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Abstract: Particle matter (PM) mass concentrations have an important influence on human and envi-
ronmental health. Lidar plays an important role in the monitoring of PM concentrations. However,
the accuracy of PM concentrations retrieved via lidar depends on the performance of the conversion
model from the aerosol extinction coefficient (EC) to PM concentration. Therefore, surface PM con-
centrations, aerosol EC and five meteorological factors are used to build the conversion model that
can also be applicable to lidar for retrieving PM concentrations. In this study, the traditional linear
model (LM), random forest (RF) and artificial neural network (ANN) algorithms are used to estimate
the mass concentrations of PM with aerodynamic diameters < 1 µm (PM1), 2.5 µm (PM2.5) and 10 µm
(PM10). The influence of meteorological factors on the conversion model is analyzed. The results
show that the meteorological parameters play a non-ignorable role in the model of PM retrieval based
on EC, especially when retrieving PM10. Moreover, the performance of three models is investigated
by comparing with the surface measurements. The results indicate that the RF and ANN models are
more suitable to estimate PM than the LM model. The diurnal variations in mean relative error (MRE)
from the three models are then analyzed. There is a diurnal pattern in MRE values, meaning that the
maximum values occur in the afternoon and the minimum values occur at night. In addition, there
are subtle differences in performance between two machine learning (ML) models. After analysis, it
is found that for PM10, the RF method is superior to the ANN when the EC value is small, while the
ANN method is superior to the RF when the EC value is relatively high, and the EC threshold is set to
0.6 km−1. For PM1 and PM2.5 estimation, the ANN is the most appropriate model. Finally, accurate
diurnal variations in PM1 and PM2.5 based on the ANN model and PM10 based on the combined
model of RF and ANN (named RA) are investigated. The results exhibit that the daily maximum
values of PM1, PM2.5 and PM10 in the Wuhan area all occur at approximately 08:00–10:00 local time
(LT), which is mainly due to the impact of commuter vehicle emissions and the impact of secondary
photochemistry response aggravated by sufficient illumination and temperature rises after sunrise.
These research results provide an important basis for particulate matter monitoring.

Keywords: particle matter; aerosol extinction coefficient; random forest; artificial neural network

1. Introduction

Particulate matter (PM) refers to fine solid or liquid aerosol particles suspended in the
atmosphere [1,2]. PM with aerodynamic diameters < 1 µm (PM1), 2.5 µm (PM2.5) and 10 µm
(PM10) is the main atmospheric pollutant and is also important in affecting the atmospheric
environment [3–6]. With the rapid development of society, the intense consumption of
energy increases the emissions of PM, resulting in serious air pollution and affecting the
human living environment [7–10]. A large amount of PM will cause haze and reduce
atmospheric visibility [11–13]. The combination of PM and chemical substances seriously
endangers human health and causes a variety of diseases [14–16]. Therefore, continuous
monitoring of the variations in PM concentrations is crucial [17].
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At present, there are many monitoring methods for PM concentrations. Surface in situ
measurement is a common method to obtain the surface PM concentrations. Chen et al. [18]
used surface PM10 concentrations collected from ground monitoring stations to investigate
the relationship between daily mortality and PM10 in 16 cities in China. Pu et al. [19] used
the measurement of ground PM2.5 concentration to study the influence of long-distance
transport on aerosol properties at Shangdianzi station. To obtain the large-scale surface
PM concentrations, aerosol optical depth (AOD) derived from satellite measurements
was applied to establish the relationship with surface PM [2,3,20,21]. Chen et al. [22]
incorporated daily surface PM1, AOD obtained via satellite observation and other predictive
information to retrieve the PM1 concentrations across China from 2005 to 2014. Based on
the meteorological information and other predictors, Hu et al. [23] built the association
of AOD with ground PM2.5 using geographically weighted regression. Meng et al. [24]
estimated surface PM10 concentrations in Shanghai by using AOD. These studies have
improved the understanding of the change in surface PM concentrations.

With further research, PM concentration profiles have gradually attracted attention
because it is important to understand the transport of pollutants and the formation process
of regional pollution [25–27]. The original method of measuring the PM concentration
profile is to use meteorological towers installed with PM monitors. Yang et al. [28] employed
PM2.5 monitors on a meteorological tower to derive PM2.5 profiles in Beijing. Due to the
limited detection height of this measurement method, some studies have retrieved PM
concentration profiles from aerosol extinction coefficient (EC) profiles obtained from lidar
systems. Liu et al. [29] explored the association of the surface particle number concentration,
with EC obtained via lidar data, and derived the vertical distribution of the particle number
concentration. Raut and Chazette [30] examined the vertical distribution of PM10 in the
area around the Paris Peripherique by developing two approaches for converting aerosol
EC retrieved from mobile lidar measurements into PM10. These studies confirm that lidar
has good time and height resolution and can be applied to derive the PM concentration
profiles [17]. However, there are still two difficulties in obtaining the full profile of PM
concentrations from lidar. One is that, due to the influence of the overlap factor, a lidar
system is usually unable to obtain near-ground extinction coefficient signals [29]. On the
other hand, the accuracy of PM profiles retrieved by lidar depends on the performance of
the conversion model from EC to PM concentration. Therefore, here, we use the surface
EC not derived from lidar data to develop the conversion model that can be applicable to
lidar for retrieving PM concentration profiles. Currently, the traditional linear model (LM)
and machine learning (ML) algorithms are applied to retrieve PM concentration profiles.
Lv et al. [31] adopted the LM method to study the association of PM2.5 concentration with
EC and derived the PM2.5 profile. Ma et al. [32] derived PM2.5 profiles by using ML
methods. Zhu et al. [33] applied a random forest model (RF) in ML to derive the PM2.5
profiles in Wuhan. The aim of these studies is to develop an accurate approach to describe
the nonlinear transformation from EC to PM concentrations. The artificial neural network
(ANN) algorithm, as an ML algorithm, can map complex nonlinear relationships between
multiple inputs and outputs [34]. However, it has rarely been applied in the estimation
of PM concentrations. Therefore, it is worth attempting to utilize the ANN algorithm to
construct the conversion model from EC to PM concentrations.

In this study, surface PM1, PM2.5 and PM10 concentrations, aerosol EC and five mete-
orological parameters from November 2014 to May 2017 in Wuhan are utilized to build
the conversion model. The purpose of building the conversion model from EC to PM
concentrations is to obtain an accurate model that can be applicable to lidar for retrieving
PM concentrations. The comparison analyses of the LM and two ML models are then
carried out. Finally, the most accurate model is built to analyze the diurnal variations in
these three particle concentrations in Wuhan. The remainder of this paper is organized as
follows. The observation station and data are illustrated in Section 2. In Section 3, three
retrieval methods of PM concentrations are provided. In Section 4, the comparison results
of model accuracy are discussed. The main conclusions are provided in Section 5.
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2. Station and Data
2.1. Observation Station

Located in Central China, Wuhan is an important industrial city in the middle reaches
of the Yangtze River [35,36]. With the industrial development and the continuously increas-
ing number of people and vehicles, the environment around Wuhan has been seriously
affected, and the air quality problem has aroused people’s concern [37]. An atmospheric
observatory is located in the State Key Laboratory of Surveying, Mapping and Remote Sens-
ing Information Engineering (LIESMARS) of Wuhan University, China (39.98◦N, 116.38◦W),
with an altitude of about 23 m. The observation station is located in an urban area, sur-
rounded by buildings. It is equipped with devices, including nephelometer, aethalometer,
PM detector and automatic weather station.

2.2. Ground Data

The aerosol EC is the sum of aerosol scattering coefficients (SCs) and aerosol absorption
coefficients (ACs) [32]. The surface aerosol SCs are obtained using the nephelometer (model
3563, TSI, Saint Paul, MN, USA), where the error in the data is about 7%. It can provide
the surface SCs at 450, 550 and 700 nm simultaneously in 5 min intervals, which can be
used to derive the surface SC at 532 nm [38,39]. This device is calibrated every three
months [36]. Moreover, the aethalometer (model AE31, Magee Scientific, Berkeley, CA,
USA) is employed to provide the black carbon concentrations that can be applied to obtain
the surface aerosol AC. This device is regularly maintained every three months [40]. The
surface AC at 532 nm can be derived from black carbon concentrations at 880 nm [39,41].
Therefore, the surface EC at 532 nm is obtained from the surface SC at 532 nm and surface
AC at 532 nm.

An automatic meteorological station (U3-NRC, Onset HOBO, Cape Cod, MA, USA) is
employed to provide meteorological parameters. Here, five parameters, including pressure
(Press), relative humidity (RH), temperature (T), wind direction (WD) and wind speed
(WS), are collected. They are applied as auxiliary data for model construction. Moreover,
the environmental particulate detector (Grimm EDM 180, Ainring, Bayern, Germany)
is applied to provide the ground PM1, PM2.5 and PM10 concentrations, which are used
as standard values for model training. The measuring principle of this instrument is to
firstly obtain the size and number concentration of each particle, which are calculated by
measuring the laser light scattering of each particle in the sample air chamber. Then, the
obtained size and number concentration is converted into PM mass concentrations by using
the protocol [42]. These observation data are processed into hourly average data. The time
series of all these data are shown in Figure S1. After matching, a total of 5342 h of data are
finally obtained from 16 November 2014 to 18 May 2017.

3. Methodology

In this section, the LM method and two ML methods are applied to estimate PM1,
PM2.5 and PM10 concentrations, respectively. Statistical methods utilized to evaluate the
predictive accuracy of models are also proposed.

3.1. Traditional Linear Model

LM method was utilized to estimate PM concentrations [31,43,44]. Lv et al. [31]
interpreted the association of PM concentrations with aerosol EC and showed that EC is
linear with the total particle mass concentration. Therefore, here, the LM model is built
to study the association of EC with PM1, PM2.5 and PM10. Due to the fact that the ECs of
aerosols are significantly affected by RH [1], RH is a vital factor in evaluating the association
of PM concentrations with aerosol ECs. The dependence of PM concentrations on aerosol
ECs under different RH conditions is shown in Figure 1. The black line is the fitting result.
In order to avoid unreasonable negative values, the restricted linear fitting through the
origin is applied here according to the approach of Liu et al. [45], which is represented by
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the red line. Based on this method, the linear relationship between ECs and PM1, PM2.5
and PM10 is, respectively:

EC = 0.0072 × PM1 (1)

EC = 0.0067 × PM2.5 (2)

EC = 0.0053 × PM10 (3)
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Figure 1. The linear regression relationship (a) between observed PM1 and EC, (b) between observed
PM2.5 and EC and (c) between observed PM10 and EC. The black and red lines are the reference line
and the regression line, respectively. The color bar represents the RH. The asterisk indicates that the
R passed the statistical significance difference test (p < 0.05).

The correlation coefficient (R) between surface ECs and PM1, PM2.5 and PM10 is 0.83,
0.81 and 0.65, respectively. It shows that the correlation between PM10 and ECs is relatively
low compared with PM1 and PM2.5. This is mainly related to the detection performance
of the instruments and meteorological factors [1,46]. Chen et al. [1] revealed that with
RH enlarging, the uncertainty of the correlation between PM and EC will exacerbate.
Li et al. [46] also indicated that the correlation between PM and EC is affected by RH.
Because under high RH, ECs will increase due to the enlargement of the size of aerosol
particles, yet the concentrations of PM measured by the instrument are handled by drying.

3.2. Machine Learning Algorithms

Two ML algorithms, containing the RF and ANN, are utilized to retrieve PM1, PM2.5
and PM10. Here, the input variables contain surface EC, Press, RH, T, WD and WS. We
randomly assign all the ground observation data (5342 sets) to be a training set and a testing
set according to 90% and 10%. Among them, there are 4808 sets of data in the training set
and 534 sets of data in the testing set. The 10-fold crossover is used to train these two ML
models. There are ten testing sets, nine of which contain 534 sets of data and one of which
contains 536 sets of data. Therefore, all 5342 sets of data in this study participate in the
results testing.

3.2.1. Random Forest Model

RF model was proposed by Breiman [47]. As shown in Figure 2a, RF model is an
integrated model composed of multiple decision trees, which are irrelevant for each
other [33,48]. It produces numerous independent trees and takes the average value of
each tree estimation result as the final estimation result [49]. In this paper, the final esti-
mated PM concentrations are given by the average result of all single decision trees [50].
Since the RF algorithm can deal with multiple input variables and produce the best results
by considering various variables, it has been widely employed to retrieve concentrations of
atmospheric pollutants [49].
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Figure 2. Schematic diagram of the (a) RF and (b) ANN algorithms used to estimate PM1,
PM2.5, PM10.

Here, surface aerosol ECs and the five meteorological parameters mentioned above
are used as input variables to train the model. The number of trees (estimator num) and
the maximum depth of each decision tree (max depth num) are two important parameters
in RF model training. When training and optimizing the model, the best performance
model can be obtained by adjusting these two parameters, as shown in Figure 3a–c. The
principle of parameter adjustment is to define an appropriate value of estimator num at the
minimum RMSE, which is also applied in selecting the value of max depth num. Finally,
the values of estimator num and max depth num are set to 22 and 88, 14 and 84, and 53
and 67 for PM1, PM2.5 and PM10 estimations, respectively.
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Figure 3. The value of RMSE between observed PM1 and estimated PM1 (a), observed PM2.5 and
estimated PM2.5 (b), observed PM10 and estimated PM10 (c) based on the RF model changes with
estimator num and max depth num. Similar for ANN model changes with epoch num and hidden
node num (resp. d–f). The red dotted box indicates the area where the optimal parameters are located.
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3.2.2. Artificial Neural Network

ANN is a computational technique that simulates the structure and function of the
human brain and nervous system through mathematical modeling [51]. The ANN algo-
rithm is a classic and common ML algorithm. Because this algorithm can build complex
nonlinear relationships between input features and output data [34], it has been employed
to solve the nonlinear fitting problem. As shown in Figure 2b, its network structure consists
of three layers, which are input, hidden and output layers, respectively. These three parts
are connected in sequence, and each layer can contain multiple neurons. When the input
data enter the neural network through the input layer, the hidden layer will process the
data and output them from the output layer.

Here, the ANN model adopts one hidden layer and adds the hyperbolic tangent func-
tions, which are tanh(x) and relu(x), as activation functions. When training and optimizing
the neural network model, we construct the best performance model by adjusting the
number of epochs (epoch num) and the number of hidden nodes (hidden node num), as
shown in Figure 3d–f. It exhibits that the performance of the ANN model built in this paper
is mainly affected by the hidden node num, which indicates that we only need to select an
appropriate value of hidden node num. After parameter tuning, the values of hidden node
num are defined to 1050, 1038 and 410 for PM1, PM2.5 and PM10 estimations, respectively.

3.2.3. Sensibility Analysis

The PM concentrations are not only correlated with ECs but also correlated with me-
teorological parameters [5,52]. Therefore, the importance analysis of the input parameter
for two ML models is carried out, as shown in Figure 4. For PM1, PM2.5 and PM10, the
importance values of ECs in RF (ANN) are 0.6 (0.45), 0.57 (0.7) and 0.39 (0.43), which are
evidently greater than that of other input variables. The result exhibits that the concen-
trations of these three particles are mainly affected by ECs. Moreover, for the RF (ANN)
model in predicting PM1, the importance values of Press, RH and T are 0.17 (0.2), 0.06
(0.17) and 0.11 (0.14), which are also relatively large varying from 0.05 to 0.2. The case
of PM2.5 is similar to that of PM1, with importance values varying from 0.05 to 0.2. It
indicates that meteorological factors, such as Press, RH and T, will also be considered in
the inversion process of RF and ANN models. Specifically, among these input variables,
the Press is a relatively important contributor, with larger importance values of 0.15. This
is because there is a positive correlation between the Press and PM concentration [53].
Li et al. [53] indicated that air Press affected convection, thereby influencing PM’s transport
and accumulation. However, it notes that for the RF (ANN) model in predicting PM10,
the importance values of Press, RH and T are 0.23 (0.27), 0.18 (0.16) and 0.12 (0.11), which
are all larger than 0.1. Combined with these results, it indicates that the concentrations of
PM10 are more affected by meteorological factors than the concentrations of PM1 and PM2.5.
Therefore, the influence of meteorological parameters should be taken into account when
estimating PM1, PM2.5 and PM10 using aerosol ECs, especially when estimating PM10.

Due to the influence of ECs on PM concentration estimations, error analysis for the
three models is performed. The difference between the predicted PM concentrations and
the observed PM concentrations is shown in Figure 5. The results of three LM models
(Figure 5a,d,g) exhibit that the predicted PM concentrations deviate from their observed
values. Figure 5a and d show that the inversion results of LM are overestimated when the
EC is greater than 0.6 km−1. The result of LM (Figure 5g) shows an overestimation when
the EC is greater than 0.3 km−1. This is because the LM model does not consider the effects
of RH. High RH exacerbates the complexity of predicting particle concentration due to the
hygroscopic growth of aerosols [1]. By comparison, the difference in RF and ANN models
is obviously smaller than that of the LM model, no matter for PM1, PM2.5 or PM10. This is
due to the fact that the meteorological parameters, such as Press, RH and T, are taken into
account in the building of the two models. In addition, the deviations in RF and ANN are
relatively small and steady, which do not increase with the aerosol EC. Overall, the RF and
ANN models are more suitable than the LM model for PM estimation based on the EC.
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Figure 5. Difference in observed PM1 and predicted PM1, observed PM2.5 and predicted PM2.5 and
observed PM10 and predicted PM10 as a function of EC based on the (a,d,g) LM, (b,e,h) RF and
(c,f,i) ANN models. The gray, green and blue dots represent the difference for LM-observed, RF-
observed and ANN-observed PM, respectively. The black line represents the frequency of difference.
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3.3. Statistical Methods

In this study, we select three statistical metrics to assess the predictive abilities of each
model: R, root mean square error (RMSE) and mean relative error (MRE). R indicates the
correlation between estimated and observed values. RMSE and MRE are indicators used
to quantify the difference between estimated and observed values. In addition, RMSE is
an important indicator for adjusting model parameters. The calculation formulas used to
calculate R, RMSE and MRE are as follows:

R =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(4)

RMSE =

√√√√√ n
∑

i=1
(yi − xi)

2

n
(5)

MRE =
1
n

n

∑
i=1

|yi − xi|
xi

(6)

where n represents the total number of samples, xi and yi are the ith sample point of
the observed and estimated values and x and y are the mean value of observed and
estimated value.

4. Results and Discussion
4.1. Intercomparison of Prediction Results

Figure 6 presents the comparisons between the predicted PM concentrations and
the actual concentrations based on three methods. Consistent with the result in Figure 5,
the concentrations of these three particles estimated via the LM model deviate from their
observed values. The results of three LM models (Figure 6a,d,g) indicate that PM10 has the
largest number of deviation samples compared with PM1 and PM2.5, which is because the
correlation between PM10 and EC is relatively low, as described in Section 3.1. The simple
linear relationship between EC and PM is unable to obtain the surface PM concentrations
with high accuracy. By contrast, the PM concentrations estimated using the two ML models
are closer to their observed values. For PM1, the R of the LM, RF and ANN models is 0.83,
0.93 and 0.93, respectively. The RMSE of these three models is 15.41, 7.95 and 7.90 µg/m3,
respectively. The R and RMSE of the three models for PM2.5 and PM10 can be seen in
Figure 6. These results show that compared with the LM, the accuracy of the RF and ANN
models is significantly improved, and the RMSE is about half of the LM model. This is
because the RF and ANN models take into account the influence of meteorological factors,
thus improving the performance of the models. Furthermore, it notes that for PM1 (PM2.5),
the R of both ML models is improved by 0.1 (0.12) compared with the LM model. While
for PM10, the R of the RF (ANN) model is improved by 0.24 (0.22) compared with the LM,
which is nearly double that of PM1 and PM2.5. This is because the PM10 concentrations are
more affected by meteorological factors than PM1 and PM2.5, which is also confirmed by
the results in Figure 4. Overall, for these three particles, the accuracy of the RF and ANN
models is relatively similar, and both are evidently superior to that of the LM model.
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Figure 7 presents the hourly MRE between the PM concentrations retrieved using the
LM, RF and ANN models and their observed values. The MRE values of LM are higher
than that of RF and ANN in every hour for these three particles. These results exhibit that
there are smaller errors in estimating PM concentrations using the RF and ANN methods
compared with LM, which is consistent with the results in Figure 6. Moreover, the hourly
MRE shows a diurnal pattern that the maximum values occur at 13:00–17:00 local time
(LT) and the minimum values occur at 00:00–06:00 LT. Taking PM10 as an example, the
MRE values of the LM, RF and ANN models reach the maximum in the afternoon, which
are, respectively, 46%, 28% and 31% and remain at a low level at night, where the lowest
MRE values are, respectively, 40%, 14% and 18%. This may be due to the fact that PM
concentrations are also affected by the planetary boundary layer height and atmospheric
turbulence [44,54,55]. Li et al. [54] revealed that with the enhancement in solar radiation
in the afternoon, the turbulent diffusion rate increased, and the planetary boundary layer
height also increased. These two parameters peaked at approximately 15:00 LT, and both
then declined with solar radiation and kept steady after sunset. For these reasons, the error
in estimating PM concentrations is higher in the afternoon than at night. Li et al. [55] also
indicated that the higher RMSE and MAE in estimating PM1 concentration over Zhejiang
province was concentrated during 12:00–15:00 local solar time (LST).



Remote Sens. 2023, 15, 2742 10 of 15
Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Hourly MRE between (a) observed PM1 and estimated PM1, (b) observed PM2.5 and esti-
mated PM2.5, and (c) observed PM10 and estimated PM10 based on three models, respectively. The 
black, blue and red lines represent the MRE between observed PM and estimated PM using LM, RF 
and ANN models, respectively. 

4.2. Performance Difference between RF and ANN with Different EC Thresholds 
Combined with the results in Section 4.1, we find that although both ML models are 

superior to the LM model, there are still subtle differences in performance between these 
two models. Since the PM concentrations are mainly affected by aerosol EC, we explore 
which of the two algorithms is better under different EC thresholds, as shown in Figure 8. 
The solid dots indicate that the corresponding case passed the statistical significance dif-
ference test (p < 0.05). The number of samples for each bin is listed in Table S1. It can be 
seen that for PM1 and PM2.5, the RMSE (R) of RF is greater than (less than) that of the ANN 
model when the EC value is higher than these thresholds. These results exhibit that for 
PM1 and PM2.5, the ANN model is more appropriate for their estimation based on the EC. 
For PM10, the RMSE (R) of the ANN model is greater than (less than) that of the RF model 
when the EC value is greater than a low threshold, while the RMSE (R) of RF is greater 
than (less than) that of the ANN model when the EC value is greater than a high threshold. 
These results exhibit that for PM10, the RF model is more appropriate for estimating low 
values and the ANN model is more suitable for estimating high values. This is because 
there are fewer training samples at high values, which leads to reduced generalization 
ability of RF model. The generalization ability refers to the adaptability of the ML algo-
rithm to fresh samples. The RF model is an integrated method based on the decision trees 
and the final estimation result depends on the output of multiple decision trees, which 
means that its generalization ability is affected by the number of training samples. By con-
trast, ANN is a computational method to deal with complex nonlinear fitting problems 
through mathematical modeling, where the generalization ability is relatively less affected 
by the number of training samples. These results exhibit that the combined use of RF and 
ANN is likely to produce more accurate results for PM10. Therefore, it is necessary to 
choose an appropriate threshold to reach the best result. Figure 8c,f show that for PM10, 
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RF and ANN models, respectively.

4.2. Performance Difference between RF and ANN with Different EC Thresholds

Combined with the results in Section 4.1, we find that although both ML models are
superior to the LM model, there are still subtle differences in performance between these
two models. Since the PM concentrations are mainly affected by aerosol EC, we explore
which of the two algorithms is better under different EC thresholds, as shown in Figure 8.
The solid dots indicate that the corresponding case passed the statistical significance
difference test (p < 0.05). The number of samples for each bin is listed in Table S1. It can be
seen that for PM1 and PM2.5, the RMSE (R) of RF is greater than (less than) that of the ANN
model when the EC value is higher than these thresholds. These results exhibit that for
PM1 and PM2.5, the ANN model is more appropriate for their estimation based on the EC.
For PM10, the RMSE (R) of the ANN model is greater than (less than) that of the RF model
when the EC value is greater than a low threshold, while the RMSE (R) of RF is greater
than (less than) that of the ANN model when the EC value is greater than a high threshold.
These results exhibit that for PM10, the RF model is more appropriate for estimating low
values and the ANN model is more suitable for estimating high values. This is because
there are fewer training samples at high values, which leads to reduced generalization
ability of RF model. The generalization ability refers to the adaptability of the ML algorithm
to fresh samples. The RF model is an integrated method based on the decision trees and
the final estimation result depends on the output of multiple decision trees, which means
that its generalization ability is affected by the number of training samples. By contrast,
ANN is a computational method to deal with complex nonlinear fitting problems through
mathematical modeling, where the generalization ability is relatively less affected by the
number of training samples. These results exhibit that the combined use of RF and ANN is
likely to produce more accurate results for PM10. Therefore, it is necessary to choose an
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appropriate threshold to reach the best result. Figure 8c,f show that for PM10, the ANN
model outperforms the RF model when the threshold is > 0.6 km−1. On the contrary, when
the threshold is less than 0.6 km−1, the RF model outperforms the ANN model. Therefore,
the suitable threshold is set to 0.6 km−1 for PM10.
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4.3. Diurnal Variations

The results in Figure 8 indicate that for PM10, the RF model is more suitable to estimate
low values, and the ANN model is more suitable to estimate high values. The combined
use of RF and ANN (named RA) is developed for PM10 to produce the most accurate results.
The RA model is that when the EC is less than the threshold selected (see Figure 8c,f), the
RF model is utilized to estimate PM10 concentrations, and when the EC is larger than the
threshold, the ANN model is utilized to estimate PM10 concentrations. For PM1 and PM2.5,
the ANN model is the most appropriate model for estimation. Figure 9 presents the diurnal
variations in PM1 and PM2.5 based on the ANN model and PM10 based on the RA model in
Wuhan. The diurnal variations using LM, ANN and RA models are compared. The shaded
area represents the range of the average value ± standard deviation. From the RMSE or
standard deviation results, it exhibits that the ANN model is significantly superior to the
LM model (see Figure 9a,b) and the RA model is significantly superior to the LM model
(see Figure 9c). Moreover, the RMSE of the RA model is 12.77 µg/m3, which is lower than
that of the RF and ANN models. This indicates that the RA model outperforms both ML
models and is the most appropriate model to predict PM10 concentrations.

Furthermore, the daily maximum values of the concentrations of these three particles
all occur at approximately 08:00–10:00 LT, which shows a unimodal pattern of morning
peak. This is because Wuhan is a metropolis with a dense population. In the urban area,
the morning peaks are mainly contributed by enhanced anthropogenic activity during
rush hour. Huang et al. [56] confirmed the five main contributors of PM2.5 in Wuhan by
continuously measuring PM2.5 and its chemical composition. Among the five contributors,
the most important contributors of PM2.5 are secondary photochemistry and traffic-related
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emissions in Wuhan, which could explain why the daily maximum values of the three
particles all occur at approximately 08:00–10:00 LT. This time period is the peak time for
PM2.5 emissions from commuting vehicles, and it is also the time when there is sufficient
light and the temperature rise after sunrise, which intensifies the secondary photochemistry
response. Moreover, Wang et al. [42] showed that at most stations in the middle and lower
reaches of the Yangtze River, the diurnal variation in PM1 and PM10 is similar to that of
PM2.5; thus, there is also a morning peak at approximately 08:00–10:00 LT.
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5. Conclusions

This study uses the LM, RF and ANN algorithms to estimate PM1, PM2.5 and PM10
concentrations, respectively. The performance of three models is compared based on the
difference and correlation between the predicted PM concentrations and the observed
values. Finally, we analyze the diurnal variations in PM1 and PM2.5 concentrations based
on the ANN model and propose a combined model of RF and ANN (named RA) to analyze
the diurnal variation in PM10 concentrations.

The PM concentrations retrieved using the RF and ANN models are close to their
observed values, and the accuracy of both ML models is superior to the LM model. This is
because these two models take into account the influence of meteorological parameters,
thus improving the prediction accuracy, while the LM model estimates PM only depending
on EC, which is greatly affected by RH. Moreover, the accuracy in predicting PM10 using
the LM model is much worse than that in predicting PM1 and PM2.5. This is because the
correlation between PM10 and EC is the lowest compared with PM1 and PM2.5. The diurnal
variations in MRE from the three models are then analyzed. There exists a diurnal pattern
in MRE values that the maximum values occur in the afternoon and the minimum values
occur at night. In addition, the two ML models show subtle differences in estimating the
PM concentrations. For PM1 and PM2.5, ANN is the most appropriate model for their
estimation. For PM10, the RF model is more suitable to estimate low values, and the ANN
model is more suitable to estimate high values. Therefore, the RA model is presented
for PM10 to produce the smallest RMSE, which indicates that RA is the most accurate
model to estimate PM10 concentrations. Finally, diurnal variations in the concentrations
of PM1, PM2.5 and PM10 are investigated, and their daily maximum values all appear at
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approximately 08:00–10:00 LT, which indicates that the particulate pollution in Wuhan is
mainly affected by secondary photochemistry and commuter vehicles.

The above research results are helpful to provide selections of input parameters and
model types for long-term monitoring and modeling of PM concentrations and have great
reference value for further particulate matter concentration monitoring and modeling,
characteristic research, correlation analysis and other work, with great significance for
air quality and atmospheric environment assessment. Furthermore, these conversion
models developed in this study can be applicable to PM inversion by lidar in future studies.
However, there are some deficiencies in our work. Our research data are limited, as they
are only from the Wuhan area. Therefore, these conversion models could also be applicable
to regions other than Wuhan after adjusting hyperparameters in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15112742/s1, Figure S1: The time series of all these data from
16 November 2014 to 18 May 2017. The red, green, blue, and black lines are the dephelometer,
aethalometer, meteorological and PM data, respectively; Table S1: The number of samples above each
threshold and P of the corresponding case.
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