature and precipitation
changes in different forest types (Figure S2) also shows that there were minimal differences
among the forest types. These results suggested that there are significant differences in
the response of forest growth to climate fluctuations (temperature, precipitation) within
different regions, and such differences are related to the dominant climate factors affecting
forest growth.

3.4. Impact of Elevation on Forest Response to Climate Fluctuations

We used a random forest model to analyze the effects of temperature, precipitation,
elevation, slope, aspect, and forest type on the EVI from 2001 to 2020. A total of 669,060 data
points (33,453 pixels per year × 20 years) were entered into the random forest model. The
importance of the six independent variables for the EVI were listed below in a descending
order: elevation (29.47%) > slope (27.96%) > precipitation (18.08%) > temperature (13.75%)
> aspect (6.52%) > forest type (4.21%) (Figure 8a). Due to elevation and slope being
the most important factors, we further analyzed the differences in elevation and slope
among three regions dominated by different climatic variables. The results showed that the
elevation in the SWD-driving region was significantly higher than in TMP-driving and PRE-
driving regions (Figure 8b), while the slope in the TMP-driving region was significantly
higher than the PRE-driving region (Figure 8c).
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SWD-driving region. Slope only had a significant positive correlation with the r of the EVI 
and temperature (ρslope = 0.03, p < 0.05) in the TMP-driving region, but not in the other two 
regions. As the EVI had positive correlations with temperature and precipitation, and a 
negative correlation with solar radiation (Section 3.2, Figure 6a–c); therefore, these results 
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Figure 8. The impact of terrain on forest responses to climate factors based on random forest models.
Panel (a) is the relative importance of various forces on the EVI. Panel (b,c) are the boxplots of
elevation (b) and slope (c) among three climate-driving regions. TMP: mean monthly temperature
(◦C); PRE: accumulative precipitation (mm); SWD: mean monthly downward short-wave radiation
(w m−2); n represents the number of pixels. In Panel (b,c), Letter A and B indicate means were
significantly different from each other (p < 0.05) with Scheffe test. Letter AB indicates mean was not
significantly different from means with either A or B.

Elevation had a significant positive correlation with the r of the EVI and temperature
(ρelevation = 0.06, p < 0.001) in the TMP-driving region, a negative correlation with the r
of the EVI and precipitation ρelevation = −0.16, p < 0.001) in the PRE-driving region, and a
negative correlation with the r of the EVI and solar radiation (ρelevation = −0.07, p < 0.01)
in the SWD-driving region. Slope only had a significant positive correlation with the r of
the EVI and temperature (ρslope = 0.03, p < 0.05) in the TMP-driving region, but not in the
other two regions. As the EVI had positive correlations with temperature and precipitation,
and a negative correlation with solar radiation (Section 3.2, Figure 6a–c); therefore, these
results suggest that higher elevation was associated with a stronger positive correlation of
the EVI and temperature, a weaker positive correlation of the EVI with precipitation, and a
stronger negative correlation of the EVI with solar radiation.

The Huangshan meteorological station is located at the top of the mountain, where
forest growth was dominated by temperature (Figure 7). We compared the EVI at the
station and the nearest piedmont in both the hot and cold years to reveal the effect of
elevation. The results, which can be seen in Figure 9, at the top of the mountain EVI in the
hot year (EVI = 0.69 ± 0.01) was significantly greater than the cold year (EVI = 0.65 ± 0.01)
(Figure 9b), while at the nearest piedmont EVI had no statistic difference in the hot year
(EVI = 0.62 ± 0.01) and the cold year (EVI = 0.64 ± 0.06) (Figure 9a). These two regions
were within close vicinity, sharing similar climate conditions, but had different responses
to temperature changes due to elevation differences.
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Figure 9. The impact of elevation on forest responses to temperature change based on pixels in 3 × 3
window taken from adjacent areas in Huangshan station with a resolution of 500 m. The Enhanced
Vegetation Index (EVI) in high-elevation pixels were significantly higher in the hot year (red bar,
year 2013) than in the cold year (blue bar, year 2015) (panel (b)), while the EVI in low-elevation pixels
had no difference of growth between the hot and the cold years (panel (a)). ns indicates no significant
difference between means. *** indicates highly significant difference between means with p < 0.001.

4. Discussion
4.1. Diverse Forest Response to Climate Fluctuations

Forest growth and structure can be affected by several important climate factors,
including temperature, precipitation, and solar radiation [5,36]. However, the effects
of these factors on vegetation growth are not instantaneous, and can be subject to lag
times [6,7,37]. For instance, precipitation takes time to infiltrate the soil, be absorbed
by plant roots, and be transmitted through the xylem to the leaves for photosynthesis.
Similarly, insufficient precipitation may not immediately impact vegetation growth, as
soil water can reduce the effects of drought stress for a certain period [45]. On the other
hand, temperature can affect vegetation growth by changing the activities of enzymes in
leaves [46]. Our study found that the lag time of precipitation and radiation was longer than
that of temperature, indicating that forest responses to temperature were faster than their
responses to precipitation. This result was consistent with previous studies in China [27]
and may be due to enzymes being more sensitive to changes in temperature [46]. Given the
differences in the response times of climate factors, it is important to consider the time lag
effect in studies of vegetation response to climate fluctuations.

At the global scale, the heterogeneity of hydrothermal conditions caused by latitude
means that the climate drivers of forest growth can differ [5–7]. In high latitudes, where
cold temperatures can restrict vegetation growth, forest growth is usually dominated
by temperature and radiation [6,7]. Conversely, in arid and semi-arid areas at low-mid
latitudes, vegetation growth is usually limited by insufficient precipitation [47]. However,
the use of site data [48] or coarse-resolution spatial data [6] in global studies may overlook
spatial heterogeneity in forest response to climate factors. Our study in a mountainous-
hilly region of eastern China showed that forest growth is predominantly influenced by
temperature, consistent with previous global results [6,7]. However, some areas were also
dominated by precipitation and solar radiation, which may be related to the undulating
terrain causing differences in hydrothermal conditions within close vicinity under similar
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climatic backgrounds [49,50]. In the troposphere, high-elevation regions were colder, with
temperature and solar radiation being the dominant climatic drivers affecting forest growth,
consistent with previous findings on cold regions in high latitudes [6,7].

The dominant climate factors in eastern China lead to divergent forest responses to
climate fluctuations. Our results show that temperature changes had a significant impact
on forest growth in the TMP-driving region, but less impact on forests in the PRE-driving
and the SWD-driving regions. Warm temperatures could promote forest growth, while
cold temperatures could inhibit forest growth. Precipitation changes had a significant
impact on forest growth in the PRE-driving and the SWD-driving regions, but less impact
on forests in the TMP-driving region. As the TMP-driving region is larger than the PRE-
driving and the SWD-driving regions, forests in eastern China would generally benefit
from a warming climate currently. However, a warmer and dryer climate in the future
may also cause some forest patches to switch from TEM driven to PRE driven, which
could lead to a decrease in forest growth instead of an increase, as predicted by existing
climate models [51–53]. Our regional-scaled results will provide more guidance for climate
fluctuations assessment for the region and local forest management policy formulation
than the results from global-scaled studies.

4.2. Uncertainty

While the use of multiple data sources in this study ensured data independence, the
differences in their spatiotemporal resolution may have introduced some uncertainty to the
results. Other vegetation indexes, such as the MERIS Terrestrial Chlorophyll Index (MTCI),
is also sensitive to chlorophyll content and could better reflect vegetation changes [23],
which may be a potential index in our study. Although both the EVI and the MTCI might be
appropriate for forest vegetation cover, the communication with the Envisat-1 satellite with
the MERIS was lost in 2012, and the next satellite sensor allowing for the calculation of the
MTCI (i.e., Sentinel) was first launched in 2014. Therefore, there is no continuous time series
of the MTCI for the purpose of this study. In addition, the spatial resolution and temporal
span of MODIS-EVI data match our land cover data. For this reason, we eventually chose
to use the EVI dataset from the MODIS to indicate forest growth. Due to the limitation
of available data, the period of solar radiation data was 4 years short of other data and
not entirely consistent, which might increase uncertainties in the results. Specifically,
the moderate changes in temperature and precipitation analyzed in this research led to
divergent forest responses. However, extreme temperature or water stress such as frost,
continuous low or high temperature, drought, and flood may lead to consistent declines in
forest growth [51]. Additionally, other factors such as soil quality [13], nutrient [14], soil
moisture [54], bark thickness [55], insect infestations [56], and forest wildfires [57] may also
impact the responses of the EVI to climate fluctuations that may lead to low correlation
coefficient value between the EVI and climate factors. Studies in other regions, such as
the Tibetan plateau and India, showed that human activities such as land use and land
cover management could also affect forest growth [58–60]. Due to the limited availability
of relevant local data, it was challenging to account for these factors, which could have
increased the uncertainty of our results.

We have used the Mann–Kendall test to evaluate the potential trend of the EVI increase
in three regions from 2001 to 2020. The results showed that the EVI had no significant
change trend in the TMP-driving and PRE-driving regions (p = 0.10 and 0.13, Figure S1a,b),
while it had a significant increase in the SWD-driving region (p = 0.02, Figure S1c). Therefore,
the EVI trend may have little impact on the results in the TMP-driving and PRE-driving
regions (Figure 7b,c,e,f). The EVI in the hot year 2015 was lower than in the cold year
2013 in the SWD-driving region (Figure 7d), while the EVI in the dry year 2011 was lower
than normal year 2009 and wet year 2010 (Figure 7g). These results are inconsistent with a
hypothetic increasing trend of the EVI. In addition, the years we chose here were very close
(2011 to 2015 for temperature, 2009 to 2011 for precipitation); therefore, the influence of a
potential EVI increasing trend might be minimal given these time spans.
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5. Conclusions

This study provides new insights into the divergent forest responses to tempera-
ture and precipitation changes within close vicinity, using satellite data and climate data.
Our results show that warming temperature can promote forest growth, while cooling
temperature can limit forest growth in the temperature-driven regions. Similarly, wet
precipitation can promote forest growth while drying precipitation can limit forest growth
in the precipitation-driven regions and the solar radiation-driven regions. These results
showed that complex terrain contributed significantly to the spatial heterogeneity of forest
response to climatic drivers at the regional scale, which has important implications for
forest resource management and policy decisions. Our findings highlight the importance of
considering the heterogeneity of forest responses to climate fluctuations, particularly in a
future warmer and drier climate, where some forest patches may switch from temperature
driven to precipitation driven, leading to restricted forest growth rather than improved for-
est growth as predicted by existing climate models. Therefore, it is important to incorporate
these divergent forest responses in local forest management and climate change-related
risk assessments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15112749/s1, Figure S1: Time series of the monthly average EVI
(enhanced vegetation index, panel a–c), monthly average temperature (TMP (◦C), panel d–f), monthly
accumulative precipitation (PRE (mm), panel g–i), and monthly average solar radiation (SWD
(w m−2), panel j–l) in regions dominated by different climate factors (panel a,d,g,j are TMP-driving;
panel b,e,h,k are PRE-driving, and panel c,f,i,l are SWD-driving). Figure S2: Responses of the
regional Enhanced Vegetation Index (EVI) to temperature and precipitation changes mainly driven
by temperature (TMP), precipitation (PRE) and solar radiation (SWD) within each forest type (ENF:
evergreen needle-leafed forest; EBF: evergreen broad-leafed forest; DBF: deciduous broad-leafed
forest; MF: mixed forest) in regions predominantly driven by different climate factors. Table S1:
The maximum and minimum annual mean of temperature (TMP, ◦C), precipitation (PRE, mm), or
radiation (SWD, w m−2), near 30-year average, and their corresponding years during 2001–2020
in regions driven by TMP, PRE and SWD. Table S2: The 30-year average of temperature (TMP, ◦C),
precipitation (PRE, mm), or radiation (SWD, w m−2), and their standard deviation in regions driven
by TMP, PRE and SWD.
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