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Abstract

:

The mainstream methods for change detection in synthetic-aperture radar (SAR) images use difference images to define the initial change regions. However, methods can suffer from semantic collapse, which makes it difficult to determine semantic information about the changes. In this paper, we proposed a hierarchical fusion SAR image change-detection model based on hierarchical fusion conditional random field (HF-CRF). This model introduces multimodal difference images and constructs the fusion energy potential function using dynamic convolutional neural networks and sliding window entropy information. By using an iterative convergence process, the proposed method was able to accurately detect the change-detection regions. We designed a dynamic region convolutional semantic segmentation network with a two-branch structure (D-DRUNet) to accomplish feature fusion and the segmentation of multimodal difference images. The proposed network adopts a dual encoder–single decoder structure where the baseline is the UNet network that utilizes dynamic convolution kernels. D-DRUNet extracts multimodal difference features and completes semantic-level fusion. The Sobel operator is introduced to strengthen the multimodal difference-image boundary information and construct the dynamic fusion pairwise potential function, based on local boundary entropy. Finally, the final change result is stabilized by iterative convergence of the CRF energy potential function. Experimental results demonstrate that the proposed method outperforms existing methods in terms of the overall number of detection errors, and reduces the occurrence of false positives.
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1. Introduction


Change detection using remote sensing technology is a valuable research technique in the field of Earth observation [1,2,3]. It quantitatively analyzes multi-temporal images of the same geographical area to determine surface change characteristics [4].



The needs and standards in the field of communication are increasing [5,6] in response to the expanding range of human trajectories. The proposed integrated space–air–ground network has the potential to greatly enhance the efficiency of acquiring various types of information data and improve the computational efficiency of such data [7,8]. Incorporating edge computing tasks can improve the overall availability and scalability of the system [9,10,11]. By combining edge computing technology with remote sensing and satellite communication networks, the quality of satellite communication can be improved and the processing capability of satellite tasks can be enhanced, all while ensuring efficient resource scheduling [12,13]. Overall, the proposed integrated space–air–ground network has the potential to greatly influence the efficiency of acquiring various types of information data as well as the computational efficiency of such data.



The rich remote sensing data acquired by airborne remote sensing satellites can be used to describe urban land use, cover types and their detailed changes over time [2,14,15]. The field of remote sensing image change detection mostly utilizes a single optical image data source as the research target [16]. However, the imaging quality of optical remote sensing images is highly susceptible to complex weather, as well as satellite performance. Synthetic-aperture radar (SAR) images contain richer pixel information and clearer detailed information, which can effectively improve the limitations of optical image-based methods in the field of remote sensing change detection. SAR is an active microwave remote sensing technique [17,18] that could operate in less restricted natural environments [19] and plays an important role in remote sensing. The remote sensing change-detection method based on SAR images demonstrates significant advantages in the integrated space–air–ground tasks, such as urban building change detection [20], forest fire location [21], and geological disaster monitoring [22,23,24].



Currently, the predominant techniques of image change detection are based on difference-image detection [25], which involves analyzing the difference images generated from simultaneous phase images to obtain the final binary change maps [26]. Recently, deep learning has been applied to remote sensing image change detection, with the aim of learning complex features by constructing multilayer network models and training on huge amounts of data [27,28,29,30]. How to handle deep-level change information [31] is one of the key challenges in applying deep learning to change detection in the field of remote sensing imagery.



Taking advantage of the powerful feature-capture capability of the convolutional neural network (CNN) [32,33,34], Chen [28] proposed DSMS-CN and DSMSFCN methods for change detection of multi-temporal high-resolution remote sensing images based on multi-scale feature convolution units. Wu J et al. [29] proposed a deep supervised network (DSAHRNet) model. After the network extracts the decoding change information, the features are refined by parallel stacking of convolutional blocks, and more discriminative features can be obtained with the deep supervised module.



The attention mechanism is introduced in change-detection convolutional networks to focus on change information in complex information as well. Chen, J et al. [30] proposed DASNet, a change-detection model based on the dual attention full convolutional twin neural network, to obtain change-detection results by extracting rich features from dual temporal phase maps. Li et al. [35] introduced the pyramidal attention layer structure into the full convolutional network framework to further extract multi-scale variation information from the difference-feature maps processed by the original network encoder structure. Song et al. [36] proposed AGCDetNet by combining a fully convolutional network with an attention mechanism. The network takes into account the joint use of a spatial attention mechanism and channel attention mechanism. The paper verifies that AGCDetNet is able to enhance the discrimination of changing targets and backgrounds while improving the performance of feature representation for changing information. Lv et al. [37] proposed a hybrid attention semantic segmentation network (HAssNet), which incorporates a spatial attention mechanism and a channel attention mechanism based on a fully convolutional network [38]. This approach effectively utilizes multi-scale extracted features and global correlation to locate and segment targets in the image.



Nevertheless, most of the work only uses the deep features of CNN to build semantic feature descriptions, which ignores the fine-grained information contained in the shallow features [39]. Du et al. [40] designed a bilateral semantic fusion twin network (BSFNet) integrating shallow and deep semantic features in order to better map dual-temporal images to semantic feature domains for comparison, and obtained pixel-level change results with more complete structures. The UNet network [41] has outstanding performance in the field of semantic segmentation, and has been widely adopted into the field of remote sensing change detection. Zhi, Z et al. [42] proposed a UNet-based CLNet network with a cross-layer structure to improve the change-detection accuracy by improving the way of contextual information fusion. By incorporating the advantages of dense connections for multi-scale information mining within UNet++, Li et al. [43] introduced multiple sources of information to supplement the channel information of remote sensing images in their framework. The resulting model exhibits excellent performance across various datasets. Chen et al. [44] combined the attention mechanism with UNet to design the Siamese_AUNet twin neural network. The model performs well in solving the problems related to weak change detection and noise suppression. Furthermore, for change detection, the conditional random field (CRF) based on probabilistic graphical models (PGM) [45] and the Markov random field (MRF) [46] have been introduced. Zhang et al. [47] used the CRF model to improve the traditional change-detection method. A half-normal CRF (HNCRF) method is proposed to construct the interaction between pixel points in the spatial analysis of difference images, which is effective when the change region is small. Lv et al. [48] proposed a hybrid conditional random field (HCRF) model that combining traditional random field methods with object-based techniques. The improved model fully exploits the spectral spatial information, thereby enhancing the change-detection performance of high-spatial-resolution remote sensing images, improving the traditional change-detection method with the CRF model. A half-normal CRF (HNCRF) method is proposed to construct the interaction between pixel points in the process of the spatial analysis of difference images, which is effective when the change region is not significant. However, CRF ignores the image–global-distribution relationship. The localization accuracy of the fully connected conditional random field (FCCRF) [49,50], coupled with the recognition ability of the deep convolutional neural network shows better boundary localization in the change-detection results. Y. Shang et al. [51] introduced a novel approach to mitigate the issue of excessive feature smoothing in the fully connected conditional random field (FCCRF) model by incorporating region boundary constraints. This method involves obtaining a complete set of pixels in a multi-temporal image, and calculating the average pixel probability, to enable the refinement and classification of boundary information through the regional potential function. Gong et al. [52] proposed the patch matching method for fully connected CRF optimization, which combined with the results of semantic segmentation network to detect architectural changes in dual-temporal images. However, the post-processing method based on the front-end output still causes the loss of change-detection information. To address this limitation, Zheng et al. [53] proposed a new end-to-end deep twin CRFs network (PPNet) for high-resolution remote sensing images. The detection results obtained by PPNet are able to refine the edges of change regions and effectively eliminate noise.



Overall, deep learning has shown promising results in change detection of the remote sensing image, and the proposed models and techniques have significantly improved the accuracy and efficiency of the process. Although the change-detection methods for remote sensing imagery have made significant progress, there are still challenges in detecting the direction of areas of change by analyzing difference images, which can be summarized as follows. Firstly, difference images may cause a semantic collapse phenomenon. The original temporal image, as shown in Figure 1a,b, contains obvious feature classification information, i.e., semantic information. However, the difference operation, as shown in Figure 1c,d, can quickly locate the change region, but it also leads to a typical semantic collapse phenomenon where the semantic classification information disappears.



Secondly, the multimodal difference images provide complementary information. As demonstrated in the two modal difference images of the Berne data in Figure 1c,d, the log-ratio difference image has less interference, but the change information is weak, which results in serious missed alarms. On the other hand, the mean-ratio difference image has prominent change information, but the strong interference leads to high false alarms. Thus, the interference and change performance of the two modal difference images are quite different, and improving the semantic perception of change detection through the complementary information of modal difference images is key to improving the overall performance of change detection.



To address the challenges mentioned above, this paper proposes a hierarchical fusion SAR image change-detection method based on hierarchical fusion conditional random field (HF-CRF). The main contributions are as follows.



	
Designing a dynamic region convolutional semantic segmentation module with a dual encoder–single decoder structure (D-DRUNet). It involves constructing a unary potential function by fusing multimodal difference-image features using neural networks, and enhancing the semantic perception capability of the CRF model.



	
Introducing a boundary prior to constructing a pair-wise potential function based on multimodal dynamic fusion, and enhancing the boundary perception capability of the CRF model.






This paper consists of the following three parts: the Method section provides a detailed description of the principle and implementation steps of the proposed method; the Experiment section provides the experimental results and analysis; and the Conclusion section summarizes the article.




2. Materials and Methods


The principle framework of the proposed HF-CRF hierarchical fusion SAR image change-detection method is shown in Figure 2. The HF-CRF method employs the CRF as the fusion framework. To establish the unary potential function and the pair-wise potential function, the mean-difference image [54] and the logarithmic-difference image [55] are used through neural networks and local sliding windows, respectively. In Branch I, the D-DRUNet neural network is adopted to fuse multimodal difference-image features. The network structure is a dynamic convolutional UNet with a dual encoder and a single decoder, and the encoder completes the semantic-feature fusion at the bottom layer, and the dual-jump connection structure obtains the fused segmented image during the decoding process. In Branch II, a CRF pair-wise local boundary entropy potential function is constructed by using a local sliding window to extract the boundary a priori information of the multi-modal difference image. Finally, the CRF model iteratively reasons the fused energy potential function to obtain the optimized change-detection results.



2.1. D-DRUNet Fusion Semantic Segmentation Network


UNet networks based on an encoder–decoder structure are commonly employed in medical imaging and change-detection segmentation tasks, due to their ability to learn from small datasets [56]. However, U-Net does not have multimodal feature fusion capability, due to the limitation of a single encoder structure. Additionally, the fixed convolutional kernel model limits its ability to generalize feature extraction, which results in difficulty in detecting change details and the increasing of missed alarms in detection.



In order to solve the above two problems, we designed a novel D-DRUNet segmentation network model, which mainly includes three features: adopting a dual encoder–single decoder structure to solve the network-level multimodal fusion design problem; introducing a dynamic region convolution kernel (DRConv) and designing a multiscale guide mask module to improve the feature extraction capability of the network; a hierarchical fusion mechanism to realize the bottom and upsampling stages in turn of the multi-level network feature fusion. The specific network structure is shown in Figure 3, and we elaborate it in the following sections.



2.1.1. Dual-Encoder and Single-Decoder Structure


The proposed method utilizes the log-ratio difference map and mean-ratio difference map as dual encoder inputs, enabling the network to extract change features simultaneously from different modal difference images. The method employs different fusion strategies at different stages of image encoding and decoding. The encoder consists of a convolution operation and a downsampling operation, where the convolution process characterizes the image information and the downsampling process obtains the contextual information of the image. The shallow features obtained at the two-way encoding stage retain rich detailed information, while the deep features ensure semantic structure integrity. The single-way decoder side performs multiple upsampling operations for the fused features to recover the compressed feature maps in the spatial dimension in the original input size, layer by layer. The dual encoder–single decoder structure effectively improves the information perception capability of the network by designing a multimodal feature extraction and fusion approach.




2.1.2. Layered Fusion Mechanism Design


We proposed a layered feature fusion mechanism for multimodal disparity images based on the encoder–decoder structure. This mechanism enhances the feature expression capability and regional change localization capability of the disparity maps. The proposed method employs different fusion strategies at different stages of image encoding and decoding. The layered feature fusion is realized by two stages. In the first stage, the depth features extracted from the two difference images are fused in the bottom layer in a splicing way to achieve semantic fusion before up-sampling and decoding. In the second stage, the multimodal information of the corresponding resolution is supplemented by the two-way jump connection during the decoding up-sampling to achieve pixel fusion. In the decoding pixel-level fusion structure marked in the decoding side of Figure 3 network, the splicing features at the same level contain three parts: the logarithmic modal coding features and the mean modal coding features at the encoding side, and the up-sampling fusion features at the decoding side. In order to improve the fusion efficiency and reduce the computational effort, both semantic-level fusion and pixel-level fusion of features are used in the concatenation method.




2.1.3. Dynamic Convolution Kernel with Multi-Scale Guide Mask


Traditional UNet networks use the CNN structure, and the convolution kernel size needs to be determined in advance, which is difficult to adapt to changes in dynamic remote sensing image content. The D-DRUNet network introduces a dynamic region sensing method [57] and adopts the feature pyramid network (FPN) structure [58] to improve the dynamic convolutional guide mask generation method to dynamically divide the spatial dimensional distribution, according to the input features.



Dynamic region-aware convolution (DRConvs) consists of a learnable guide mask module and a filter generation module that automatically generates region-sharing patterns of filters, based on each input image’s features. The guide mask module divides the features with similar semantic information into the same region, which determines the distribution of filters in the spatial dimension; the filter module generates the corresponding filters that would be assigned to different regions, and different filters extract the information at different abstraction levels.



In particular, the D-DRUNet network is designed with the FPN structure to improve the guide mask generation of DRConvs by fusing features among three scales to increase the content localization capability of the guide mask, and the principle of the method is shown in Figure 4. Figure 5 shows the visualization result graph of the improved guide mask region segmentation on the Berne dataset. Figure 5a shows the Berne log and mean-difference maps, and Figure 5b shows the results of the guide mask delineation on the corresponding difference maps with higher false alarms; Figure 5c shows the region delineation results of the FPN structure guide mask, and the accuracy improvement is obviously significant.



To verify the effect of the D-DRUNet network, we conducted local validation experiments on the Ottawa dataset, and the results are shown in Figure 6 and Table 1. The D-DRUNet-S method is a semantic segmentation model with a decoder structure that includes a single skip connection. It shows significant improvement in detection performance, compared to the UNet network. However, the detection results exhibit a high false alarm rate, as shown in the dashed box in Figure 6c. This is likely caused by severe reconstruction distortion due to the lack of encoding information from another modality, resulting in an imbalanced performance between false alarms and missed alarms, and poor Kappa performance. The D-DRUNet achieves a favorable trade-off between false positives and false negatives by adopting a double-skip-connection fusion method, resulting in a significant improvement in performance.





2.2. Boundary Entropy Dynamic Fusion CRF Model


CRF [59] is a well-known discriminative model, widely utilized in various domains such as image segmentation [60]. The CRF model for change detection [61] comprises two components. Modeled as a probability distribution map, the unary potential function represents the intrinsic energy of each pixel, which is generated by processing the clustering algorithm with either the temporal phase map [62] or the semantic segmentation network [53]. The pair-wise potential function models the second-order neighborhood potential energy, incorporating both the positional and color information as feature functions, which can be expressed using Equation (1) [59], where   Z ( X | Y )   is the regularization constant,   E ( X | Y )   is the energy function, and    ψ u  (  x i  )  ,    ψ p  (  x i  ,  x j  )   are the expressions for the one-dimensional potential function and the two-dimensional potential function, respectively.


      P ( X | Y ) =  1  Z ( Y )    e  − E ( X | Y )         E ( X | Y ) =   ∑ i    ψ u  (  x i  )   +   ∑  i < j     ψ p  (  x i  ,  x j  )        



(1)







The fully connected CRF model calculates the pair-wise potential function by considering all pixels in the image as neighborhood relations. It employs the mean-field inference model [45] to achieve the model solution through downsampling convolution. Herein, we introduced a hybrid pair-wise potential function using the fully connected CRF model. The segmentation result obtained from D-DRUNet serves as a unary potential function, while the multimodal difference map is incorporated as Equations (2)–(6).     α   i     and     β   i     are the corresponding weights of the first pixel of the two modal difference images;   P (   x   i   =   l   k   )   is the probability that the predicted label     x   i     of the i-th pixel point in the network segmentation result is     l   k    ;   u (   x   i   ,   x   j   )   is the class–label consistency function, which limits the energy which can be conducted from one to the other under the condition of consistent labels;     ω   m     is the weight parameter,     K   G   m   (   f   i   ,   f   j   )   is the feature function, and the vector     f   i     and     f   j     is the feature representation of the pixel   i   and   j   under the same feature space.


  E =   ∑ i    ψ u  (  x i  ) +     ∑  i < j     α i   ψ L  (  x i  ,  x j  )   +   ∑  i < j     β j   ψ M  (  x i  ,  x j  )    



(2)






    Ψ   u   (   x   i   ) = − l n ( P (   x   i   =   l   k   ) )  



(3)






    Ψ   L   (   x   i   ,   x   j   ) = u (   x   i   ,   x   j   )  ∑    ω   m       K   G   m   (   f   i   ,   f   j   )  



(4)






    Ψ   M   (   x   i   ,   x   j   ) = u (   x   i   ,   x   j   )  ∑    ω   m       K   G   m   (   f   i   ,   f   j   )  



(5)






    K   G   m   (   f   i   ,   f   j   ) = e x p ( −   1   2     (   f   i   ,   f   j   )   T     Λ   ( m )   (   f   i   ,   f   j   ) )  



(6)







The pair-wise potential function in Equation (2) is a hybrid potential function that significantly influences the final iterative results. The weight coefficients     α   i     and     β   i     play a key role in this function. Two factors must be considered while determining these weights. Firstly, the dynamic changes in the semantic content of the multimodal difference map should be reflected, and fixed weights may not adequately account for the dynamic content of the image. Secondly, the boundary information in the multimodal difference image should be strengthened, as it can accurately reflect the change region, and is crucial for the convergence of the CRF model.



To address these issues, we proposed a dynamic weight construction method based on local boundary entropy. Image information entropy is introduced to measure the dynamic change of image content in our method, which is defined as in Equation (7) [63], where   p ( n )   is the proportion of the pixel points with gray value   n   in the image to the total pixel points in the image.


  Q = −   ∑  t    p ( n ) × l n p ( n )    



(7)







Figure 7 displays the log-ratio modal difference maps and corresponding local information entropy feature maps for both the Berne and Ottawa datasets. It is observed that entropy values could reflect the semantic content changes in the difference images. To be specific, we first partition the images into sub-blocks, and calculate the corresponding image information entropy values for each sub-block. These entropy ratios serve as the foundation for determining dynamic weights. Additionally, an image-sharpening technique is utilized to enhance the boundary information in the difference maps, whereby its significance in the dynamic weight calculation is increased. We choose three different sharpening operators for performance comparison. Both the Sobel operator and the Prewitt operator use a pixel window to compute the first-order derivatives of the image in the x and y directions, respectively, with the edge operator for the convolution summation operation, thus processing each pixel point of the image to extract the edges of the image. The Laplacian operators are based on the second-order derivatives, specifically, the Laplacian operator with a four-neighborhood template is used in this paper. The parameters of operators are shown in the Table 2. Figure 8a,d show the sharpening results of the sharpening operators [64,65] on the Berne dataset, and (e) to (h) show the figures of the sharpening results on the Ottawa dataset. The comparison shows that the Sobel operator [66] has the optimal boundary strengthening effect on both datasets, as shown in the blue box. Therefore, we use the Sobel operator as the final sharpening operator.



In summary, the proposed local boundary entropy pair-wise potential function is constructed as follows.



	
First, sharpening image by using the Sobel operator to obtain sharpened log-difference images     X   L     and sharpened mean-difference images     X   M    , respectively.



	
Second, sliding window with fixed block size on two image blocks       X   l     ( i )     and       X   m     ( i )     with the same position on the sharpened images     X   L     and     X   M    , respectively, and calculating them based on local information entropy, as shown in Equations (8) and (9), where sub-blocks     Q   l     and     Q   m     represent the image boundary entropy values on the   i  -th image block       X   l     ( i )     and       X   m     ( i )     corresponding to the modalities.








     Q   l   = −   ∑  i    p ( n ) × l n p ( n )     



(8)






     Q   m   = −   ∑  j    p ( n ) × l n p ( n )     



(9)







	
Third, the entropy ratio method is used to calculate the log-difference modal counterpart weights   α   and the mean-difference modal weights   β   in the mixed pair-wise potential function.








   α =     Q   m       Q   l   +   Q   m     , β =     Q   m       Q   l   +   Q   m     , s . t .       α ∈ [ 0,1 ]       β ∈ [ 0,1 ]       α + β = 1         



(10)







Figure 9 shows the result plots of the D-DRUNet semantic segmentation network and the HF-CRF model for detection on the Ottawa dataset. By analyzing the detection results, it can be concluded that the dynamic fusion iterative structure CRF optimization significantly reduces the false detection phenomenon, with finer change boundaries. The improved CRF model uses a multimodal fusion method to achieve information complementarity between modes, and a more accurate change-detection region is obtained.





3. Experiment and Analysis


3.1. Datasets


In this study, we utilized eight publicly available SAR image sets to generate mean difference maps and log-ratio difference maps. To construct the training set, we employed data enhancement techniques. The effectiveness of our algorithm was then evaluated using four SAR datasets, with the composition of the training set being readjusted for each validation process. All datasets consist of two temporal phase maps and the corresponding GTs. The first dataset is a remotely sensed image of the Berne area with a pixel resolution of   301 × 301  , as shown in Figure 10; the second dataset is a remotely sensed image of the Ottawa area with a pixel resolution of   290 × 310  , as shown in Figure 11; the third dataset is a remote sensing image of the Mexico region with a pixel resolution of   256 × 256  , as shown in Figure 12; the fourth dataset is a remote sensing image of the San Francisco region with a pixel resolution of   512 × 512  , as shown in Figure 13.




3.2. Parameter Setting and Evaluation Indexes


D-DRUNet parameter settings: the number of guide mask regions m = 2; the learning rate is set to 0.001; the batch size is set to 8. The image block size is   256 × 256  ; the overlap step is 4; and the number of training iterations is 200.



Boundary entropy dynamic fusion CRF parameter setting:     ω   1   = 20  ;     ω   2   = 20  ;     θ   α   = 12  ,     θ   β   = 12  ,     θ   γ   = 2  ; the number of iterations is 3; the boundary entropy sliding window size is   25 × 25   and the step size is 1.



Simulation of experimental environment: Core (TM) i7-7820X CPU @ 3.60 GHz, Nvidia RTX 2080Ti   ×   2, Ubuntu18.04, python3.7, pytorch1.4, cuda10.0.



The number of false alarms, FP; the number of missed detection, FN; the correct rate, PCC; and the Kappa coefficient, which measures the classification accuracy, are used as the evaluation metrics for the experiments in this paper, which could formulated as follows.


  P C C =   T P + T N   T P + F P + T N + F N   × 100 % ,  










  K a p p a =     P R   0   −   P R   C     1 −   P R   C     .  












3.3. Ablation Experiments


We conducted ablation experiments on the Berne dataset to verify the effectiveness of the D-DRUNet fusion semantic segmentation network, and the experimental results are shown in Figure 14 and Table 3. Methods 1 and 2 are the change-detection results with uni-modal difference images as input, while methods 3 and 4 are the change-detection results with bimodal difference images as input. Moreover, method 1 utilizes the conventional CNN convolutional kernel, and methods 2, 3, and 4 use the dynamic convolutional kernel. Table 4 shows the performance metrics of the change-detection results of the four methods. The comparison results in Figure 14a with the ground truth revealed that the segmentation results of method 1 had serious false alarms and blurred boundaries of the change region. However, method 2, which employed a single encoder, detected a more comprehensive change region, with significantly reduced false alarms. Method 3, with an asymmetric encoder and jump connection structure, destroyed the change-region structure and resulted in obvious leakage detection in the detection results. In contrast, method 4, which utilized a dual encoder and a dual jump structure, effectively reduced the leakage alarm, with more refined change boundaries. It can be seen that the D-DRUNet network incorporates multimodal difference information, and the detection effect is significantly improved.




3.4. Comparison Experiments


In this paper, we select the mainstream DD-CNN [67], Trans Unet [68], and ESMOFCM [69] in change detection to verify the performance of the HF-CRF model proposed in this paper on the Berne, the Ottawa, the Mexico, and the San Francisco datasets; the change-detection results are shown in Figure 15, Figure 16, Figure 17 and Figure 18, respectively, and the performance index analysis results are shown in Table 5, Table 6, Table 7 and Table 8.



The detection results of the four methods on the Berne dataset are shown in Figure 15b–e. The comparison of the red areas shows that the TransUnet method has the blurred contours and higher false alarms, followed by DD-CNN, while ESMOFCM has obviously missed alarms, and the proposed method maintains clearer and more accurate segmentation boundaries, with more complete contours. The performance on the Ottawa dataset is shown in Figure 16b–e. As shown in the green box area 1 of Figure 16, the TransUnet model forms larger joint holes in the hole area with serious leakage, the ESMOFCM model produces more holes and leakage in the green area 2, the DD-CNN and HF-CRF models have more complete contours overall with less leakage, while the contours of HF-CRF model are clearer than the DD-CNN model. From the results in Table 6, the overall results of the ESMOFCM model and TransUnet are not satisfactory; the DD-CNN model has more balanced false and leaky alarms and higher Kappa coefficients, and the HF-CRF model has slightly higher false alarms and low leaky alarms but the lowest total errors, so it achieves the highest detection performance, which is due to the better segmentation baseline achieved by the D-DRUNet network. The dynamic second-order potential function further refines the contours and edges by iteration, but the balance of the HF-CRF false alarms is not enough, and the number of missing detections is higher. The next improvement step of the proposed method in this paper will also focus on reducing the missed alarms.



Figure 17 shows the detection results of different models on the Mexico dataset. The ESMOFCM model has more false alarms and a poor detection performance, due to background interference. In contrast, the DD-CNN, TransUnet, and HF-CRF models have more complete contours. However, the DD-CNN and TransUnet models have blurred boundary information and missed alarms in certain areas. On the other hand, the proposed method captures more detailed information and has a clear-edge detection effect. According to Table 7, the proposed method achieves optimal performance in terms of both PCC and Kappa evaluation indexes by reducing false detections and missed alarms.



The detection results of the methods in this paper on the San Francisco data are presented in Figure 18. All four methods obtain more complete change-region detection results. Both modal difference images of the San Francisco dataset are strongly disturbed by the background when modal complementarity is weak, so the performance advantage of HF-CRF for change-detection results on this dataset is diminished, while the FCM structure based on traditional algorithms is suitable for such data. Our method has a significant improvement over the neural network-based comparison method, and achieves better results in terms of generalization ability for multiple datasets. The method proposed in this article demonstrates the best performance in terms of boundary detection accuracy and the missed alarms. As shown in Figure 18, the portion circled in green highlights the superior accuracy of this method in boundary segmentation compared to the other three methods, with more precise edge contours.



The HF-CRF network fuses the semantic information of the modal difference maps at multiple levels to ensure the integrity of the changing semantics, and designs a CRF model with a fusion iteration structure based on local boundary entropy to realize the information complementation between the multimodal difference maps and enhance the optimization capability of the CRF model.




3.5. Efficiency Comparison Experiments


The neural-network-based comparison methods DD-CNN, as well as TransUNet in Section 3.4, are selected for the comparison of network computational efficiency. The network parameters (Params) and the number of floating-point operations (FLOPs) are used as effective indicators of the computational complexity of the network model. The specific calculation results are shown in Table 9.



We propose a new change-detection model that outperforms existing methods in terms of evaluation metrics. Unlike the DD-CNN approach, our model does not incorporate residual structures, resulting in a significantly larger number of parameters. However, compared to TransUNet, our model has fewer parameters while achieving better performance. This trade-off between model complexity and detection performance is a key contribution of our work.



Our proposed model utilizes a two-branch modal encoding strategy and a two-skip connection structure, which allows for effective fusion of multimodal differences. This approach introduces a new avenue for multimodal fusion in change detection.





4. Conclusions


To address the problem of semantic collapse caused by disparity computation, we proposed a hierarchical fusion SAR image change-detection model based on HF-CRF. This model adopts a hierarchical structure to compensate for the lost semantics, uses a D-DRUNet neural network to realize the fused semantic segmentation of multimodal disparity maps, constructs the first-order potential function of CRF, and uses local boundary entropy to realize the fused second-order potential function, which accurately reflects the dynamic semantic changes of multi-modal images. The CRF model is driven to converge with the change boundary accurately by minimizing the energy function. To verify the effectiveness of the method, we conduct experiments on the publicly available SAR dataset. The experimental results show that the HF-CRF model proposed in this paper achieves superior results on the test dataset compared with both traditional methods, as well as deep learning methods. In future work, we will combine self-supervised learning and the Siamese network structure to directly locate remote sensing change-detection regions in the spatiotemporal domain, to address the semantic loss caused by discrepant operations.
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Figure 1. Plot of the difference of Berne data processed by different methods. (a) Multitemporal image 1. (b) Multitemporal image 2. (c) Log-ratio difference image. (d) Mean-ratio difference image. 
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Figure 2. The schematic diagram of HF-CRF hierarchical fusion structure. 
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Figure 3. D-DRUNet Fusion Semantic Segmentation Network: Rational Block Diagram. 
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Figure 4. Improved dynamic convolution structure diagram. 
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Figure 5. Visualization of guide mask region division (the Berne data). 
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Figure 6. Experimental test result graph of Ottawa data section. The red dashed boxes mark the false alarms detected by the D-DRUNet-S method. 
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Figure 7. Difference images of two data sets and the entropy value of respective local information. (a) Berne difference image. (b) Information entropy of Berne data. (c) Ottawa difference image. (d) Information entropy of Ottawa data. 
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Figure 8. Two dataset showing sharpening-processing difference boundary maps. (a) Original difference image of Berne data. (b) Sharpening results with the Laplacian operator. (c) Sharpening results with the Prewitt operator. (d) Sharpening results with the Sobel operator. (e) Original difference image of Ottawa data. (f) Sharpening results with the Laplacian operator. (g) Sharpening results with the Prewitt operator. (h) Sharpening results with the Sobel operator. 
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Figure 9. Results of different methods on Ottawa data. 
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Figure 10. The Berne dataset. 
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Figure 11. The Ottawa dataset. 
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Figure 12. The Mexico dataset. 
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Figure 13. The San Francisco dataset. 
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Figure 14. Ablation experiment results of D-DRUNet. 






Figure 14. Ablation experiment results of D-DRUNet.



[image: Remotesensing 15 02741 g014]







[image: Remotesensing 15 02741 g015 550] 





Figure 15. Detection results of different methods on Berne data. The red boxes indicate the parts where the performance of comparison methods that have poor performance, including the blurred boundary and the false alarm phenomenon. 
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Figure 16. Detection results of different methods on Ottawa data. The green boxes indicate the parts of the comparison methods that have poor performance, including blurred boundaries and missed alarms. 
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Figure 17. Detection results of different methods on Mexico data. 
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Figure 18. Detection results of different methods on San Francisco data. The green boxes indicate the parts where the performance of comparison methods that have poor performance, including the blurred boundary and the false alarm phenomenon. 
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Table 1. Performance metrics of different methods on Ottawa dataset.
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	Method
	FP
	FN
	OE
	PCC
	Kappa





	U-Net
	5076
	3451
	8527
	91.60%
	0.6969



	D-DRUNet-S
	3908
	274
	4182
	95.88%
	0.8583



	D-DRUNet
	1206
	894
	2100
	97.93%
	0.9229
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Table 2. Parameters of the three image-sharpening operators.
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	      S   x      
	      S   y      





	The Laplacian operator
	        0   − 1   0     − 1   4   − 1     0   − 1   0        
	        − 1   − 1   − 1     − 1   8   − 1     − 1   − 1   − 1        



	The Prewitt operator
	        − 1   0   1     − 1   0   1     − 1   0   1        
	        − 1   − 1   − 1     0   0   0     1   1   1        



	The Sobel operator
	        − 1   0   1     − 2   0   2     − 1   0   1        
	        − 1   − 2   − 1     0   0   0     1   2   1        
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Table 3. Results of ablation experiments of the D-DRUNet.
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	Method
	DRConv
	Single

Encoder
	Dual Encoder
	Single-Skip Connection
	Dual-Skip Connection
	FP
	FN
	OE
	PCC
	Kappa





	1
	
	√
	
	√
	
	1384
	25
	1409
	98.44%
	0.6091



	2
	√
	√
	
	√
	
	311
	137
	448
	99.51%
	0.8172



	3
	√
	
	√
	√
	
	11
	532
	543
	99.48%
	0.7075



	4
	√
	
	√
	
	√
	230
	152
	382
	99.58%
	0.8379
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Table 4. Performance metrics of different methods on Ottawa dataset.
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	Method
	FP
	FN
	OE
	PCC
	Kappa





	D-DRUNet
	1206
	894
	2100
	97.93%
	0.9229



	HF-CRF
	208
	1163
	1371
	98.65%
	0.9480
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Table 5. Performance metrics of different methods on the Berne dataset.
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	Method
	FP
	FN
	OE
	PCC
	Kappa





	DD-CNN
	130
	200
	330
	99.64%
	0.8596



	TransUnet
	350
	49
	399
	99.39%
	0.7925



	ESMOFCM
	112
	199
	311
	99.65%
	0.8643



	Our Method
	105
	187
	292
	99.68%
	0.8673
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Table 6. Performance metrics of different methods on the Ottawa dataset.
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	Method
	FP
	FN
	OE
	PCC
	Kappa





	DD-CNN
	848
	842
	1690
	98.33%
	0.9375



	TransUnet
	881
	2543
	3424
	95.78%
	0.8474



	ESMOFCM
	540
	1932
	2472
	97.56%
	0.9051



	Our Method
	208
	1163
	1371
	98.65%
	0.9480
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Table 7. Performance metrics of different methods on the Mexico dataset.






Table 7. Performance metrics of different methods on the Mexico dataset.





	Method
	FP
	FN
	OE
	PCC
	Kappa





	DD-CNN
	1076
	3692
	4768
	98.18%
	0.8918



	TransUnet
	1543
	3674
	5217
	98.01%
	0.8827



	ESMOFCM
	3637
	6670
	10,307
	87.93%
	0.8030



	Our Method
	1648
	2174
	3822
	98.54%
	0.9165
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Table 8. Performance metrics of different methods on the San Francisco dataset.






Table 8. Performance metrics of different methods on the San Francisco dataset.





	Method
	FP
	FN
	OE
	PCC
	Kappa





	DD-CNN
	428
	393
	821
	98.75%
	0.9060



	TransUnet
	321
	509
	830
	98.73%
	0.9058



	ESMOFCM
	295
	437
	732
	98.88%
	0.9170



	Our Method
	359
	354
	713
	98.91%
	0.9181










[image: Table] 





Table 9. Comparison of module parameters and computation amount.






Table 9. Comparison of module parameters and computation amount.





	Method
	Params
	FLOPs





	DD-CNN
	11.2 M
	73,279.01 M



	TransUNet
	93.19 M
	64,357.53 M



	Our method
	63.27 M
	85,928.02 M
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