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Abstract: Over the years, remote sensing technology has become an important means to obtain
accurate agricultural production information, such as crop type distribution, due to its advantages of
large coverage and a short observation period. Nowadays, the cooperative use of multi-source remote
sensing imagery has become a new development trend in the field of crop classification. In this paper,
the polarimetric components of Sentinel-1 (S-1) decomposed by a new model-based decomposition
method adapted to dual-polarized SAR data were introduced into crop classification for the first time.
Furthermore, a Dual-Channel Convolutional Neural Network (DC-CNN) with feature extraction,
feature fusion, and encoder-decoder modules for crop classification based on S-1 and Sentinel-2
(S-2) was constructed. The two branches can learn from each other by sharing parameters so as to
effectively integrate the features extracted from multi-source data and obtain a high-precision crop
classification map. In the proposed method, firstly, the backscattering components (VV, VH) and
polarimetric components (volume scattering, remaining scattering) were obtained from S-1, and the
multispectral feature was extracted from S-2. Four candidate combinations of multi-source features
were formed with the above features. Following that, the optimal one was found on a trial. Next, the
characteristics of optimal combinations were input into the corresponding network branches. In the
feature extraction module, the features with strong collaboration ability in multi-source data were
learned by parameter sharing, and they were deeply fused in the feature fusion module and encoder-
decoder module to obtain more accurate classification results. The experimental results showed that
the polarimetric components, which increased the difference between crop categories and reduced
the misclassification rate, played an important role in crop classification. Among the four candidate
feature combinations, the combination of S-1 and S-2 features had a higher classification accuracy
than using a single data source, and the classification accuracy was the highest when two polarimetric
components were utilized simultaneously. On the basis of the optimal combination of features, the
effectiveness of the proposed method was verified. The classification accuracy of DC-CNN reached
98.40%, with Kappa scoring 0.98 and Macro-F1 scoring 0.98, compared to 2D-CNN (OA reached
94.87%, Kappa scored 0.92, and Macro-F1 scored 0.95), FCN (OA reached 96.27%, Kappa scored 0.94,
and Macro-F1 scored 0.96), and SegNet (OA reached 96.90%, Kappa scored 0.95, and Macro-F1 scored
0.97). The results of this study demonstrated that the proposed method had significant potential for
crop classification.

Keywords: convolutional neural network; synthetic aperture radar (SAR); multispectral imagery;
feature fusion; crop classification; polarimetric decomposition

1. Introduction

Agriculture is the foundation of the national economy and the basic condition for
ensuring social development [1]. It is of great significance to obtain the spatial distribution
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information of crops in time for phenology monitoring, yield estimation, disaster assess-
ment, soil moisture inversion, and other fields [2–5]. Remote sensing (RS) technology, as a
macro-real-time, large-scale Earth observation technology, has an obvious advantage over
traditional manual statistical methods in identifying crop categories [6]. Therefore, it is
widely used by scholars in the study of crop classification [7].

Multispectral (MS) images and Synthetic Aperture Radar (SAR) images are two effective
RS data sources. MS images obtained by optical sensors contain rich spectral information,
which can identify the biochemical characteristics of different crops [8]. In 2017, Sonobe
et al. [9] classified crops in Hokkaido, Japan, and demonstrated that the final accuracy could
reach 94.5% when using data obtained from the Operational Land Imager of Landsat-8.
In [10], the sown area and spatial distribution of the main crops were extracted using MODIS
data in Hebei Province, which verified the feasibility of extracting provincial crop planting
information. Kenichi et al. [11] used Landsat-7 data to study crop classification in the Iac area,
Peru. The difference in spectral characteristics of different crops in MS images is the basis of
crop classification. However, MS imagery is weather-dependent and is affected by clouds,
rain, and fog, which hinders its performance when classifying crops [12].

SAR, an active microwave sensor without limitations caused by weather conditions
due to its penetration capability, can provide different information from MS images for
crop classification [13,14]. In [15], rice was identified based on RADARSAT-2 data with the
threshold set according to the ratio of HH to VV, and the identification accuracy reached
92.64%. In order to improve the classification accuracy, Xiang et al. [16] combined Sentinel-1
(S-1) data with elevation and slope information to extract ground feature information in
the study area. Based on the polarimetric components of different crops in PolSAR data,
Guo et al. [17] put forward a new parameter to realize crop classification. As can be seen
from the above studies, SAR images can achieve high accuracy in crop classification, but
due to the lack of spectral features and sensitivity to surface parameters, the applicability
of SAR in crop classification is limited, and it is often combined with other auxiliary data.

As there is a very complicated nonlinear relationship between environmental elements,
a single type of RS data cannot fully and accurately reflect the comprehensive information
on the ground [18]. The diversity of local, regional, and global agricultural landscapes
and their site-specific challenges have been reflected in many studies, including spectral
similarity, crop diversity, weather conditions, and farming systems [19–22]. In recent years,
the information provided by multi-source RS data has been complementary and coop-
erative [23,24]. The collaborative application of multi-source RS can reduce or eliminate
the problems of target features, such as ambiguity, incompleteness, and uncertainty [25].
Multi-source RS image fusion can make use of complementary information from different
sources to achieve accurate and comprehensive crop classification [21,24,26–29].

Recently, several studies have used MS and SAR data for crop classification. In
particular, S-1 and Sentinel-2 (S-2) have similar spatial resolution, which has made their
synergistic use a research hotspot [30–34]. In [35], wheat and oilseed rape were monitored
based on the spectral information of optical data and the backscattering coefficient of SAR,
and the accuracy of S-1 and S-2 data combined could reach 92%. Sun et al. combined the
spectral information in optical data with the backscattering coefficient of SAR data and
used a machine learning algorithm to classify crops. The results showed that VV and VH
were effective in the classification of wheat and other crops, and the classification results
could reach 93% [36]. Ghassemi, B. et al. used optical features from S2 and composites
from S1 together to provide a full coverage map with appropriate OA [37]. However, the
polarimetric components have not been fully utilized in the task of crop classification. There
are many polarimetric decomposition methods for obtaining polarimetric information from
SAR images, such as H/A/α decomposition [38,39] and Freeman decomposition [40],
but most of them have been proposed for quad-pol SAR sets and are not suitable for S-1
data. On the other hand, with the continuous development of deep learning technology,
it is widely used in the field of classification [41,42], and some scholars use deep learning
technology to identify crops through multi-source RS images [43–46]. Kussul et al. classified
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corn and wheat in Ukraine and found that the classification result of a convolutional neural
network (CNN) was better than that of RF [47]. In [48], CNN, RF, SVM, etc. were used to
classify soybeans and wheat in an agricultural region of Canada. The results showed that
CNN had the best classification result and that the overall accuracy could reach 96.72%.
However, its ability to process multi-source RS data was still limited [49]. The insufficient
integration of complementary information between multi-source data, for example, was
prone to redundant input. Moreover, most studies analyze crop phenology changes based
on time-series remote sensing data to achieve classification. For some areas affected by
weather conditions, it is difficult to obtain time series images with quality assurance, and
the effectiveness of single-phase and multi-source remote sensing data to improve crop
classification accuracy needs to be verified.

Regarding these issues, this paper adapted the polarimetric components of S-1 im-
ages, which were extracted based on the newly developed model-based decomposition
method [50]. Meanwhile, a Dual-Channel CNN (DC-CNN) based on a combination of the
features of single-date S-1 and S-2 was constructed by extracting and fusing the multi-source
features. On this basis, the best feature combination of the backscattering components,
polarimetric components, and MS features was analyzed. The main contributions of this
paper are given as follows:

1. To properly exploit the polarimetric content of S-1 SAR data in crop classification,
the outputs of the new polarimetric decomposition conceived in [50] by Mascolo
et al., which is adapted for dual-polarimetric SAR data, are extracted from VH-VV
S-1 observations. These, along with the VH and VV backscattering coefficients, are
combined with MS features, and the best combination strategy was analyzed.

2. A dual-channel CNN model, namely DC-CNN, with shared parameters based on
multi-source RS data was constructed. Specifically, the features obtained from S-1 and
S-2 data were fed into two CNN channels for independent learning, and they were
transformed into high-dimensional feature expressions. Furthermore, the sharing of
parameters in the convolution layer made the two branches learn cooperatively. The
correlation of multi-source features was maximized while maintaining the unique
features of each data source.

The rest of this paper is arranged as follows: In Section 2, the study area and adopted
data are described, and the crop classification method is recommended in detail. The
results of crop classification are shown in Section 3. In Section 4, the results obtained were
discussed and analyzed. Section 5 presents the final conclusion.

2. Materials and Methods
2.1. Study Area

Tongxiang (120◦17′E–120◦39′E, 30◦28′N–30◦47′N) is located in the Hangjiahu Plain in
the northern Zhejiang Province, China, as shown in Figure 1. The land is flat and fertile,
which makes it suitable for the cultivation of wheat, rice, and oilseed rape. Wheat and
oilseed rape were sown in late November and harvested in June and July of the following
year. Due to the abundant rain in this study area, the availability of optical data is greatly
affected. Therefore, this study adopted the method of single-time phase data to achieve
high precision crop distribution mapping.

2.2. Data and Preprocessing
2.2.1. Sentinel-1A SAR Data and Preprocessing

Sentinel-1A (S-1A), a SAR satellite, was launched by the European Space Agency
(ESA) on April 3, 2014. It is able to operate day and night with a high spatial resolution
of 5 m × 20 m in Interferometric Wide (IW) swath mode. The sensor carried by the S-1A
can provide large-scale images of 250 km × 250 km.
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(pseudo-color image defined by combination of bands B8 (near infrared), B4 (red), and B3 (green)). 
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was downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). 
The detailed parameters are shown in Table 1. The main processes include: (1) Orbit cor-
rection. Using accurate satellite orbit data to correct orbit information can effectively re-
move systematic errors caused by orbit errors. (2) Thermal noise removal. In order to re-
duce the influence of noise in SAR images, noise removal technology [48] was used. (3) 
Radiometric calibration. Eliminated all kinds of distortions associated with the radiant 
brightness in the image data as much as possible. (4) Deburst. Each burst that had effective 
signal parts was merged. (5) Generating a polarimetric matrix C2 according to the complex 

Figure 1. Location map and RS images of Tongxiang. (a) pseudo-color image of S-1 (pseudo-color
image defined by combination of dBms, dBmv, and dBms/dBmv.); (b) pseudo-color image of S-2
(pseudo-color image defined by combination of bands B8 (near infrared), B4 (red), and B3 (green)).

In this study, the IW-mode Single Look Complex (SLC) S-1A image on 6 May 2021,
was downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).
The detailed parameters are shown in Table 1. The main processes include: (1) Orbit
correction. Using accurate satellite orbit data to correct orbit information can effectively
remove systematic errors caused by orbit errors. (2) Thermal noise removal. In order to
reduce the influence of noise in SAR images, noise removal technology [48] was used.
(3) Radiometric calibration. Eliminated all kinds of distortions associated with the radiant
brightness in the image data as much as possible. (4) Deburst. Each burst that had effective
signal parts was merged. (5) Generating a polarimetric matrix C2 according to the complex
band in step (3). (6) Multi-looking. The number of range looks and azimuth looks was
4 and 1, respectively. (7) Speckle filtering. (8) Range-Doppler terrain correction. (9) Data
conversion to convert the σ0 band into the common dB standard. (10) Extraction of the
study area. After preprocessing the S-1 data, the backscattering coefficient σ0 was obtained,
and the saved C2 matrix was derived for polarimetric decomposition.

https://scihub.copernicus.eu/
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Table 1. S-1A image used in the study.

S-1A Parameters S-1A

Product type SLC
Imaging mode IW

Polarization VV
VH

Pixel size 10 m × 10 m
Pass direction Ascending

Wave band C
Dates 2021-05-06

2.2.2. Sentinel-2B Data and Preprocessing

Sentinel-2 (S-2) is a multi-spectral imaging satellite that consists of two satellites,
2A and 2B. Each satellite has a revisit period of 10 days, with a complementary double
satellite for a temporal resolution of 5 days.

The study area is located in the south of China, which has a subtropical monsoon
climate. Due to the influence of weather, the quality of optical data is seriously affected
during the critical period of crop growth (April 2021 to June 2021). The weather conditions
counted are shown in Figure 2, and the statistical data was obtained from http://www.
weather.com.cn/ and https://weather.cma.cn (accessed on 11 April 2022). It can be shown
that there were just 14 days from April to June that were sunny, while other days were
cloudy, overcast, or rainy.
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Figure 2. Weather conditions in the study area from April to June.

S-2 images will be affected by weather factors such as clouds, rain, and fog. In order
to select effective S-2 images in the study area, the cloud cover percentage of S-2 images
was counted (obtained from https://scihub.copernicus.eu/dhus/#/home (accessed on 11
April 2022)), as shown in Table 2.

As can be seen from Table 2, most S-2 images with a high cloud cover percentage
cannot be used for crop classification. Only three S-2B images were suitable for crop
classification from 3 April to 27 June 2021. As the study area is large, one scene in the S-2B
image cannot completely cover the whole study area. Therefore, S-2B images taken on
3 May 2021, with a low cloud cover percentage were chosen for crop classification.

In this study, cloud-free level 2A atmospheric effect-corrected S-2B data on 3 May 2021,
were acquired. S-2 data preprocessing processes included: (1) Resampling. Resampling
the resolution of all bands to 10 m. (2) Layer stacking. Combining the resampled multiple
bands into an MS image. (3) Mosaicking. Two images were stitched together to obtain an
image covering the whole study area. (4) Extraction of the study area. The spectral bands
(Table 3) were extracted for further crop classification.

http://www.weather.com.cn/
http://www.weather.com.cn/
https://weather.cma.cn
https://scihub.copernicus.eu/dhus/#/home


Remote Sens. 2023, 15, 2727 6 of 25

Table 2. Cloud cover data from S-2 images during the critical period of crop growth from April 2021
to June 2021.

S-2 Satellite Date Cloud Cover Percentage (%) S-2 Satellite Date Cloud Cover Percentage (%)

A 8 April 2021 99.94 B 3 April 2021 99.89
A 8 April 2021 71.47 B 3 April 2021 99.97
A 18 April 2021 87.58 B 13 April 2021 53.41
A 18 April 20211 56.11 B 13 April 2021 88.98
A 28 April 2021 98.98 B 23 April 2021 98.98
A 28 April 2021 94.74 B 23 April 2021 98.46
A 8 May 2021 99.99 B 3 May 2021 11.42
A 8 May 2021 99.89 B 3 May 2021 19.96
A 18 May 2021 99.77 B 13 May 2021 99.33
A 18 May 2021 99.57 B 13 May 2021 98.58
A 28 May 2021 100 B 23 May 2021 67.47
A 28 May 2021 94.12 B 23 May 2021 88.47
A 7 June 2021 93.43 B 2 June 2021 97.03
A 7 June 2021 96.48 B 2 June 2021 99.29
A 17 June 2021 93.91 B 12 June 2021 83.16
A 17 June 2021 99.64 B 12 June 2021 90.27
A 27 June 2021 97.58 B 22 June 2021 82.89
A 27 June 2021 94.57 B 22 June 2021 9.47

Table 3. S-2B image used in the study.

S-2B Parameters Spatial Resolution (m) S-2B Spectral Description

Band 2 10 Blue
Band 3 10 Green
Band 4 10 Red
Band 5 20 Vegetation red edge
Band 6 20 Vegetation red edge
Band 7 20 Vegetation red edge
Band 8 10 Near Infrared

Band 8A 20 Vegetation red edge
Band 11 20 Short-Wave Infrared
Band 12 20 Short-Wave Infrared

Dates 2021-05-03
Processing Level Level 2A

2.2.3. Ground-Truth Data and Preprocessing

The vector data for farmland were obtained by manual measurement and the statistics
of the local government. A reliable farmland boundary is beneficial to the final mapping
of crop distribution. A field investigation was conducted from 10 May to 12 May 2021, to
collect samples of crops in the study area. The farmland we studied was a government-
planned field provided by the local government. During the study period, the planting
status of farmland can be completely divided into three categories: oilseed rape, wheat,
and bare land. There were also economic crops such as mulberry in Tongxiang city, but
they were not involved in our experiment. In order to ensure the uniform distribution and
quantity of samples, three experts interpreted and supplemented the samples according to a
3.8-m high-resolution remote sensing image (GF-1 optical image on 1 May 2021) and Google
images (Landsat-8 optical image on 29 April 2021). The number of expert interpretation
samples accounted for about 10% of the total sample. Finally, 305 plots were obtained as
samples (19,540 pixels), including 101 oilseed rape (6038 pixels), 103 wheat (7418 pixels),
and 101 bare lands (6084 pixels). The sample distribution is shown in Figure 3.

The samples were randomly divided into three parts: the training set was 60%
(11,713 pixels), the validation set was 20% (3906 pixels), and the testing set was 20%
(3921 pixels). In particular, the validation set was used to adjust the hyperparameters
to prevent overfitting of the model. The testing set did not participate in the training
process and was used to evaluate the performance of the model independently. In Table 4,
the detailed parameters of the sample were described.
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Figure 3. Distribution map of crop samples from field surveys and field photos of major crops
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oilseed rape.

Table 4. Ground-truth data and sample allocation of crop types.

Label Type Number of Fields Total Number
of Pixels

Number of
Training Samples

Number of
Validation Samples

Number of
Testing Samples

1 Oilseed rape 101 6038 3601 1207 1230
2 Wheat 103 7418 4458 1483 1477
3 Bare land 101 6084 3654 1216 1214

Total - 305 19,540 11,713 3906 3921

2.3. Crop Type Classification
2.3.1. Overview

The flow chart of the proposed method is shown in Figure 4. There were three steps in
this crop classification method. Data acquisition and preprocessing should be completed
beforehand. In step 1, on the one hand, the MS image was obtained from S-2 data. On the
other hand, the VH and VV backscattering components and the polarimetric components
from the model-based decomposition in [50] were obtained from S-1 data. The above
features were grouped into different combinations. In step 2, the DC-CNN model was
constructed, which included three modules: a feature extraction module, a feature fusion
module, and an encoder-decoder module. In step 3, the optimal feature combination
was obtained by analyzing and evaluating the classification results of different feature
combinations, and the final crop distribution map was acquired based on the trained DC-
CNN model. In order to measure the accuracy of the classification results, qualitative and
quantitative evaluations were made. Qualitative evaluation was applied to evaluate the
classification results intuitively [51]. Compared with the samples obtained from ground-
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truth data, the classification results were interpreted and verified intuitively. To evaluate
quantitatively the accuracy of each combination, various parameters (i.e., Macro-F1, Overall
Accuracy (OA), and Kappa) were considered [52,53].
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2.3.2. Polarimetric Decomposition and Feature Combination

The abundant polarimetric information extracted from the SAR data has great poten-
tial for the classification of crop types [54]. However, there were few applicable polarimetric
decomposition methods for S-1. Mascolo et al. proposed a novel model-based decomposi-
tion in [48] that is adapted for S-1 and by which any Stokes vector can be decomposed into
a partially polarized and polarized wave component. In this study, this decomposition was
applied to exploit the polarimetric components of S-1, which were introduced into crop
classification for the first time. The specific process of decomposition was as follows:

The Sentinel-1 dual-polarimetric SAR data can be represented by the following polari-
metric covariance matrix [55,56]:

C2X2 =

[
c11 c12
c12
∗ c22

]
=

[
〈|SVH |2〉 〈SVHSVV

∗〉
〈SVVSVH

∗〉 〈|SVV |2〉

]
(1)
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where <> is multilook and/or speckle filtering.
The random dipole cloud model, which was widely used in quad-pol decomposi-

tions [57,58], was used for the dual-pol decomposition.
Transforming C2X2 into the Stokes vector:

S =


s1
s2

s3
s4

 =


c11 + c22
c11 − c22

2Re(c12)
2Im(c12)

 (2)

where Re(c12) and Im(c12) represent the real part and the imaginary part of c12, respectively.
The Stokes vector S can be decomposed according to the model-based decomposition

in [50].

S = mvsv + mssp = mv


1
±0.5

0
0

+ ms


1

cos2α
sin2αcosδ
sin2αsinδ

 (3)

where, on the left side, sv and sp represent the partially polarized and the completely
polarized components, respectively, with mv and ms being the corresponding powers. Note
that, on the right side, the volume term is modeled according to the random cloud of
dipoles model. mv is the power of the partially polarized volume term (also referred to as
volume scattering), and ms is the power of the polarized term (also referred to as surface
scattering). The α angle measures the separation between the transmitted and received
waves [49], and δ is the cross-polarized phase.

For different crop types in the early stages of planting, surface scattering is dominant.
With the growth and development of crops, the proportion of volume scattering increases
gradually. For leafy crops, the proportion of volume scattering is higher than that of surface
scattering. The characteristics of different crop canopies will affect the specific value of
volume scattering [59,60].

Therefore, as shown in [50], mv can be obtained by solving the quadratic in Equation (4),
where the coefficients a, b, and c, are calculated from the random dipoles cloude model.

am2
v + bmv + c = 0,


a = sT

v Gsv = 0.75
b = −2sTGsv = −2s1 ± 0.5s2
c = sTGs = s2

1 − s2
2 − s2

3 − s2
4

(4)

Only one root of the quadratic equation satisfies energy conservation (mv ≤ s1), which
provides a unique solution for mv.

The ms can be calculated as follows by hinder qual-pol model-based approaches [61]
to avoid all the negative eigenvalue issues:

ms = s1 −mv (5)

The backscattering components VV/VH were obtained from the preprocessed S-1 data,
and ms/mv were calculated using model-based decomposition. The MS feature (Bands
2, 3, 4, 5, 6, 7, 8, 8A, 11, and 12) was acquired via preprocessed and band-sifted S-2 data.
Table 5 describes in detail different combinations of extracted features that would be used
as different input data sets for subsequent experiments.

Combinations A to C were represented using only the different components extracted
from the S-1, which made it convenient to analyze the performance of polarimetric com-
ponents ms and mv in crop classification using only S-1 data. Combinations D to H were
different combinations of multi-source features. Combinations F and G were set to evaluate
the contribution of polarization features ms and mv to the classification of multi-source
crops, respectively.
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Table 5. Different combinations composed of S-1 and S-2 features were used.

Combination Abbreviation Comment

A S-1 (VV, VH) Only the intensity components VV and VH of S1

B S-1 (ms, mv) Only the polarimetric components ms and mv of S1

C S-1 (VV, VH, ms, mv) The intensity components VV, VH, and the polarimetric
components ms, mv, of S1

D S-1 (VV, VH) + S-2(MS) The intensity components VV, VH of S1 + MS of S-2

E S-1 (ms, mv) + S-2(MS) The polarimetric components ms, mv of S1 + MS of S-2

F S-1 (VV, VH, ms) + S-2(MS) The intensity components VV, VH, and the polarimetric
components ms of S1 + MS of S-2

G S-1 (VV, VH, mv) + S-2(MS) The intensity components VV, VH, and the polarimetric
components mv of S1 + MS of S-2

H S-1 (VV, VH, ms, mv) + S-2(MS) The intensity components VV, VH, and the polarimetric
components ms, mv of S1 + MS of S-2

2.3.3. Framework of DC-CNN

CNNs, which are widely used in deep learning approaches for crop classification [62,63],
are helpful for effectively discovering salient features in data. However, the features of crops in
multi-source RS images were different. In order to effectively use the features extracted by S-1
and S-2, DC-CNN was constructed to investigate the effects of S-1 and S-2 on crop classification.
Due to the different characteristics of crops in S-1 and S-2 images, the features obtained from
S-1 were used as input for one branch, and the spectral information obtained from S-2 was
used as input for the other. Each of the streams learned sensor-specific representations.
Through parameter sharing, the representations can be learned from other branches in order
to achieve the best classification effect.

As shown in Figure 5, the structure of the DC-CNN included a feature extraction
module, a feature fusion module, and an encoder-decoder module and was connected to a
SoftMax layer for classification. The feature extraction and feature fusion modules realized
feature learning and achieved the purpose of the deep fusion of multi-source features.
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Because the characteristics of crops in S-1A and S-2B are different, two convolution
kernels were set in the feature extraction module. The feature extraction process was shown
in Equation (6):

Z(l)
S,i =

 f
(

w(l)
S
⊗

XS,i + b(l)S

)
, l = 1,

f
(

w(l)
S
⊗

Z(l−1)
S,i + b(l)S

)
, l = 2, . . . , n

(6)

where XS represents the source data in the two channels and S = 1, 2. Z(l)
S,i is the output fea-

ture after the l-layer convolution; and f (x) is the activation function in the model structure;
XS,i represents the i-th pixel in the S-th channel; w(l)

S is the weight of the l convolutional

layer; b(l)S is the bias of the convolutional kernel;
⊗

represents the convolutional operation;
n is the number of layers in the CNN.

The Batch Normalization (BN) layer was set after the convolution layer to speed up
the training process. Following that, there was the pooling layer, which uses the 2 × 2 max
pooling to reduce the data variance and computational complexity. Furthermore, ReLU [63]
was selected as the activation function; that is, f (x) = max(0, x), which maintains a
nonlinear mapping relationship and avoids the problem of gradient disappearance by
changing the negative value to zero.

The convolution layer consists of two layers, in which two branches share the parame-
ters w and b in the second layer. At this time, the information in the two branches of the
network influences each other, and the loss functions of the two branches jointly determine
the gradient update in the back propagation, so as to learn more distinguishing features.
Following that, the features extracted from the two channels were spliced and used as
inputs for the encoder. The spliced feature was denoted as

[
Z(n)

1,i + Z(n)
2,i

]
.

F(l)
i (Z1, Z2) = f

(
w(l)

S

⊗[
Z(n)

1,i + Z(n)
2,i

]
+ b(l)S

)
, l = n + 1, . . . , m (7)

The fused feature of F(l)
i (Z1, Z2) was used as the input of the decoder. The feature

map was mapped back to the spatial information of the original image through the decoder
module. The SoftMax classifier was used to get the final classification result.

The loss function adopted the categorical cross-entropy (CCE) commonly used in
multi-classification [64].

CCE(ŷ,y) = − 1
N

N

∑
i=1

C

∑
j=1

yi,j·log
(

p
(
ŷi,j
))

(8)

where N represents the number of samples and C is the number of classes. The value ŷ
represents the predicted class, with y being the training label.

The detailed parameters of DC-CNN are shown in Table 6.

2.3.4. Model Accuracy Evaluation

In order to select the best combination of multi-source features and measure the effec-
tiveness of the DC-CNN model, qualitative and quantitative evaluations were conducted.

For the qualitative evaluation, three regions were selected and compared with the
visual interpretation map; each region contained three types of farmland to be classified.
Examples of these regions are shown in Figure 6.
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Table 6. Parameters of the DC-CNN.

S-1 S-2

Conv: 3 × 3 × 16 (n, 7, 7, 16) Conv: 3 × 3 × 16 (n, 7, 7, 16)

BN (n, 7, 7, 16) BN (n, 7, 7, 16)

ReLU (n, 7, 7, 16) ReLU (n, 7, 7, 16)

Max-Pooling: 2 × 2 (n, 4, 4, 16) Max-Pooling: 2 × 2 (n, 4, 4, 16)

Conv: 3 × 3 × 32 (n, 4, 4, 32) Conv: 3 × 3 × 32 (n, 4, 4, 32)

BN (n, 4, 4, 32) BN (n, 4, 4, 32)

ReLU (n, 4, 4, 32) ReLU (n, 4, 4, 32)

Max-Pooling: 2 × 2 (n,2, 2, 32) Max-Pooling: 2 × 2 (n,2, 2, 32)

Flatten 128 Flatten 128

Layer Parameters Output shape

Joint Layer (n, 256)

Encoder1 128, activation = ‘ReLU ‘ (n, 128)

Encoder2 64, activation = ‘ReLU ‘ (n, 64)

Encoder3 32, activation = ‘ReLU ‘ (n, 32)

Compressed features 16, activation = ‘ReLU ‘ (n, 16)

Decoder1 32, activation = ‘ReLU ‘ (n, 32)

Decoder2 64, activation = ‘ReLU ‘ (n, 64)

Decoder3 128, activation = ‘ReLU ‘ (n, 128)

Classification SoftMax (n, 3)
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For the quantitative evaluation, Macro-F1, Overall Accuracy (OA), and Kappa were
employed, which were illustrated in Equation (9), Equation (13) and Equation (14), respectively.

Macro− F1 = Average(F1− score) (9)

Here, F1− score can be expressed as Equation (12):

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

OA =
TP + TN

TP + TN + FP + FN
(13)

Kappa =
OA− pe

1− pe
(14)

pe =
(TP + FN)× (FP + TP) + (FP + TN)× (FN + TN)

(FP + TN + TP + FN)2 (15)

where Precision and Recall were calculated via confusion matrices.

3. Classification Results
3.1. Implementation Details

All the experiments were completed in the TensorFlow environment with a GeForce
RTX 3080Ti. The weight decay was set to 0.004, and the learning rate was set to 0.001.
DC-CNN was trained by an Adam optimizer [65,66] and trained on 100 epochs to obtain the
final classification result. The batch size was 32. The hardware and software configurations
are presented in Table 7.

Table 7. Hardware and software configurations of the experiments.

Configuration Version

GPU GeForce RTX 3080Ti
Memory 64G

Language Python 3.8.3
Frame Tensorflow 1.14.0

3.2. Comparison of Feature Combinations
3.2.1. Polarimetric Components in a SAR-Only Image

Figure 7 shows the local comparison of the classification results of three different
feature combinations based on DC-CNN, among which the features were extracted from
S-1. Obviously, when Combination A was used as input data, the classification result was
not ideal. An OA of 76% with a Kappa of 0.462 was achieved. In the three types, the result
of bare land classification was better than the other two types, and there was a serious
confusion phenomenon between wheat and oilseed rape, as shown in the oval area in
Figure 7a(1)–a(3), where a large amount of wheat was mistaken for oilseed rape. After the
polarimetric components were introduced into the classification task (Combination B and
Combination C), the confusion phenomenon was obviously reduced.
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Figure 7. The classification results of three local regions were obtained by using different combinations
as input data sets, respectively. a(1)–a(3) Results based on Combination A; b(1)–b(3) Results based on
Combination B; c(1)–c(3) Results based on Combination C. Combination A: S-1 (VV, VH); Combination
B: S-1 (ms, mv); Combination C: S-1 (VV, VH, ms, mv).

According to Table 8, when Combination C was used as the input data set, the ac-
curacy of various classes was significantly improved (Figure 7c(1)–c(3)). Compared with
Combination A, the overall accuracy of Combination C increased by about 4.5%, and Kappa
reached 0.628. These results indicated that the polarimetric component had a positive effect
on crop classification and could effectively improve classification accuracy. It should be
noted that the sample set for testing was independent of the training sample and did not
participate in the model training process.

Table 8. Precision, Recall, F1-score, Macro-F1, OA, and Kappa coefficients corresponding to the crop
classification results in different Combinations, using only S-1 data. Combination A: S-1 (VV, VH);
Combination B: S-1 (ms, mv); Combination C: S-1 (VV, VH, ms, mv).

Oilseed Rape Wheat Bare Land Macro-F1 OA Kappa

Combination A
Precision 0.783 0.694 0.806

0.7603 0.7609 0.462Recall 0.715 0.771 0.802
F1-score 0.747 0.730 0.804

Combination B
Precision 0.832 0.752 0.835

0.806 0.8061 0.572Recall 0.765 0.825 0.834
F1-score 0.797 0.787 0.834

Combination C
Precision 0.855 0.780 0.843

0.828 0.8312 0.628Recall 0.792 0.854 0.852
F1-score 0.822 0.815 0.847
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3.2.2. Polarimetric Components in SAR-Optical Images

It can be seen from Table 8 that polarimetric components played a positive role in crop
classification tasks based on SAR data only. In order to explore its potential in multi-source
crop classification tasks, the Combinations D, E, F, G, and H in Table 4 were compared.
As shown in Figure 8, the misclassification phenomenon of Combination E (e(1)–e(3)),
Combination F (f(1)–f(3)), and Combination G (g(1)–g(3)) was obviously reduced compared
with the classification result of Combination D (d(1)–d(3)). The only difference between
Combinations D, F, and G was that the polarimetric component was added to Combinations
F and G. When all the features of S-1 and S-2 were used (h(1)–h(3)), the classification results
were more accurate for both the interior and edge of farmland.
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Figure 8. The classification results of three local regions were obtained by using different combinations
as input data sets, respectively. d(1)–d(3) Results based on Combination D; e(1)–e(3) Results based on
Combination E; f(1)–f(3) Results based on Combination F; g(1)–g(3) Results based on Combination G;
h(1)–h(3) Results based on Combination H. Combination D: S-1 (VV, VH) + S-2(MS); Combination E:
S-1 (ms, mv) + S-2(MS); Combination F: S-1 (VV, VH, ms) + S-2(MS); Combination G: S-1 (VV, VH, mv)
+ S-2(MS); H: S-1 (VV, VH, ms , mv) + S-2(MS).

The predicted results of the model with different feature combinations were compared
with the ground-truth map on the ground. Following that, make a quantitative evaluation.
The specific accuracy results are shown in Table 9.

For visually observing the difference between different input precisions, a visual
comparison of accuracy evaluation indicators is presented in Figure 9. The accuracy of
Combination E can reach more than 90%, which indicates the efficiency of crop classification
by combining only the polarimetric components and MS features. Apparently, compared
with Combination D, the classification accuracy of Combination F, Combination G, and
Combination H was obviously improved. That is, the addition of ms and mv can increase
the discrimination between crops and reduce the misclassification. Especially when both ms
and mv were added at the same time, the classification result was the best, and the accuracy
could reach 98%. This showed that the scattering characteristics reflected by polarimetric
information played an effective role in crop classification. Combination H was used as the
optimal feature combination in subsequent experiments.



Remote Sens. 2023, 15, 2727 16 of 25

Table 9. Precision, Recall, F1-score, Macro-F1, OA, and Kappa coefficients corresponding to the crop
classification accuracy in different Combinations.

Oilseed Rape Wheat Bare Land Macro-F1 OA Kappa

Combination D
Precision 0.909 0.889 0.911

0.9030 0.9030 0.8545Recall 0.867 0.905 0.937
F1-score 0.888 0.897 0.924

Combination E
Precision 0.918 0.941 0.943

0.9340 0.9340 0.9010Recall 0.919 0.937 0.946
F1-score 0.919 0.939 0.945

Combination F
Precision 0.940 0.933 0.956

0.9433 0.9430 0.9145Recall 0.928 0.946 0.955
F1-score 0.934 0.940 0.956

Combination G
Precision 0.967 0.972 0.972

0.9707 0.9703 0.9554Recall 0.961 0.967 0.983
F1-score 0.964 0.970 0.978

Combination H
Precision 0.976 0.990 0.986

0.9840 0.9840 0.9760Recall 0.986 0.974 0.992
F1-score 0.981 0.982 0.989
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Figure 9. Intuitive comparison of evaluation indicators.

In order to verify the effect of separating polarimetric features ms and mv from SAR
data on improving classification accuracy, the feature group without a polarimetric feature
(Combination D) and the feature group with a polarimetric feature (Combination H) were
analyzed visually, as shown in Figure 10. The multi-dimensional features are mapped
to two-dimensional space by the Principal Component Analysis (PCA) method. In the
Figure 10, the horizontal and vertical coordinates were the first and second principal
components that provided most of the information about the data.
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Figure 10. Visual images of features. (a) Feature visualization results of combination D (S-1 (VV, VH)
+ S-2(MS)) (b) Feature visualization results of combination H (S-1 (VV, VH, ms, mv) + S-2(MS)).

There were three different colored dots in the figure, which represented three kinds of
samples. It can be seen that when only the MS of S-2 and the intensity features (VV and VH)
of S-1 were combined, confusion between the three categories was evident. In particular,
oilseed rape was confused with bare land and wheat to different degrees. Confusion
between the three crop types was improved when polarimetric components (ms and mv)
were added. In particular, the differentiation between bare land and oilseed rape samples
increased markedly. More specifically, in areas comprising bare land without sowing, the
scattering characteristics mainly reflect surface scattering, so the ms is always larger than
the mv. Oilseed rape and wheat were mature during the study period, and thus the mv was
dominant, meaning that they could be clearly distinguished from bare land. The differences
in plant height and canopy between oilseed rape and wheat mean that their mv values
differ to some extent. The results showed that polarimetric components can enhance the
differentiation between samples, which is conducive to improving classification accuracy.

3.3. Accuracy Comparison with Other Classifiers

Figure 11 shows the classification results of the DC-CNN model when using Combina-
tion D. This taxonomic map clearly identified three crop categories: oilseed rape, wheat,
and bare land. The results showed that the fields in the southwest of Tongxiang were
complete and wide and that wheat was mainly planted here. Wheat and oilseed rape fields
spread throughout the region; some bare land was scattered.

In order to prove the effectiveness of the proposed method in crop classification with
multi-source remote sensing data, three deep learning methods were selected for comparison,
including the traditional 2D-CNN method, CNN-based FCN, and SegNet [42–45]. For fairness
of comparison, the input data sets of all methods were Combination G, and the training
samples, verification samples, and test samples used in classification were consistent.

3.3.1. Qualitative Evaluation

In qualitative evaluation, three areas were selected for comparison with ground-
truth in order to visually compare the classification results. As shown in Figure 11, the
2D-CNN, FCN, and SegNet methods all had many outliers and misclassified crops. In
the rectangular area in Figure 12a(1)–c(1), oilseed rape was misclassified as bare land to
different degrees. The classification results obtained by the proposed method were the
closest to the actual situation when the training samples, test samples, and input data
were all the same. This indicated that the proposed method can effectively utilize the
multi-dimensional information of multi-source images and achieve a good effect.
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3.3.2. Quantitative Evaluation

To verify the validity of the DC-CNN method, 2D-CNN, FCN, and SegNet classifiers
were used for comparison. All these classifiers were quantitatively evaluated, and confusion
matrices were created for them (Figure 13). The results were shown in Table 10.

According to the indicators in Table 10, the accuracy of the DC-CNN model was the
highest. The Macro-F1 was 0.9840, the OA was 0.9840, and the Kappa was 0.9760; the
accuracy metrics of the other models were slightly lower than those of the DC-CNN. FCN
and SegNet acquired Macro-F1 of 0.9630 and 0.9693, respectively; OA of 0.9627 and 0.9690,
respectively; and Kappa scored 0.9440 and 0.9534, respectively. Among the models tested,
the 2D-CNN model exhibited the worst classification performance, with three indicators
of 0.9467, 0.9487, and 0.9230, respectively. The Macro-F1 score of the proposed method
was increased by about 4%, the OA was increased by 5%, and the Kappa was increased
by around 5% compared with the 2D-CNN. For the oilseed rape and wheat categories,
which were easily confused, the accuracy was improved by about 5% and 2%, respectively,
and the accuracy of bare land identification was improved by about 3% compared with
the traditional CNN. This experiment proved that the ability of the DC-CNN classifier to
classify crops using multi-source data was improved to some extent when compared with
other existing classifiers.
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Table 10. Precisions, Recalls, F1-scores, Macro-F1, OA, and Kappa coefficients corresponding to the
crop classification accuracy in different methods (the input data sets are all Combination G).

Oilseed Rape Wheat Bare Land Macro-F1 OA Kappa

2D-CNN
Precision 0.940 0.934 0.958

0.9467 0.9487 0.9230Recall 0.933 0.955 0.958
F1-score 0.937 0.945 0.958

FCN
Precision 0.963 0.953 0.972

0.9630 0.9627 0.9440Recall 0.954 0.963 0.971
F1-score 0.959 0.958 0.972

SegNet
Precision 0.965 0.978 0.964

0.9693 0.9690 0.9534Recall 0.966 0.959 0.982
F1-score 0.966 0.969 0.973

DC-CNN
Precision 0.976 0.990 0.986

0.9840 0.9840 0.9760Recall 0.986 0.974 0.992
F1-score 0.981 0.982 0.989



Remote Sens. 2023, 15, 2727 20 of 25

Remote Sens. 2023, 14, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 12. The classification results of three local regions were obtained by different methods (the 
input data sets are all Combination G). a(1)–a(3) results of 2D-CNN; b(1)–b(3) results of FCN; c(1)–
c(3) results of SegNet; d(1)–d(3) results of DC-CNN. 

3.3.2. Quantitative Evaluation 
To verify the validity of the DC-CNN method, 2D-CNN, FCN, and SegNet classifiers 

were used for comparison. All these classifiers were quantitatively evaluated, and confu-
sion matrices were created for them (Figure 13). The results were shown in Table 10. 

  
(a) (b) 

Remote Sens. 2023, 14, x FOR PEER REVIEW 21 of 26 
 

 

  
(c) (d) 

Figure 13. Confusion matrices for models generated by different classifiers (the input data sets are 
all Combination G). (a) 2D-CNN; (b) FCN; (c) SegNet; and (d) DC-CNN. 

According to the indicators in Table 10, the accuracy of the DC-CNN model was the 
highest. The Macro-F1 was 0.9840, the OA was 0.9840, and the Kappa was 0.9760; the ac-
curacy metrics of the other models were slightly lower than those of the DC-CNN. FCN 
and SegNet acquired Macro-F1 of 0.9630 and 0.9693, respectively; OA of 0.9627 and 0.9690, 
respectively; and Kappa scored 0.9440 and 0.9534, respectively. Among the models tested, 
the 2D-CNN model exhibited the worst classification performance, with three indicators of 
0.9467, 0.9487, and 0.9230, respectively. The Macro-F1 score of the proposed method was 
increased by about 4%, the OA was increased by 5%, and the Kappa was increased by 
around 5% compared with the 2D-CNN. For the oilseed rape and wheat categories, which 
were easily confused, the accuracy was improved by about 5% and 2%, respectively, and 
the accuracy of bare land identification was improved by about 3% compared with the 
traditional CNN. This experiment proved that the ability of the DC-CNN classifier to clas-
sify crops using multi-source data was improved to some extent when compared with 
other existing classifiers. 

Table 10. Precisions, Recalls, F1-scores, Macro-F1, OA, and Kappa coefficients corresponding to the 
crop classification accuracy in different methods (the input data sets are all Combination G). 

  Oilseed Rape Wheat Bare Land Macro-F1 OA Kappa 

2D-CNN 
Precision 0.940 0.934 0.958 

0.9467 0.9487 0.9230 Recall 0.933 0.955 0.958 
F1-score 0.937 0.945 0.958  

FCN 
Precision 0.963 0.953 0.972 

0.9630 0.9627 0.9440 Recall 0.954 0.963 0.971 
F1-score 0.959 0.958 0.972 

SegNet 
Precision 0.965 0.978 0.964 

0.9693 0.9690 0.9534 Recall 0.966 0.959 0.982 
F1-score 0.966 0.969 0.973 

DC-CNN 
Precision 0.976 0.990 0.986 

0.9840 0.9840 0.9760 Recall 0.986 0.974 0.992 
F1-score 0.981 0.982 0.989 

4. Discussion 
Compared with a single data source, the advantages of using multi-source data syn-

ergistically in classification have been confirmed in many studies [30–33]. In fact, we also 

Figure 13. Confusion matrices for models generated by different classifiers (the input data sets are all
Combination G). (a) 2D-CNN; (b) FCN; (c) SegNet; and (d) DC-CNN.

4. Discussion

Compared with a single data source, the advantages of using multi-source data
synergistically in classification have been confirmed in many studies [30–33]. In fact, we
also evaluated the effects of using only SAR data, only optical data, and a SAR-optical
combination on crop classification. The results were shown in Table 11.

Table 11. Overall classification accuracy, using only S-1, only S-2, and both combined.

Macro-F1 OA Kappa

S-1 (VV, VH, ms, mv) 0.8280 0.8312 0.6280
S-2(MS) 0.9430 0.8854 0.7403

S-1 (VV, VH, ms, mv) + S-2(MS) 0.9840 0.9840 0.9760

The classification accuracy obtained by only optical was about 5% higher than that
obtained by only SAR, and the target type can be better reflected in optical data, which is the
same conclusion as [67–71]. The cooperative use of SAR-optical provided multi-dimensional
information, including the physical scattering mechanism of SAR and the MS of optical data,
and the classification result was better than that of a single sensor. As shown in Table 11,
compared with S-1 and S-2 alone, the OA of synergy between S-1 and S-2 is improved by
15% and 10%, respectively. [72] also showed that compared to the sole use of S-1 and S-2 data,
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combining S1 and S2 can improve OA by 3% and 10%, respectively. The classification result in
this paper was more accurate (OA improved by almost 5%) than that in the literature [45]. On
the one hand, there may be relatively few crop species in the study area; on the other hand,
the importance of SAR polarization information has been frequently discussed in many crop
classification studies, such as wheat and oilseed rape [73–75]. The experiment in this paper
showed that the polarimetric components obtained by the new decomposition method [49]
had a more outstanding contribution to classification than VV/VH. Polarimetric components
were highly sensitive to crop canopy structure. Since the vertical state of canopy structure in
wheat maturity is obviously different from that in oilseed rape, components performed well in
classification tasks. As can be seen from Table 9, the final classification results obtained by the
proposed method were more accurate than those obtained by the other comparison methods.
Compared with 2D-CNN, FCN, and SegNet, the Macro-F1, OA, and Kappa improved by
2–4%, 2–4%, and 2–5%, respectively. However, in the early growth stages of wheat and oilseed
rape, due to their similar physical characteristics, the contribution of polarimetric components
will be affected to some extent. In the future, other features that can effectively distinguish
wheat from oilseed rape will be used for classification.

Not only feature quality and correlation were important aspects of crop classification
with multi-source data, but also the classification model affected classification results. The
effectiveness of 2D-CNN, FCN, and SegNet in crop classification has been proven [43–46].
Good classification results have also been obtained in this experiment, and the accuracy rate
is over 90%. However, under the condition of using the same input data set, the DC-CNN
obtained more accurate classification results. The proposed method can effectively utilize
and fuse the features in multi-source data, integrate the physical and structural properties
of the target surface contained in SAR, and utilize the spectral information contained in
optics. Meanwhile, 2D-CNN, FCN, and SegNet made insufficient use of features and lost
feature information. Nevertheless, the training samples in the proposed method were
collected by manual investigation, which required a lot of manpower and material costs.
Therefore, in the future, it will be important to design an accurate classification method for
crops with a small number of samples.

5. Conclusions

In this paper, DC-CNN was constructed to classify crops more accurately based on
S-1 and S-2 data. Advanced features were extracted using the feature extraction and
feature fusion modules of the model, and the deep fusion of multi-source features was
realized. Moreover, the influence of polarimetric information from dual-pol SAR data
on model-based decomposition on crop classification was observed for the first time.
Experiments showed that the classification of farmland type was best when the polarimetric
components, backscattering coefficient, and spectral information were simultaneously used
as model inputs. The difference between different sample categories was augmented, and
the probability of correct classification was elevated when polarimetric information was
utilized. The results showed that the polarimetric information in SAR images can play an
important role in crop classification. Meanwhile, the advantages of the proposed method
involving the fusion of multi-source data were verified by comparing the classification
results with those of other common methods. By using single-date imagery of S-1 and S-2
for crop classification, the results of the proposed method were more accurate compared
with other methods. The proposed method classifies crops more accurately. The method
proposed in this paper also provides an idea for areas with similar weather conditions,
namely, using limited optical and SAR images to classify crops.

Along with the development and application of multi-source RS for the task of crop
classification, which data to use and how to effectively use multi-source data are key
issues. The results of this paper clearly showed the effectiveness and superiority of this
method in SAR-optical combination crop classification. However, its application ability
needs to be further developed to adapt to the classification task in a complex environment
with more modalities. Future research will focus on whether other features that can be
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extracted from multi-source data, such as vegetation index extracted from optical data
and texture information extracted from SAR data, can be used to improve classification
accuracy. Another aspect is that the model is extended to make it suitable for classification
tasks under more data conditions, such as data fusion of more than two modalities or
collaboration of multi-source and multi-temporal data.
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