
Citation: Babaeian, E.; Tuller, M.

The Feasibility of Remotely Sensed

Near-Infrared Reflectance for Soil

Moisture Estimation for Agricultural

Water Management. Remote Sens.

2023, 15, 2736. https://doi.org/

10.3390/rs15112736

Academic Editors: Ruxandra Vintila

and Frank Veroustrate

Received: 27 April 2023

Revised: 22 May 2023

Accepted: 23 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

The Feasibility of Remotely Sensed Near-Infrared Reflectance
for Soil Moisture Estimation for Agricultural
Water Management
Ebrahim Babaeian 1 and Markus Tuller 2,*

1 Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611, USA;
ebabaeian@ufl.edu

2 Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
* Correspondence: mtuller@arizona.edu

Abstract: In-depth knowledge about soil moisture dynamics is crucial for irrigation management
in precision agriculture. This study evaluates the feasibility of high spatial resolution near-infrared
remote sensing with unmanned aerial systems for soil moisture estimation to provide decision support
for precision irrigation management. A new trapezoid model based on near-infrared transformed
reflectance (NTR) and the normalized difference vegetation index (NDVI) is introduced and used for
estimation and mapping of root zone soil moisture and plant extractable water. The performance of
the proposed approach was evaluated via comparison with ground soil moisture measurements with
advanced time domain reflectometry sensors. We found the estimates based on the NTR− NDVI
trapezoid model to be highly correlated with the ground soil moisture measurements. We believe that
the presented approach shows great potential for farm-scale precision irrigation management but
acknowledge that more research for different cropping systems, soil textures, and climatic conditions
is needed to make the presented approach viable for the application by crop producers.

Keywords: remote sensing; unmanned aerial systems; near-infrared reflectance; agricultural irrigation
management; soil moisture; plant extractable water

1. Introduction

Many regions across the world face serious water shortages that have significant rami-
fications for irrigated agriculture, which are expected to further intensify due to the rapidly
growing human population and the changing global climate. Today, many crop producers
rely on their experience to manage irrigation, which often leads to excess water being
applied out of fear of yield loss. This practice not only depletes precious water resources,
but also contributes to water quality deterioration through the release of agrochemicals
into surface water and groundwater bodies. The escalating global water crises demands
the development and adoption of transformative technologies for precision irrigation
management to conserve water resources while reducing the environmental footprint.

Over the last decade, significant efforts have been devoted to the development of
remote sensing (RS) techniques for monitoring of soil water status as a measure for plant
stress and irrigation demand. Because soil moisture and electromagnetic radiation reflected
in the optical, thermal, and microwave domains are strongly correlated, various RS methods
have been established for near-surface and root zone soil moisture dynamics characteriza-
tion and monitoring [1]. Today, several satellites for monitoring near-surface (2–5 cm) soil
moisture exist, including NASA’s Soil Moisture Active Passive (SMAP) mission [2], the Soil
Moisture and Ocean Salinity (SMOS) mission [3] of the European Space Agency (ESA), the
ESA/EUMETSAT Advanced Scatterometer (ASCAT) [4], and the ESA Sentinel-1 mission [5].

NASA’s Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS)
P-band radar also shows potential for RS of root zone soil moisture (0–50 cm) [6]. Although

Remote Sens. 2023, 15, 2736. https://doi.org/10.3390/rs15112736 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15112736
https://doi.org/10.3390/rs15112736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15112736
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15112736?type=check_update&version=1


Remote Sens. 2023, 15, 2736 2 of 15

microwave satellite-based coarse estimates of soil moisture are valuable and widely ap-
plied for large-scale environmental monitoring, their applicability for farm-scale irrigation
management is limited due to low spatial resolution, infrequent coverage, clouds, and slow
distribution of data to end-users [7]. The same issues exist for near-surface soil moisture
retrievals from satellite RS products. This suggests a crucial need for the improvement of
RS methods applicable for precision agriculture (PA) irrigation management. A compre-
hensive review of satellite RS of near-surface and root zone soil moisture is provided in
Babaeian et al. [1].

The use of unmanned aerial systems (UAS) is becoming a powerful means for PA
applications due to their simple deployment, low operational costs, and their potential for
obtaining high spatiotemporal resolution data in the optical and thermal electromagnetic
domains, which can be applied to determine farm-scale soil moisture status. Soil moisture
and reflectance are strongly correlated in the optical domain (350–2500 nm) [8], where
the greatest sensitivity occurs in the short-wave infrared (SWIR) and near-infrared (NIR)
bands. Based on the physics of radiative transfer, a trapezoidal space for estimation of soil
moisture has been introduced by [9]. This so-called OPtical TRApezoid Model (OPTRAM)
is based on constructing a SWIR transformed reflectance (STR)—normalized difference
vegetation index (NDVI) space, finding the location of image pixels with known STR and
NDVI, and then translating the values to soil moisture.

Because UAS-mounted high spatial resolution cameras for PA applications only pro-
vide visible (Vis) and near-infrared (NIR) data, the objectives of this study are: (1) to utilize
high spatial resolution UAS Micasense RedEdge camera (Micasense, Inc., Seattle, WA,
USA) images to investigate the feasibility of replacing the OPTRAM STR parameter with
near-infrared transformed reflectance (NTR) to create a new NTR− NDVI trapezoidal
space for soil moisture (SM) estimation; and (2) to evaluate the accuracy of the obtained
SM estimates based on ground sensor measurements for an irrigated durum wheat field
located in Maricopa, Arizona, USA.

2. Materials and Methods
2.1. Estimation of Plant Extractable Water

Rather than relying on absolute soil moisture values for irrigation management, it is
common to delineate the plant available water (PAW), which can be derived from the soil
water characteristic (SWC), the functional relationship between soil moisture (θ) and the
matric potential (h) that exhibits a very distinctive shape for each individual soil texture
(Figure 1) [1]. The SWC for a given soil may be measured in the laboratory with standard
methods (e.g., Tempe cells for the wet end and chilled mirror dewpoint techniques for
the dry end) or with more advanced automated instruments such as the HYPROP system
(METER Group, Inc., Pullman, WA, USA) that involves evaporation of water from the
surface of an initially saturated soil column while concurrently measuring the change in
matric potential and the water mass loss. Another option is to measure the SWC directly in
the field via pairing of soil moisture and matric potential sensors and continuously record-
ing the changes of both attributes. This, however, is not practical as irrigated agricultural
fields only experience narrow soil moisture and matric potential ranges. To obtain a con-
tinuous functional relationship between soil moisture and matric potential, SWC models
are commonly parameterized based on the measured matric potential/soil moisture data
via nonlinear regression. For this study, we applied the van Genuchten SWC model [10]
given as:

θ = θr + (θs − θr)
[
1 + |αh|n

]( 1
n−1) (1)

where θ, θr, and θs are the actual, residual, and saturated volumetric water contents
(m3 m−3), respectively, h (m) is the matric potential in length units, and α (m−1) and n (-)
are shape parameters of the van Genuchten model.
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Figure 1. Illustration of the distinct SWC shapes for coarse- (loamy sand), medium- (clay loam), and
fine-textured (silty clay) soils and the PAW and PEW concepts for clay loam.

The PAW is commonly defined as the difference between the water content at field
capacity (θFC) and the water content at the permanent wilting point (θPWP) [11] (Figure 1).
The θFC is defined as the water content after internal redistribution of water within the soil
profile due to gravity (free) drainage following an irrigation or precipitation event and for
practical purposes is often assumed to coincide with a matric potential of −3.3 m. Because
this definition is not entirely correct (i.e., θFC is dependent on soil texture), we employ the
following empirical relationship for θFC estimation that was developed by [12]:

θFC = θr + (θs − θr)n−0.60(2+log10 KSAT) (2)

where KSAT is the saturated hydraulic conductivity of the soil in cm d−1, and n (-) is the
shape parameter of the van Genuchten model.

Below the permanent wilting point that is commonly assumed as the water content at
−150 m matric potential, water is so tightly bound within the soil matrix that plants are no
longer able to recover their turgidity and irreversibly wilt. Again, this is only an approxi-
mation, as the permanent wilting point is dependent on plant physiology. Desert plants,
for example, can withstand significantly lower matric potentials (i.e., drier conditions) [13],
and agricultural crops start wilting prior to approaching the matric potential threshold of
−150 m. Because of the latter, for irrigation scheduling, it is advantageous to establish a
management allowed depletion (MAD) value [14] and an associated water content thresh-
old (θTH), which is the portion of the PAW allowed to deplete before crops encounter water
stress and irrigation is required. This optimal range between θFC and θTH is called plant
extractable water (PEW). Typical values for MAD for shallow-rooted, medium-rooted, and
deep-rooted crops have been reported as 0.33, 0.50, and 0.67, respectively [14] with θTH
calculated as:

θTH = θFC −MAD(θFC − θPWP) (3)

Finally, for visualization and mapping, we define the fractional (normalized) plant
extractable water (PEW f ) as:

PEW f =
θ − θTH

θFC − θTH
(4)
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When the actual water content θ attains values smaller than θTH , the PEW f is negative,
which indicates water stress. The PAW and PEW concepts are illustrated in Figure 1 for clay
loam texture, with θFC calculated with Equation (2) and θTH calculated with Equation (3).

Figure 2 shows the actually measured SWC for the field site that was used to calculate
PEW f . All measurements were performed in quadruplicate with the HYPROP system for
wet conditions and the WP4C chilled mirror dewpoint instrument (METER Group, Inc.,
Pullman, WA, USA) for dry conditions to obtain values for θTH , θFC, and θPWP. A MAD
value of 0.5 was applied to determine PEW f for the durum wheat crop.
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2.2. A New Near-Infrared Trapezoid Model for Soil Moisture Estimation

A nonlinear relationship between relative soil saturation (Sr) and transformed optical
surface reflectance (TR) was derived by [8]:

Sr =
θ − θr

θs − θr
=

σ(TR− TRr)

TRs − TR + σ(TR− TRr)
(5)

where θ, θr, and θs are the actual, residual, and saturated volumetric water contents
of the soil, respectively, TRr and TRs are the transformed optical surface reflectances
corresponding to θr (i.e., dry soil) and θs (i.e., saturated soil), and σ is a shape parameter that
ranges from 0 to 1 and represents the concavity of the TR(θ) relationship. When σ equals
1, the relationship between TR and θ is linear. The relative saturation calculated based on
Equation (5) has been validated for bare soils via comprehensive laboratory experiments [8]
as well as for vegetated soils based on shortwave infrared satellite observations [9]. It has
been determined that σ is affected by the soil texture and the electromagnetic wavelength.
The TR(θ) relationship is nearly linear ( σ ∼ 1) for the near-infrared (NIR) frequency
domain. Hence, the linear form of Equation (5) may be applied for NIR transformed
reflectance (NTR):

Sr =
θ − θr

θs − θr
=

NTR− NTRr

NTRs − NTRr
(6)

With
NTRr = ir + sr NDVI (7)
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NTRs = is + ssNDVI (8)

where i and s are the intercept and slope of the dry and wet edges of the trapezoid in the
NTR− NDVI feature space. NTRr and NTRs represent the minimum and maximum NIR
transformed reflectance values that correspond to θr (i.e., dry soil) and θs (i.e., saturated
soil). Combining Equations (6)–(8) yields relative soil saturation as a function of NTR and
NDVI for each image pixel:

Sr =
NTR− ir − sr NDVI

is − ir − (sr − ss)NDVI
(9)

With

NTR =
(1− RNIR)

2

2RNIR
(10)

NDVI =
RNIR − RRed
RNIR + RRed

(11)

where RNIR and RRed are the surface reflectances corresponding to the NIR and red elec-
tromagnetic bands. Assuming that the porosity of the soil is equivalent to θs, Sr may be
converted to θ via multiplication with θs.

Figure 3 depicts a conceptual sketch of the NTR− NDVI trapezoidal feature space
with one lower dry edge (D–C line) and two upper wet edges (A–B and B–C lines). Fol-
lowing the first wet edge (A–B), the NTR values increase with increasing NDVI until they
reach a maximum that depends on crop variety, density and growth stage, crop canopy
and soil moisture status, and soil texture. When NDVI increases beyond point B, NTR
decreases due to increasing absorption within the red band and increasing NIR reflectance,
forming a second wet edge (B–C line) that meets the dry edge at full crop cover. The dry
and wet edges are defined by their specific slopes and intersects, sr, ir, ss1, ss2, is1, and is2.
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2.3. Parameterization of the NTR− NDVI Feature Space

UAS images with high spatial resolution enable capturing soil surface heterogeneities,
which adds an additional challenge to data analysis. To accurately derive the NTR−NDVI
trapezoids from Micasense RedEdge camera images, pixels that are not associated with soil
or vegetation (i.e., shadow pixels) were removed. Shaded pixels exhibit lower reflectance
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values leading to uncertainties in trapezoid shape and consequently soil moisture estima-
tion. To detect and remove shadow pixels, the supervised maximum likelihood classifier
(MLC) image classification method was used. Figure 4 depicts an example of a false color
composite image used in the MLC and the three obtained pixel classes including vegetation
(wheat), bare soil, and shadows. The advantage of such red and near-infrared based false
color composite image is that any small changes in vegetation density and its characteristics
(structure, water content, etc.) are highly reflected by these two important spectral bands,
leading to a better delineation of soil/vegetation pixels from non-soil/vegetation pixels.
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Figure 4. A false color composite image (R-G-B: NIR-Red-Green) (left) and the generated maximum
likelihood classification map (right) 68 days after planting.

We note that the dry and wet edges were manually fitted to the point clouds based on
visual inspection. In general, manual fitting may introduce bias and uncertainty, which
potentially affects soil moisture estimates. However, according to a sensitivity analysis
by [15], who investigated the effects of manual fitting on the accuracy of soil moisture esti-
mation from MODIS satellite images by adding random errors, for the largest uncertainty
level (i.e., ±20%), the RMSE only increased by 0.025 cm3 cm−3. This indicates that manual
fitting is a viable option for the presented feasibility study.

2.4. Field Site

For this study, we used high spatial resolution UAS Micasense RedEdge data and soil
moisture reference measurements that were collected for durum wheat at a field site in
Maricopa, Arizona, USA (Figure 5a). The prevailing soil texture of the field was sandy clay
loam with an average organic matter content of 0.5%. The field was instrumented with
state-of-the-art time domain reflectometry (TDR) moisture sensors (True TDR-315, Acclima,
Inc., Meridian, ID, USA) installed in duplicate at three locations in 2, 10, and 50 cm depths
(Figure 5a,b). The TDR-315 sensor houses the entire measurement circuitry, including a
microprocessor, within the sensor head and communicates with a datalogger for transfer of
processed data via the SDI-12 protocol [16]. The TDR-measured soil moisture data were
recorded at 15-min intervals with CR1000 dataloggers (Campbell Scientific, Inc., Logan,
UT, USA). After planting the durum wheat on 29 November 2018, the field was initially
irrigated with sprinklers for two weeks until seed germination and then with a subsurface
drip system installed in 0.15 m depth with irrigation frequency and amount determined
based on the TDR sensor moisture measurements and actual crop water demand.
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Figure 5. Aerial view of the field site with marked locations (red squares) of the TDR moisture sensor
nests (a), True TDR-315 sensors installed in duplicate in 2, 10, and 50 cm depths at the three sensor
nest locations (b), and the DJI Matrice 120 equipped with the Micasense RedEdge camera (c).

2.5. UAS Data Collection and Calibration

The deployed UAS platform (Figure 5c) consisted of a DJI Matrice 120 drone (DJI,
Shenzhen, China) equipped with a Micasense RedEdge camera (Micasense, Inc., Seattle,
WA, USA). The camera specifications and UAS deployment parameters and dates through-
out the durum wheat growth season are listed in Table 1. The flight trajectories for the DJI
Matrice were designed for the RedEdge camera to collect images with side and forward
overlaps of 75% and 80%, respectively [17]. All images were acquired around solar noon
local time.

Table 1. Camera specifications and UAS deployment parameters and dates.

Camera Bands
(Wavelength, nm)

Camera
Flight Parameters Deployment Dates

Micasense
RedEdge

Blue (475)
Green (560)
Red (668)

Near-Infrared (840)
Red Edge (717)

Spatial resolution: 0.026 m
Radiometric resolution: 8-bit

Field of view: 47.2◦

Flight height: 43 m
Flight speed: 5 m s−1

20 December 2017; 17 January 2018
23 January 2018; 5 February 2018
20 February 2018; 6 March 2018
20 March 2018; 28 March 2018

The data obtained with the Micasense RedEdge camera were calibrated with the
Pix4Dmapper software (Pix4D SA, Prilly, Switzerland). The digital numbers of the Red-
Edge images were converted to reflectance values based on images of manufacturer
supplied, 10-cm diameter, reference reflectance panels that were distributed across the
field and imaged at the beginning of each flight. The locations of the reference panels
were determined with Real Time Kinematic (RTK) precision and used as ground control
points (GCPs) to georeference and georectify the orthomosaic maps for each band. Ortho-
mosaic maps were generated from overlapping images taken from different positions
and orientations. Using the Pix4Dmapper software, images were first aligned, and sparse
3D point clouds generated. The highly accurate GCPs were then added to the aligned
images. The workflow for UAS data processing and soil moisture estimation is shown
in Figure 6.
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2.6. Performance Metrics

To evaluate the performance of remotely sensed soil moisture estimates (θRS) versus
ground soil moisture measurements (θTDR), the bias, the root mean squared error (RMSE),
and the correlation coefficient (r) were calculated as follows:

bias =
1
N

N

∑
i=1

(θRS − θTDR)i (12)

RMSE =

√√√√√ 1
N

N

∑
i=1

(θRS − θTDR)
2
i (13)

r =
Cov(θRS, θTDR)√

Var(θRS)Var(θTDR)
(14)

where N is the number of pairs of estimated and measured soil moisture, and Var and Cov
denote variance and covariance of data.
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3. Results and Discussion
3.1. Ground Time Domain Reflectometry (TDR) Moisture Sensor Measurements

Figure 7 illustrates irrigation and precipitation events and their effects on soil moisture
dynamics within and between plant rows measured with the Acclima TDR sensors for
Site 1 (see Figure 5a,b).
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Figure 7. Soil moisture dynamics measured with the Acclima TDR sensors within and between plant
rows at Site 1 plotted together with irrigation and precipitation events. The dashed horizontal black,
green, and pink lines mark field capacity (θFC), threshold soil moisture (θTH), and the permanent
wilting point (θPWP), respectively.

Good agreement between soil moisture contents measured within and between the
plant rows in 2-cm and 50-cm depths can be observed, while there is a large discrepancy
between the 10-cm depth measurements, which is attributable to the limited lateral extent
of the wetted region because of the installation depth (i.e., 15 cm) of the subsurface drip
irrigation system. During the first three weeks (0–500 h), the field was sprinkler irrigated,
which led to moisture levels larger than the field capacity (θFC). After the start of subsurface
drip irrigation that was scheduled based on the TDR sensor measurements, optimum
moisture content was attained (i.e., θTH ≤ θ ≤ θFC or 0 ≤ PEW f ≤ 1). Because of
evaporation of water from the soil surface, the TDR sensor in 2-cm depth shows moisture
levels blow θTH , which indicates that irrigation scheduling based on sensors close to the
surface creates a water stress free root zone, but potentially also leads to too frequent
irrigation and loss of precious water resources.
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3.2. UAS NTR-NDVI Soil Moisture Estimation

The derived NTR− NDVI trapezoids are shown in Figure 8. We can observe that:
(1) because of high spatial resolution of the RedEdge camera images, a large number of data
points is available for assembling the trapezoidal feature space; (2) the assembled trapezoids
represent the conceptual NTR− NDVI feature space well (see Figure 3) where all data
points of NTR vs. NDVI for each acquisition date are within the envelope of the trapezoids;
and (3) the feature space is confined by two upper wet edges intersecting at the point with
maximum NTR (corresponding to point B in Figure 3), and a lower nearly horizontal dry
edge intersecting the second wet edges at full vegetation cover (corresponding to point C
in Figure 3).
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Figure 8. Pixel distribution within the NTR− NDVI space obtained from UAS data for each acqui-
sition date (the days after planting are in brackets). (a–h) depict individual trapezoids and (i) the
integrated NTR− NDVI trapezoid. The solid and dashed blue and red lines represent the best fit
wet and dry edges.

The plots in Figure 8 show that the NTR and NDVI values are increasing with the
evolution of the wheat cover from emergence to maturity with the values ranging from 0 to
∼4 for NTR and 0 to ∼0.95 for NDVI.

The blue and red lines are the manually determined best fit lines for the wet and
dry edge data points. Two wet edges and one dry edge are visible. The first wet edge
has an upward slope and starts from a small NDVI value and ends with the largest NTR
value, which itself is the onset for the second wet edge with downward slope towards the
largest NDVI value. Then, we overlayed all eight individual trapezoids (Figure 8a–h) and
constructed an integrated trapezoid (Figure 8i) that was ultimately used for estimation
of soil moisture. The advantages of such integrated trapezoid are higher computational
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efficiency and the time independence of the dry and wet edge parameters that provides
time stable effective parameters for a given field (crop). The dry and wet edges of the
integrated trapezoid were used to parameterize Equations (7) and (8) to estimate relative
saturation with Equation (5). The optimized values of the dry and wet edge parameters
for the investigated field that can be used for the same field and crop for future soil
moisture estimations are: idry = 0.02; sdry = 0.01; iwet−1 = 0.77; swet−1 = 5.2; iwet−2 = 8.3;
and swet−2 = −8.7.

Figure 9 depicts soil moisture estimated based on the integrated NTR− NDVI trape-
zoid plotted against soil moisture measured with the Acclima TDR sensors. We see a
positive correlation between the estimated and measured soil moisture values, which is
strongest for 2-cm depth. The NTR − NDVI-derived values overestimate surface soil
moisture at 2-cm depth while they underestimate soil moisture in 10-cm and 50-cm depths.
This is likely due to the limited penetration depth of optical remote sensing and a scale
mismatch between camera pixels and the measurement volume of the Acclima TDR sen-
sors. The relatively high correlation between NTR − NDVI near-surface soil moisture
estimates and TDR measurements in deeper depths (i.e., 10 and 50 cm) can be attributed to
the connection between surface and root zone soil moisture, which has been previously
reported in literature [18–20] and was applied for retrieving root zone soil moisture using
data assimilation [21–24].
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Figure 9. Soil moisture estimated based on the integrated NTR-NDVI trapezoid plotted against soil
moisture measured with the Acclima TDR sensors.

The details of the comparison between NTR − NDVI soil moisture estimates and
Acclima TDR measurements are summarized in Table 2. Based on the error metrics values
listed in Table 2, the NTR− NDVI approach shows reasonable results with correlation
coefficients between 0.53 and 0.86, and RMSEs between 0.024 and 0.10 cm3 cm−3. Overall,
the best results were obtained for the near-surface soil layer.

Table 2. Performance of the NTR− NDVI approach for soil moisture estimation.

NTR−NDVI versus Acclima TDR

TDR Sensor Depths 2 cm 10 cm 50 cm Avg. 2–50 cm

bias −0.0088 −0.0937 −0.0753 −0.0593
Site 1 RMSE 0.0237 0.0998 0.0843 0.0665

r 0.8430 0.7899 0.8040 0.8180

bias 0.0084 −0.0890 −0.0922 −0.0576
Site 2 RMSE 0.0344 0.0941 0.0985 0.0651

r 0.8466 0.8199 0.8219 0.8568

bias 0.0429 −0.0678 −0.0428 −0.0225
Site 3 RMSE 0.0629 0.0755 0.0529 0.0398

r 0.5310 0.7152 0.7228 0.6949
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3.3. Soil Moisture Mapping and Variability

Equation (9) was used to generate soil moisture variability maps for the field site.
Previous studies show that because of the connection between near-surface and root zone
soil moisture (RZSM), it is feasible to accurately determine RZSM based on near-surface
soil moisture estimates [25–27]. However, the strength of this connection depends on
many factors such as soil moisture status, climate, and vegetation cover [20]. Figure 10
depicts linear regression functions and correlation coefficients for Acclima TDR sensor
measurements in 2-cm depth and the measurements in 10-cm and 50-cm depths, as well
as with the average soil moisture from 2–50 cm. The soil moisture in 2-cm depth is highly
correlated with the soil moisture in 10-cm depth (r = 0.81), 50-cm depth (r = 0.78),
and the average soil moisture from 2 to 50 cm (r = 0.91). Accordingly, the regression
derived between soil moisture in 2-cm depth and the 2–50 cm average soil moisture
(y = 0.0645 + 0.85x) was used to generate an example RZSM map for Site 1 (see Figure 5a)
for the 5 February 2018, observation date that is shown in Figure 11. The mapped RZSM
values range from 0.08 to 0.46 cm3 cm−3.
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3.4. Plant Extractable Soil Water Mapping and Variability

Absolute soil moisture values only represent the quantity of water stored in the soil,
but do not indicate the ease of water uptake by plant roots. This is why both the amount
and availability of water are important for agricultural irrigation management. Within
this context, Equation (4) was employed to estimate and map the plant extractable water
(PEW f ). PEW f provides a more reliable measure for water use efficiency or crop water
productivity. Figure 12 shows an example PEW f map for Site 1 for the 5 February 2018,
observation date. The PEW f values range from −1.4 to 3.4. Negative values (i.e., θTH > θ)
indicate that there is no available water for uptake by plant roots, while values larger than
zero (i.e., θTH < θ) imply that water is available for plant root uptake.
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A potential application for high spatial resolution RZSM and PEW f maps is precise
irrigation scheduling to optimize irrigation volumes in space and time (e.g., variable rate
irrigation with a center pivot system) to meet crop water demand and prevent overirrigation.
This contributes to conservation of water resources and reduction of the environmental
footprint of farming operations.

4. Summary and Conclusions

The intensifying water crises in arid and semiarid regions of the world demands the
development of advanced remote sensing techniques for precise farm level agricultural
irrigation management. In this paper, we evaluated the feasibility of using high spatial
resolution remotely sensed UAS near-infrared reflectance data in conjunction with ground
soil moisture measurements to estimate and map root zone soil moisture (RZSM) and plant
extractable water (PEW f ). The tested approach relies on the relationship between near-
infrared transformed reflectance (NTR) and the normalized difference vegetation index
(NDVI), which form a trapezoidal NTR− NDVI feature space. A DJI Matrice 120 UAS
equipped with a Micasense RedEdge camera was employed to obtain all data necessary
to parameterize the NTR − NDVI feature space for a durum wheat field in Maricopa,
AZ, USA.

The performance of the proposed approach was evaluated via comparison with ground
soil moisture measurements that were obtained with advanced Acclima time domain
reflectometry (TDR) sensors. We found the NTR− NDVI estimates to be highly correlated
with the TDR sensor measurements with the best estimation accuracy for the near-surface
soil layer. Significant correlations were observed between near-surface and root zone
soil moisture measurements, which provided regression functions for the conversion of
near-surface soil moisture to RZSM and PEW f and the creation of associated RZSM and
PEW f maps.

In conclusion, we believe that the presented approach shows great potential for farm-
scale precision irrigation management. It could significantly contribute to the conservation
of water resources and reduction of the environmental footprint of farming operations.
However, we acknowledge that much more research for different cropping systems, soil
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textures, climatic conditions, and irrigation methods is needed to make the presented
approach viable for application by farmers.
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