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Abstract: Hyperspectral image (HSI) classification is one of the most crucial tasks in remote sensing
processing. The attention mechanism is preferable to a convolutional neural network (CNN), due
to its superior ability to express information during HSI processing. Recently, numerous methods
combining CNNs and attention mechanisms have been applied in HSI classification. However,
it remains a challenge to achieve high-accuracy classification by fully extracting effective features
from HSIs under the conditions of limited labeled samples. In this paper, we design a novel HSI
classification network based on multiscale hybrid networks and attention mechanisms. The network
consists of three subnetworks: a spectral-spatial feature extraction network, a spatial inverted pyramid
network, and a classification network, which are employed to extract spectral-spatial features, to
extract spatial features, and to obtain classification results, respectively. The multiscale fusion network
and attention mechanisms complement each other by capturing local and global features separately. In
the spatial pyramid network, multiscale spaces are formed through down-sampling, which can reduce
redundant information while retaining important information. The structure helps the network better
capture spatial features at different scales, and to improve classification accuracy. Experimental results
on various public HSI datasets demonstrate that the designed network is extremely competitive
compared to current advanced approaches, under the condition of insufficient samples.

Keywords: hyperspectral image classification; multiscale hybrid network; hybrid attention mechanism;
multi-head attention mechanism

1. Introduction

Remote sensing is an advanced earth observation technology for modern society,
which can acquire electromagnetic wave characteristics of remote objects without any
contact [1]. With the continuous evolution of imaging spectroscopy, hyperspectral re-
mote sensing has attracted much attention. The captured HSI can be represented as a
three-dimensional data cube containing rich spectral signatures and spatial features [2].
Therefore, hyperspectral imaging has been utilized in various vital areas, such as precision
agriculture [3], environment monitoring [4], and target detection [5]. Acquiring HSI data is
easy, but how to intelligently process them is a challenge. Therefore, classification, as an
important intelligent processing method, has received extensive attention [6].

Numerous methods of HSI classification have been proposed so far. Many methods
based on machine learning (ML) are explored in the initial stage. Tensor-based models [7,8]
can also be applied to feature extraction and classification in hyperspectral imaging. ML-
based methods can be classified into two categories, based on the type of features: spectral-
based methods and spectral-spatial-based methods. In general, the manner in which the
spectral-based method treats HSIs can be thought of as an assemblage of spectral signatures.
For example, random forest [9], K-nearest neighbors [10], and support vector machine
(SVM) [11]. Furthermore, given the high spectral bands of HSI, the classification task may
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be affected by the Hughes phenomenon, resulting in suboptimal classification accuracy. To
alleviate the phenomenon, some methods of dimensionality reduction incorporate principal
component analysis (PCA) [12] and linear discriminant analysis [13]. The purpose is to
map HSIs, which have a high number of dimensions, onto a low-dimensional feature space,
while preserving the distinctiveness of various classes. A band selection approach, based
on heterogeneous regularization [14], is also applied to HSIs. The principal objective is to
select spectral bands containing abundant information and reduce spectral dimensions,
which contributes to the smooth operation of subsequent tasks. However, it is challenging
to accomplish superior classification accuracy of ground objects only by using spectral
signatures, due to the intra-class variability of spectral profiles in non-local spatial land-
marks, and the scarcity of labeled samples [15]. To offset the above shortcomings, the
spatial-spectral-based methods include Gabor wavelet transform [16] and local binary
patterns [17] that have been highly regarded by researchers. However, these approaches
for optimizing the hyperparameters, using a priori knowledge, are not able to extract deep
features of hyperspectral imaging, to obtain desirable performance in complex scenes [18].

Compared to traditional classifiers, deep learning (DL)-based techniques have shown
remarkable performance in various visual tasks, due to their powerful fitting and feature ex-
traction capabilities. Since their inception in 2006 [19], these approaches have been success-
fully applied in various fields such as semantic segmentation [20], image classification [21],
and the processing of remote sensing imagery [22]. Given the advantages of high flexi-
bility, automatic feature learning, and high precision, DL can capture high-level features
from complex HSI data. Recently, DL-based classifiers have gained considerable research
attention and are widely used, due to their capability in automatically identifying dis-
tinguishing features. Representative DL architectures contain stacked autoencoders [23],
deep belief networks [24], recurrent neural networks [25], and CNNs [6,26,27]. A CNN has
the advantages of automatic feature learning, parameter sharing, and parallel computing,
making it particularly suitable for HSI classification. Firstly, a CNN has one-dimensional
convolutions (1D-CNN) [28,29] to capture features from individual pixels of HSIs and
subsequently uses the obtained features for HSI classification. Nevertheless, the restricted
number of labeled samples creates difficulty for a CNN to exploit its performance when
only spectral signatures are considered [30]. Additionally, the intra-class variability of
spectral signatures leads to a significant amount of salt-pepper noise in the classification
maps [31]. As a two-dimensional CNN (2D-CNN) [32,33] is capable of extracting features
in the spatial dimension, it can better utilize spatial context information. However, it can
be shown [34] that the complicated 3D structure of HSI data cannot be processed well
by considering only spectral signatures and spatial features. The integrated spectral and
spatial features are easily disregarded, which is an essential element affecting classification
accuracy. As a result, three-dimensional CNNs (3D-CNN) [35–37] come into the limelight.
Compared with 2D-CNN models, 3D-CNN kernels are able to slide into the spatial and
spectral domains simultaneously, to extract joint spatial-spectral features.

Attention mechanisms have the characteristics of concentrating on useful information
and suppressing useless information, which can be used as an enhancement unit in the
CNN structure, to optimize the classification results. Additionally, the weakness of a
narrow CNN receptive field can be alleviated by the attention mechanism, by calculating
dynamic global weights. Recently, CNNs combined with attention mechanisms have
been favored by many researchers. The 4-dimensional CNN (4D-CNN) fuses spectral and
spatial attention mechanisms [38]. The attention mechanism can adaptively allocate the
weights from different regions. The spectral and spatial information of 4D representations
is processed by the CNN. The ultimate objective of 4D-CNN-based attention mechanisms is
to help researchers capture important regions. Attention gate [39], an algorithm that mimics
human visual learning, can be combined with DL models. It helps the network focus on the
target location and learns to minimize redundant information in the feature map. Feature
points in each layer of the image are emphasized by the attention mechanism to reduce the
loss of location information. Detail attention [40] is located after the CNN layer and before
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the max pooling layer. It is applied to improve the feature map’s ability to concentrate
on key regions and improve network performance. A modified squeeze-and-excitation
network [41] is embedded in a multiscale CNN to strengthen the feature representation
capability. It serves as a channel attention mechanism to emphasize useful information, and
helps boost network performance. Additionally, multiscale nonlocal spatial attention [42],
an essential component of a multiscale CNN, aggregates the dependencies of features in
the learning process in multiscale space. It is employed for hyperspectral and multispectral
image fusion. Although the convolution operation in a CNN captures the relationships
between neighboring features of different inputs, these relationships are not utilized during
the network training. This is the reason for the unsatisfactory results. The employment
of a self-attention mechanism [43] is a potential solution to the problem. However, the
multi-head attention mechanism [43] is proposed due to the fact that the self-attention
mechanism has the weakness of over-focusing on its own position.

We designed an HSI classification network based on a multiscale hybrid networks
and attention (MHNA) mechanisms. The designed approach comprises three stages:
a spectral-spatial feature extraction network, a spatial inverted pyramid network, and
a classification network. The spectral-spatial feature extraction network is utilized for
extracting the spectral and spatial features, and the spatial inverted pyramid network is
employed to capture the spatial features of the HSI dataset. The classification network is
applied to generate classification results. The structure of the multiscale hybrid network
is employed for extracting complex spectral and spatial features under the condition of
insufficient training samples. Dilated convolution, combined with residual convolution in
the spectral-spatial feature extraction network, can alleviate the restricted receptive field
and gradient vanishing. Moreover, the residual convolution can maintain shallow features
of the low-level layers to reduce information loss. Ultimately, the classification network is
applied to integrate the features and obtain classification results. The main contributions of
the proposed MHNA mechanisms can be summarized as:

(1) In the article, a novel multiscale hybrid network, using two different attention mecha-
nisms, is applied for HSI classification. It includes a spectral-spatial feature extraction
network with a hybrid attention mechanism, a spatial inverted pyramid network, and
a classification network with multi-head attention mechanism. The designed approach
can capture sufficient spectral and spatial features with a limited number of labeled
training samples.

(2) We apply a hybrid attention mechanism and a multi-head attention mechanism in the
MHNA mechanism. The objective of the hybrid attention mechanism is to focus on
numerous spectral signatures primarily, and a few spatial features, which suppresses
the useless features. The muti-head attention mechanism can form multiple subspaces
and help the network pay attention to information from different subspaces.

(3) We propose a dilated convolution, combined with residual convolution in a spatial-
spectral feature extraction network, to obtain a larger receptive filed without changing
the size of the original input feature map. Moreover, the residual network is able to
prevent gradient vanishing and maintain the shallow features of the low-level layers.

(4) A spatial inverted pyramid network is introduced for spatial feature extraction. Firstly,
multiscale spaces are generated by down-sampling operations. Secondly, the feature
extraction blocks are applied to capture spatial features from multiscale spatial infor-
mation. Then the spatial features from multiple scale streams are fused by feature
fusion blocks. It is beneficial to sufficiently extract spatial features and allow more
informative features to pass further.

The remainder of this article is structured as follows. Section 2 presents the related
works. The specifics of the designed approach are outlined in Section 3. Experimental
results are reported in Section 4, and Section 5 provides various discussions. Section 6
offers the conclusion and future prospect of the article.



Remote Sens. 2023, 15, 2720 4 of 32

2. Related Works
2.1. HSI Classification Methods Based on CNNs

With the development of DL, more and more frameworks based on CNNs are ap-
plied to HSI classification. Hu et al. [28] apply 1D-CNNs to HSI classification network,
which achieves better classification results for the first time. Yu et al. [29] propose an
architecture based on 1D-CNNs, which incorporates extracted hashing features and utilizes
the semantic information from HSIs for classification. These methods cannot achieve high-
precision classification results because spatial information is ignored by 1D-CNNs. To
utilize spatial information, researchers have applied 2D-CNN features to the classification
of HSIs and achieved promising results. Chen et al. [32] first reduced the raw spectral
dimensions using PCA, and then explored the spatial features contained in neighboring
pixels using a 2D-CNN. Mei et al. [33] designed a multilayer 2D-CNN architecture that
cleverly integrates spatial and spectral features of HSIs into the framework. A framework
for joint denoising and classification of HSIs was designed by Li et al. [44]. The network
consists of several 2D-CNN layers with a global max pooling layer. The shortcomings of
2D-CNNs can be solved by 3D-CNNs. The HybridSN model implemented by Roy et al. [35]
combines 2D convolution and 3D convolution operations to mine spectral and spatial
features. In parallel, following the residual network approach [36], Zhong et al. [37]
have derived a supervised network with a spectral-spatial residual network (SSRN) to
extract spectral and spatial features hierarchically. Under the influence of the SSRN and
the dense network [45], Wang et al. [46] proposed a fast, densely connected end-to-end
network (FDSS), which can extract more features with fewer training samples. Despite the
satisfactory classification performance of SSRNs and FDSSs, these networks are structured
in such a way that spectral and spatial features are captured in two successive feature
extraction blocks, and the input of the spatial block depends on the spectral block. Thus,
the configuration may result in the loss of a portion of the spatial features. To relieve
the deficiency, Yang et al. [47] proposed a dual-branch CNN to automatically learn the
united spectral-spatial features of HSIs. Li et al. [48] constructed a deep CNN for obtaining
spectral and spatial features with boosting classification performance. Li et al. [49] created
a new dense network with multilayer fusion (DMFN). The approach uses two independent
pathways for capturing spectral and spatial features, and finally fuses both types of features.
The above networks suffer from the problem of fixed receptive field size, due to the
limitation of convolutional kernels, which can only be alleviated by deepening the network.
Additionally, the approaches lead to obtaining numerous useless features, while ignoring
shallow features, which affect the network efficiency.

This paper improves upon the shortcomings of CNNs while leveraging their strengths
to build a new CNN framework. A novel multiscale hybrid network with a spectral-
spatial feature extraction network and spatial pyramid network is designed. The dilated
convolution, combined with the residual network blocks, is applied to extract a substantial
amount of spectral information and a small amount of spatial information. The receptive
field can be increased by the dilated convolution without changing the original input size
and without adding additional parameters. The residual network can prevent gradient
vanishing and maintain shallow features of the lower layers. The spatial information
of HSIs is extracted by a spatial inverted pyramid network with 2D-CNN and 3D-CNN
features. It contributes to the sufficient extraction of spatial information by down-sampling
to form multiscale spatial information. Details of the two subnetworks can be found in
Sections 3.4 and 3.5.

2.2. HSI Classification Methods Combined with Attention Mechanisms

Attention mechanisms play an influential role in improving the classification results
that can be embedded in any part of CNNs. Researchers incorporate attention mechanisms
into CNNs and use their strengths to focus on key information in HSIs. Roy et al. [50]
propose a fusion model combining the squeeze and excitation attention [51] to generate
activation weights through two different compression operations, namely global pooling
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and maximum pooling. To simultaneously enhance and suppress both useful and useless
features of HSIs, researchers propose various networks for HSI classification that utilize
both spectral-spatial features and attention mechanisms. Among them, Sun et al. [52] have
developed a network with spectral-spatial attention that can obtain discriminative features
and suppress the influence between pixels. Influenced by SSRNs, Ma et al. [53] have pro-
posed a dual-branch multi-attention network (DBMA). Li et al. [54] advocated for a network
with an attention mechanism incorporating both spectral-spatial and global context (SSGC)
information. In addition, Shi et al. [55] have achieved a pyramid convolution network
with iterative attention (PCIA), where each branch is capable of extracting hierarchical
features. Pan et al. [56] design an improved dense network with polarized attention named
one-shot network (OSDN), which, similarly, has two independent branches for feature
extraction. Although the aforementioned network demonstrates strong performance in
classification, there are still certain issues to be addressed. The CNN structures have the
problem of receptive field limitation, which can be alleviated by deepening the network
but may be accompanied with gradient vanishing [57]. Additionally, a large amount of
training samples is required for the network to extract the required features.

The designed approach incorporates two different attention mechanisms, where the hy-
brid attention is located in a spectral-spatial feature extraction network and the multi-head
attention is situated after the fusion of different features. Hybrid attention can contribute
to the network’s ability to suppress useless features and highlight useful ones. Multi-head
attention allows the model to learn different attention points in different perspectives, to
better capture different aspects of information. It allows the model to look for information
related to the current location in the input sequence and learn different aspects of the infor-
mation in different heads separately, and it can better integrate information and enhance
the performance of the network. The addition of two attention mechanisms can effectively
help the network to improve its classification ability. Detailed descriptions of both attention
mechanisms can be accessed in Sections 3.4 and 3.6.

3. Methodology
3.1. Dilated Convolution

The dilated convolution [58] was originally developed in the wavelet decomposition
algorithm [59] and known as a special convolution operator of Atrous convolution. The
primary idea was to increase the receptive field by expanding the size of the convolution
kernel without increasing the calculation. The receptive field size of dilated convolution
varies depending on the number of intervals for the convolutional kernels, which are
called the dilation rates. Thus, dilation convolution is effective for generating dense
feature mappings between CNNs, which is extremely promising for pixel-level tasks. We
provide a concise explanation of the dilation convolution in one dimension (1D) and two
dimensions (2D).

For the 1D case, the input data, output data, filter, and filter size are represented by x[i],
D[i], fD, k, respectively. The dilated convolution is represented by the following Formula
(1), where r denotes the dilated rate.

D[i] =
k=1

∑
0

fD × x[i + r · k] (1)

For the 2D case, the situation where r is set to 1, 2, and 3, respectively is detailed in
Figure 1. The fundamental concept behind dilated convolution is to insert (r − 1) zeros
between adjacent convolution kernels of standard convolution. For example, considering
that the convolution kernel is 3 × 3 and r = 2, the receptive field of dilated convolution is
5 × 5. The green background represents the range of receptive fields.
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3.2. Residual Convolution Network Structure

HSI classification performance can be greatly improved by utilizing CNN-based meth-
ods. However, once the network depth surpasses a certain extent, the phenomenon of
gradient vanishing ensues which directly causes a deterioration of the network’s perfor-
mance. The residual network (ResNet) [36] has the characteristic of being easy to optimize;
thus, it can contribute to the prevention network degradation. Moreover, the residual
blocks inside the ResNet can overcome the issue, of the over-deepening of the network, by
skipping connections [36].

The ResNet is constructed by concatenating a set of residual blocks, and the detailed
structure is shown in Figure 2. A residual block consists of a direct mapping h(xl) and
a residual component F (xl , Wl). The residual block can be defined by the following
Equation (2), where xl , xl+1 represent the input and output of layer l, respectively. By using
1 × 1 convolution to resolve the different dimensionality of the feature maps of xl and
xl+1, the residual block can be expressed by Equation (3), where h(xl) = W ′l x, and 1 × 1
convolution is represented by W ′l .

xl+1 = xl +F (xl , Wl) (2)

xl+1 = h(xl) +F (xl , Wl) (3)
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3.3. Architecture of the Designed MHNA

The structure of the MHNA mechanism is displayed in Figure 3, which is a parallel
dual-branch architecture. The proposed approach has three components: a spectral-spatial
feature extraction network, a spatial inverted pyramid network, and a classification net-
work. The spectral-spatial feature extraction network contains three similar dilated convo-
lution blocks combined with ResNet and a hybrid attention mechanism, which is applied to
extract a substantial number of spectral signatures and a few spatial features. Additionally,
the combination structure can effectively preserve and transmit the features obtained from
the initial layers of the network. Next, the spatial inverted pyramid network is utilized
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to capture spatial features. The spatial inverted pyramid network includes two spatial
inverted pyramid blocks. Each block consists of three down-sampling operations, four up-
sampling operations, six feature extraction blocks, and four feature fusion blocks. Finally,
the classification network includes a concatenate, a multi-head attention mechanism, a
ReLu layer, and a fully connected layer, which are employed to obtain classification results.
Among them, the concatenation operator is used to merge the features from different
branches, and a multi-head attention mechanism can help the network pay attention to the
information from different subspaces. The ReLu activation function introduces nonlinear
properties into the model to improve network expressiveness. The fully connected layer is
employed to generate the ultimate classification results.
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3.4. Spatial-Spectral Feature Extraction Network

In the proposed network, a spectral-spatial feature extraction network is introduced to
capture multiscale information from feature maps, as shown in Figure 4. It contains four
similarly dilated convolutions combined with ResNet blocks (DR) and a hybrid attention
mechanism. Additionally, the hybrid attention is located after the third DR block, which
can greatly assist the fourth DR block to extract higher-level features of the network. The
strategy can facilitate the network achieving a better performance in classification tasks.
The architecture of the hybrid attention mechanism is depicted in Figure 5. Suppose
F ∈ RH×W×C is the input of attention, and multiplies it to a 1D channel attention tensor
AC ∈ R1×1×C to obtain the channel-refined feature F′. F′ is then divided into two groups,
by the spatial attention submodule, which are called F′1, F′2. The two groups of features
are produced their own 2D spatial attention tensors: As,1 ∈ RH×W×1, As,2 ∈ RH×W×1. By
multiplying As,1, As,2 with F′1, F′2, respectively, a pair of spatial refined features are named
F′′1 and F′′2 , are generated. The process of a hybrid attention mechanism can be summarized
by the following equations:



Remote Sens. 2023, 15, 2720 8 of 32

F′ = AC(F)
⊗

F (4)

F′ = F′1 ⊕ F′2 (5)

F′′1 = As,1
(

F′1
)⊗

F′1 (6)

F′′2 = As,2
(

F′2
)⊗

F′2 (7)

F′′ = F′′1 ⊕ F′′2 ⊕ F (8)
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Figure 5. The architecture of hybrid attention mechanism.

Next, we describe the network process of the spectral-spatial feature extraction net-
work in detail on the Pavia Center. First, we randomly select a 3D patch cube (9 × 9 × 102)
as the network’s original input to consider both spectral information around the central
pixel and spatial information. The input data pass through a 3-D convolution with a
convolution kernel of (1 × 1 × 1), filters of 8, stride of (1 × 1 × 1), and without padding.
The size of the output feature map is (9 × 9 × 102, 8). Next, the outputs of 3-D convolution
are fed into a cascade of DR blocks, which consists of dilated convolutions and residual
convolutions. The dilated rate d = 2n(n = 0, . . . , 3) increases proportionally to the growth
of n. The kernel size, stride, dilation rate, and filters of the first DR block are (1 × 1 × 3),
(1 × 1 × 1), (1 × 1 × 1), and 16, respectively. The distinction between the other DR blocks
and the first DR block is the number of filters and the dilated rate. The second block has
filters of 32 with a dilation rate of (2, 2, 2), the third block has filters of 64 with a dilation
rate of (4, 4, 4), and the last block has a filter of 16 with a dilation rate of (8, 8, 8). In addition,
it should be emphasized that the convolution kernels of the parallel residual convolution in
each block are (1 × 1 × 1), which are used to ensure that the elements of the feature fusion
process are summed to obtain the same shape tensor. Finally, we get the feature map of
(9 × 9, 16). The spectral-spatial feature extraction process is detailed in Table 1.
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Table 1. The details of spectral-spatial feature extraction network.

Name Input Operations Kernel Size Dilation Filters Output

Conv3D (9 × 9 × 102, 1) Conv3D (1 × 1 × 1) \ 8 (9 × 9 × 102, 8)

DR Block 1

(9 × 9 × 102, 8) ResConv (1 × 1 × 1) \ 16 (9 × 9 × 102, 16)
(9 × 9 × 102, 8) Dilated Conv (1 × 1 × 3) (1, 1, 1) 16 (9 × 9 × 100, 16)

(9 × 9 × 100, 16) Dilated Conv (1 × 1 × 3) (1, 1, 1) 16 (9 × 9 × 98, 16)
(9 × 9 × 102, 16) Slice \ \ \ (9 × 9 × 98, 16)
(9 × 9 × 98, 16)/
(9 × 9 × 98, 16)

Element-wise
Sum

\ \ \ (9 × 9 × 98, 16)

DR Block 2

(9 × 9 × 98, 16) ResConv (1 × 1 × 1) \ 32 (9 × 9 × 98, 32)
(9 × 9 × 98, 16) Dilated Conv (1 × 1 × 3) (2, 2, 2) 32 (9 × 9 × 94, 32)
(9 × 9 × 94, 32) Dilated Conv (1 × 1 × 3) (2, 2, 2) 32 (9 × 9 × 90, 32)
(9 × 9 × 98, 32) Slice \ \ \ (9 × 9 × 90, 32)
(9 × 9 × 90, 32)/
(9 × 9 × 90, 32)

Element-wise
Sum

\ \ \ (9 × 9 × 90, 32)

DR Block 3

(9 × 9 × 90, 32) ResConv (1 × 1 × 1) \ 64 (9 × 9 × 90, 64)
(9 × 9 × 90, 32) Dilated Conv (1 × 1 × 3) (4, 4, 4) 64 (9 × 9 × 82, 64)
(9 × 9 × 82, 64) Dilated Conv (1 × 1 × 3) (4, 4, 4) 64 (9 × 9 × 74, 64)
(9 × 9 × 90, 64) Slice \ \ \ (9 × 9 × 74, 64)
(9 × 9 × 74, 64)/
(9 × 9 × 74, 64)

Element-wise
Sum

\ \ \ (9 × 9 × 74, 64)

Attention (9 × 9 × 74, 64) Hybrid
Attention

\ \ \ (9 × 9 × 74, 64)

DR Block 4

(9 × 9 × 74, 64) ResConv (1 × 1 × 1) \ 16 (9 × 9 × 74, 16)
(9 × 9 × 74, 64) Dilated Conv (1 × 1 × 3) (8, 8, 8) 16 (9 × 9 × 58, 16)
(9 × 9 × 58, 16) Dilated Conv (1 × 1 × 3) (8, 8, 8) 16 (9 × 9 × 42, 16)
(9 × 9 × 74, 16) Slice \ \ \ (9 × 9 × 42, 16)
(9 × 9 × 42, 16)/
(9 × 9 × 42, 16)

Element-wise
Sum

\ \ \ (9 × 9 × 42, 16)

Sequential (9 × 9 × 42, 16) Reshape \ \ \ (9 × 9, 672)
(9 × 9, 672) BN-Relu-

Conv2D
(1 × 1) \ 16 (9 × 9, 16)

3.5. Spatial Inverted Pyramid Network

In the designed network, a spatial inverted pyramid network is applied to obtain
multiscale spatial information from feature maps that are processed by PCA, as shown in
Figure 6. The feature extraction block and the feature fusion block are essential components
of the spatial inverted pyramid network. The spatial representations of the three different
scales are first obtained by down-sampling operations and then fed into the feature ex-
traction block separately. The objective of the feature extraction block is to capture spatial
features in different scale streams, which can suppress less useful features and allow more
informative ones to pass further. Then, the features from multiple scales are fused by
the feature fusion blocks. Figure 7 illustrates the structure of the feature extraction block.
Assuming M ∈ RH×W×C as the original input after convolution and a reshaping operation
to obtain Ma ∈ RH×W , that is the beginning of the feature extraction block. The overall
process of the feature extraction block is summarized as:

Ma = W1(M) (9)

Mb = WL1(M) (10)

M′a = Ma + FL[Mb + WL2(σ1(Mb)× FSM(σ2(W2(Mb))))] (11)
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where W1 denotes a set of operations, including 3-D and 2-D convolutions with kernel
sizes (1 × 1 × 1), (2 × 2), and a reshape operator. WL1 represents 2-D convolutions with
kernel size (3 × 3) and LeakyRelu. σ1 and σ2 are individual reshape operators, and a
SoftMax operator is denoted by FSM(·). WL2 means a group of operations containing 2-D
convolutions with kernel size (1 × 1) and LeakyRelu, FL stands for independent LeakyRelu
operator. Finally, the output of the block is denoted by M′a.
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The feature fusion block structure is illustrated in Figure 8. L1 ∈ RH×W and
L2 ∈ RH×W are assumed to be the output from the feature extraction block and input of
the feature fusion block, respectively. The fusion process can be represented as follows:

A1 = L1 � [Ws(WL(GAP(L1 + L2)))] (12)

A2 = L2 � [Ws(WL(GAP(L1 + L2)))] (13)

A = A1 + A2 (14)

where GAP is the global average pooling. W_L represents a set of operations including
a 2-D convolution using a kernel of size (1 × 1) and LeakyReLu operator. Ws denotes a
group operation containing a 2-D convolution applying a kernel of size (1× 1) and SoftMax
operators. L1 and L2 are element-wise products, obtaining A1 and A2, respectively, as a
result of the above operation. A ∈ RH×W can be formulated as the ultimate output of the
feature fusion block by Equation (14).
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The details of the spatial inverted pyramid network are described on the Pavia Center
dataset in Table 2. A 3D patch (9 × 9 × 3) is randomly selected as the network’s original
input. The result of (8 × 8) is obtained by using a 3-D convolution with kernel size (1, 1, 1),
a reshape operation, and a 2-D convolution using a kernel of size (2, 2). Subsequently, three
different scales of spatial information, with sizes (8 × 8), (4 × 4), and (2 × 2), are generated
by successive down-sampling operations. Then, the spatial features from different scale
streams are extracted separately by the feature extraction block, and then are fused by the
up-sampling operations and the feature fusion block.

Table 2. The detail of spatial inverted pyramid network.

Name Input Operations Kernel Size Filter Output

Input
(9 × 9 × 3, 1) Conv3D (1, 1, 1) 8 (9 × 9 × 3, 8)
(9 × 9 × 3, 8) Reshape \ \ (9 × 9, 24)

(9 × 9, 24) Conv2D (2, 2) 128 (8 × 8, 128)

Down-sampling
(8 × 8, 128) \ \ \ (8 × 8, 128)
(8 × 8, 128) Down-sampling (3, 3)/(3, 3) 192 (4 × 4, 192)
(4 × 4, 128) Down-sampling (2, 2)/(2, 2) 288 (2 × 2, 288)

Up-sampling
Feature Fusion

(2 × 2, 288) Up-sampling (2, 2)/(2, 2) 192 (4 × 4, 192)
(4 × 4, 192)/(4 × 4, 192) Feature Fusion \ \ (4 × 4, 192)

Up-sampling (4 × 4, 192) Up-sampling (3, 3)/(3, 3) 128 (8 × 8, 128)
Feature Fusion (8 × 8, 128)/(8 × 8, 128) Feature Fusion \ \ (8 × 8, 128)

Output (8 × 8, 128) Conv2D (1, 1) 128 (8 × 8, 128)
(8 × 8, 128)/(8 × 8, 128) Element-wise Sum \ \ (8 × 8, 128)

3.6. Classification Network

In the designed network, a classification network is employed to generate the classifi-
cation results, which include a multi-head attention mechanism, ReLu, and fully connected
layer. The multi-head attention mechanism can form multiple subspaces to optimize the
features of different subspaces and balance the bias that may be overly focused on one. The
structure of the multi-head attention is demonstrated in Figure 9. The scaled dot-product at-
tention is an important operation within it. The following equation can be used to express it.

Attention(Q, K, V) = So f tMax
(

QKT
√

dk

)
V (15)

With Q, K, and V as input, the similarity of Q and V is obtained by SoftMax after the inner
product of Q and KT . In addition,

√
dk is used as a scaling factor to prevent QKT results from

being too large, and the small gradient after SoftMax is not conducive to back propagation.
The multi-head attention mechanism can be expressed by the following equations:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(16)
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MultiHead (Q, K, V) = Concat(head1, . . . , headh)WO (17)

In (17), Q, K, and V denote the query, key, and value, respectively. h represents the number
of heads; headi is the results of the ith head, and WO is the result transformation matrix. In
(16), WQ

i , WK
i , and Wv

i are, respectively, the query, key, and value transformation matrix
of the ith head. Attention can be described by (15). The detail of classification network is
implemented in Table 3.
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Name Input Operations Output

Classification

(9 × 9, 16) Conv2D (8 × 8, 16)
(8 × 8, 16)/(8 × 8, 128) Concatenate (8 × 8, 144)

(8 × 8, 144) Multi-Head Attention (8 × 8, 144)
(8 × 8, 144) Reshape 9216

9216 ReLu-Dropout 256
256 ReLu-Dropout 128
128 ReLu 9

4. Experiment
4.1. Description of the Hyperspectral Datasets

In our experiments, the aim is to indicate the effectiveness of the designed approach.
Five famous hyperspectral datasets from various imaging platforms are adopted. Detailed
descriptions of the datasets are shown below:

Pavia Center dataset (PC): The PC dataset was acquired using the ROSIS sensor from
Pavia Center, Italy. It comprises bands of 1096 × 715 pixels, and spectral reflectance bands
in the range of 0.43–0.86 µm. The geometric resolution is 1.3 m. There are 13 noisy bands
excluded, leaving 102 bands for classification to minimize the occurrence of mixed pixels.
The PC’s ground truth consists of nine landcovers.

Salinas Valley (SA): The SA dataset was collected by the AVIRIS sensor. The spatial
dimensions of SA are 512 × 217 and its resolutions is 3.7 m. The raw dataset of SA has
24 bands ranging from 0.4 to 2.5 µm. A total of 20 bands affected by water absorption are
eliminated. As a result, we only use 204 bands for classification. The dataset comprises
16 types of landcover.

WHU-Hi-LongKou (LK): The LK dataset was obtained by the RSIDEA research group
of Wuhan University. It comprises 550 × 400 pixels and 270 bands from 0.4 to 1.0 µm. The



Remote Sens. 2023, 15, 2720 13 of 32

spatial resolution is approximately 0.463 m. The study site is an agricultural land space,
which includes nine samples.

WHU-Hi-HongHu (HH): The HH dataset was captured by the RSIDEA research group
of Wuhan University on 20 November 2017. The imagery size is 940 × 475 pixels, with
270 bands from 0.4 to 1.0 µm, and a spatial resolution of about 0.043 m. The dataset includes
22 classes, but 18 categories were selected from the original dataset in our experiment, and
the processed image size is 331 × 330.

Huston (HO): The HO dataset was obtained by the ITERS CASI-1500 sensor in Hous-
ton, Texas, USA and its surrounding rural areas, with a spatial resolution of 2.5 m. Its data
size is 349 × 1905 and it contains 144 bands in the 0.36 to 1.05 µm band range. There are
15 characteristic types in the study area, including roads, soil, trees, highways, etc.

4.2. Experiment Evaluation Indicators

Three evaluation indicators are applied to evaluate the classification performance
of the designed approach in the article, namely, overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (Kappa) [60]. The confusion matrix is introduced to provide a
more intuitive display of the three evaluation indexes mentioned above. In general, it is
expressed in the matrix form of (Cn×n). In the confusion matrix, the prediction labels are
represented by each column, and the actual labels are represented by each row. The matrix
can be defined as follows:

C =

C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn

 (18)

In (18), the value of n corresponds to the total number of categories, Cij represents the
number of samples from class i that are classified as class j, and ∑n

i Cij and ∑n
j Cij represent

the total of the samples in each row and class. Therefore, OA, AA, and Kappa are described
as follows:

OA =
∑n

i=1 Cii

∑n
i ∑n

j Cij
(19)

AA =
1
n
×∑n

i=1
Cii
Cij

(20)

Kappa =
OA−∑n

i=1

(
∑n

i Cij ×∑n
j Cij

)
1−∑n

i=1

(
∑n

i Cij ×∑n
j Cij

) (21)

4.3. Experiment Setting

The experiment is performed on a workstation specifically designed for DL tasks; we
use Intel(R) Xeon(R) CPU E5-26800 V4 processor. The clock frequency of CPU is 2.4 GHZ,
the number of CPU cores is 14, and the cache size is 35,840 KB. At the same time, it also has
128 GB’s RAM and 6×NVIDIA GeForce RTX 2080Ti Super Graphics processing Unit with
12 GB of memory.

To verify the performance of our designed network, we choose ten methods for
comparative experiments, including one the most classical ML method and nine advanced
methods based on CNNs. The brief introduction to the comparative methods as follows:

(1) SVM: From the perspective of classification, a SVM is a generalized classifier, which is
evolved on the basis of a linear classifier by introducing a structural risk minimization
principle, optimization theory and kernel function [61]. Each labeled sample, with
a continuous spectral vector in the HSI, can be directly sent to the classifier without
feature extraction and dimensionality reduction.
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(2) SSRN [37]: The primary idea of an SSRN is to capture features by stacking multiple
spectral residual blocks and multiple spatial residual blocks. The spectral residual
blocks used a 1 × 1 × 7 convolution kernel for feature extraction and dimensionality
reduction. The spatial residual blocks use a 3× 3× 1 convolution kernel for spatial fea-
ture extraction. The classification accuracy is improved by adding batch normalization
(BN) [62] and ReLu after each convolution layer.

(3) FDSS [46]: The 1 × 1 × 7 and 3 × 3 × 7 convolution kernels are used to obtain spectral
and spatial features, respectively. To improve the speed and prevent overfitting, the
FDSSC uses a dynamic learning rate, a parameter correction linear unit (PRELU) [63],
BN and dropout layer.

(4) DBMA [53]: The network is composed of two branches, which extract spectral sig-
natures and spatial features to reduce the interference between the two features. In
addition, inspired by CBAM [64], a channel and a spatial attention mechanism are
applied to the branches to improve the classification accuracy.

(5) DMFN [49]: A two-branch network structure extracts spatial features through 2-D
convolution and 2-D dense blocks. Additionally, it uses 3-D convolution and 3-D
dense blocks to extract spectral features directly from the original data. Then, the two
features are converged by 3-D convolutional blocks and 3-D dense blocks, which are
different from the fusion of other networks.

(6) PCIA [55]: It is a double-branch structure, which is implemented by pyramid 3D-CNN
architecture, and the iterative attention mechanism is introduced into it. A new
activation function, Mish, and an early stop are applied to improve the effective.

(7) SSGCA [54]: The difference between SSGCA and DBMA is the attention mechanism,
which refers to the GCNet [65].

(8) MDANet [66]: The network is a multiscale three-branch dense connection attention
network. Traditional 3-D convolutions are replaced with 3-D spectral convolution
blocks and 3-D spatial convolution blocks.

(9) MDBNet [67]: A multiscale dual-branch feature fusion network with attention mecha-
nism is adopted in the network. It can extract pixel-level spatial and spatial features
through a multiscale feature extraction block to enlarge the receptive field.

(10) OSDN [56]: The combination of one-shot dense blocks and polarization attention
mechanism comprises of two separate branches for feature extraction.

The designed approach is structured in an end-to-end manner. Specifically, parameters
in the network can be trained and the network is able to learn features in HSIs and perform
feature extraction and classification tasks. Details of the MHNA implementation are
summarized in Algorithm 1. To ensure the impartiality of the experiment, the same
hyperparameters are applied to all methods, and the Adam optimizer [68] is used to update
for 200 training epochs. The initial learning rate is set to 0.001 and the cosine annealing [69]
method is employed to dynamically adjust the learning rate each 15 epochs. In addition, an
early-stopping mechanism is added to terminate the training process and enter the testing
phase if the validation loss does not decrease for 20 consecutive epochs. The input of the
HSI cube patch size is 9 × 9, and the batch size is 64. Additionally, the original input of the
spatial inverted pyramid network reduces the dimension to 3 by using PCA. Tables 4–8
provide the quantity of the training sets, validation sets, and test sets on the five datasets.
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Algorithm 1 Structure of the designed MHNA

Input:
(1) Unprocessed HSI by PCA: H with b bands
(2) Processed HSI by PCA: P with p bands

Step 1: H and P are normalized and divided into training test, validation test, and test set.
Step 2: A w × w × b patch, extracted around each pixel of the dimension-unreduced HSI, is
considered the spectral-spatial features.
Step 3: A w × w × p patch, extracted around each pixel of the dimension-reduced HSI, is
considered the spatial features.
Step 4: The samples of the training test are fed into the network and optimized using the Adam
optimizer. The initial learning rate is set 0.001. It is adjusted dynamically every 15 epochs.
Step 5: The classification of the total HSI is achieved by inputting the corresponding spectral and
spatial features to the network.
Step 6: The two-dimensional matrix records labels of the HSI.
Output: Prediction classification map

Table 4. Landcover categories and dataset division in the PC dataset.

Class Category Total Train Validation Test

C1 Water 824 8 8 808
C2 Trees 820 8 8 804
C3 Asphalt 816 8 8 800
C4 Self-blocking bricks 808 8 8 792
C5 Bitumen 808 8 8 792
C6 Tiles 1260 13 13 1234
C7 Shadows 476 5 5 466
C8 Meadows 824 8 8 808
C9 Bare Soil 820 8 8 804

Total 7456 74 74 7308

Table 5. Landcover categories and dataset division in the SA dataset.

Class Category Total Train Validation Test

C1 Weeds-1 2009 40 40 1929
C2 Weeds-2 3726 75 75 3576
C3 Fallow 1976 40 40 1896
C4 Fallow-P 1394 28 28 1338
C5 Fallow-S 2678 54 54 2570
C6 Stubble 3959 79 79 3801
C7 Celery 3597 72 72 3453
C8 Grapes 11,271 225 225 10,821
C9 Soil 6203 124 124 5955

C10 Corn 3278 66 66 3146
C11 Lettuce-4wk 1068 21 21 1026
C12 Lettuce-5wk 1927 39 39 1849
C13 Lettuce-6wk 916 18 18 880
C14 Lettuce-7wk 1070 21 21 1028
C15 Vineyard-U 7268 145 145 6978
C16 Vineyard-T 1807 36 36 1735

Total 54,129 1083 1083 51,963
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Table 6. Landcover categories and dataset division in the LK dataset.

Class Category Total Train Validation Test

C1 Corn 34,511 345 345 33,821
C2 Cotton 8374 84 84 8206
C3 Sesame 3031 30 30 2971
C4 Broad-leaf soybean 63,212 632 632 61,948
C5 Narrow-leaf soybean 4151 42 42 4067
C6 Rice 11,854 119 119 11,616
C7 Water 67,056 671 671 65,714
C8 Roads and houses 7124 71 71 6982
C9 Mixed weed 5229 52 52 5125

Total 204,542 2046 2046 200,450

Table 7. Landcover categories and dataset division in the HH dataset.

Class Category Total Train Validation Test

C1 Red roof 3320 33 33 3254
C2 Road 1609 16 16 1577
C3 Bare soil 20,574 205 205 20,164
C4 Cotton 1792 17 17 1758
C5 Cotton firewood 27,964 279 279 27,406
C6 Rape 8993 89 89 8815
C7 Chinese cabbage 4054 40 40 3974
C8 Pak choi 2375 23 23 2329
C9 Cabbage 939 9 9 921

C10 Tuber mustard 5847 58 58 5731
C11 Brassica parachinensis 1233 12 12 1209
C12 Brassica chinensis 5348 53 53 5242
C13 Small Brassica chinensis 4307 43 43 4221
C14 Lactuca sativa 1002 10 10 982
C15 Celtuce 1517 15 15 1487
C16 Film covered lettuce 1436 14 14 1408
C17 White radish 973 9 9 955
C18 Garlic sprout 2037 20 20 1997

Total 95,320 945 945 93,430

Table 8. Landcover categories and dataset division in the HO dataset.

Class Category Total Train Validation Test

C1 Healthy grass 1251 12 12 1215
C2 Stressed grass 1254 12 12 1228
C3 Synthetic grass 697 6 6 683
C4 Trees 1244 12 12 1220
C5 Soil 1242 12 12 1218
C6 Water 325 3 3 229
C7 Residential 1268 12 12 1242
C8 Commercial 1244 12 12 1220
C9 Road 1252 12 12 1228

C10 Highway 1227 12 12 1203
C11 Railway 1235 12 12 1211
C12 Parking1 1233 12 12 1209
C13 Parking2 469 4 4 459
C14 Tennis Court 428 4 4 420
C15 Running Track 660 6 6 646

Total 15,029 143 143 14,743
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4.4. Experiment Results

We first analyze the classification performance of the various approaches on the SA
dataset in Table 9. The best OA, AA, and Kappa results are highlighted in bold. The
proposed approach is compared with the SVM, SSRN, FDSSC, DBMA, DMFN, PCIA,
MDAN, MDBN, SSGCA, and OSDN approaches. The proposed MHNA improves OA by
9.77%, 2.50%, 0.51%, 2.20%, 3.45%, 1.67%, 7.22%, 3.90%, 2.10%, and 0.50% more than the
above methods, respectively. It is because the spectral-spatial feature extraction network
and the spatial inverted pyramid network are applied to jointly extract spectral and spatial
features. Additionally, losing the multiscale information is prevented by using residual
convolution in the spectral-spatial feature extraction network. The OA of the SVM is
lower compared to that of DL-based methods, because the SVM only utilizes the spectral
signatures of the HSI. The MDAN and MDBN have lower OA than other DL-based methods.
This indicates that it is difficult to target the characteristics of the hyperspectral dataset
and to extract discriminative features on the SA dataset. The PCIA network, based on a
pyramid structure, achieves the highest AA among all methods, reaching 98.88%. It shows
that the pyramid structure has an extremely high potential for feature extraction. It can
be observed that the SSRN and FDSS achieve lower OAs than the proposed MHNA and
OSDN. This is because SSRNs and FDSSs extract spectral and spatial features through two
consecutive convolutional blocks. Additionally, the input of the spatial block is derived
from the spectral block, resulting in the loss of some spatial information. The DBMA and
DMFN are dual-branch networks, while the DBMA has better OA than the DMFN. The
distinction between the DMFN and DBMA lies in the absence of the attention mechanism
in the DMFN. This suggests that attention mechanisms have a significant impact on the
network. Meanwhile, the number of parameters for all approaches is reported in Table 9.
It can be concluded that the number of parameters obtained by the SVM method can be
ignored. Because the SVM is an ML method, it contains an extremely small number of
parameters. Other methods are based on DL, which include both single input (SSRN,
FDSS, DBMA, PCIA, MDAN, MDBA, and OSDN) and dual input (DMFN and MHNA)
approaches. It is clear that dual input approaches implement a larger number of parameters
than others. The MHNA mechanism received the highest OA. The classification result maps
of all methods are displayed in Figure 10. We can note that the proposed MHNA is the
closest to the real image (Figure 10a). And it can be clearly seen in Figure 10b,e–j that a large
number of the C8 (Grapes) is mistaken in C15 (Vineyard-U). It indicates that it is difficult
to distinguish C8 and C15 on the SA dataset. From the classification map of Figure 10l,
achieved by the proposed MHNA, it is worth noting that there is a small number of samples
that are misclassified. The experimental results indicate that the designed approach is more
effective than other approaches for classification tasks.

The PC is a dataset of urban center landscapes, which contains nine landcovers. All
methods, including SVM, achieve satisfactory classification results, as displayed in Table 10.
Parameters obtained by MHNA are less than DMFN. As can be observed, the designed
MHNA has an outstanding performance and achieves the highest OA, AA, and Kappa. In
particular, the MHNA achieves 100% on C1 (Water). However, SVM, DMFN, PCIA, and
OSDN achieve an OA of less than 90% on C3 (Asphalt). And FDSS, DBMA, MDAN, and
SSGC achieve an OA of less than 92% on C3. A similar phenomenon is observed for C4 (Self-
blocking bricks); it can be seen that most approaches achieve an OA lower than 90%. This
indicates that it is a challenge to classify C3 and C4 accurately. Conversely, the proposed
MHNA achieves OAs of more than 96% on C3 and C4. The classification maps in the PC
dataset are exhibited in Figure 11. It is apparent that the landcover contours and boundaries
are smoother and clearer on Figure 11l, which is obtained by the proposed approach.
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Table 9. Classification accuracies of various approaches on the SA dataset (The best results are
highlighted in bold).

Class Color SVM SSRN FDSS DBMA DMFN PCIA MDAN MDBN SSGC OSDN MHNA
C1 95.15 100.0 100.0 100.0 99.19 100.0 98.95 99.92 100.0 100.0 100.0
C2 99.45 99.91 100.0 100.0 99.83 100.0 99.19 99.80 100.0 98.59 99.81
C3 99.48 100.0 97.74 100.0 98.45 100.0 91.30 98.71 100.0 97.73 100.0
C4 98.83 95.72 98.04 91.13 95.91 100.0 99.83 94.00 98.95 99.62 99.55
C5 93.18 100.0 97.99 99.27 98.54 99.92 85.09 99.24 99.49 99.45 99.57
C6 99.66 99.73 100.0 99.78 99.97 100.0 99.82 98.23 100.0 100.0 100.0
C7 99.03 99.53 99.94 100.0 99.51 100.0 95.38 99.16 99.04 99.24 99.94
C8 86.14 96.36 95.11 94.64 88.00 84.57 86.12 97.72 83.56 92.70 95.51
C9 96.12 99.71 99.26 100.0 99.81 99.89 98.31 100.0 100.0 100.0 99.61
C10 88.37 99.90 97.33 90.54 94.15 99.65 94.16 99.86 98.99 99.67 97.71
C11 93.20 100.0 93.98 99.90 97.62 100.0 87.50 100.0 99.61 100.0 99.02
C12 99.26 99.94 99.67 99.78 99.89 99.94 95.39 99.92 100.0 99.94 99.03
C13 98.00 90.16 97.99 99.65 100.0 100.0 93.16 100.0 99.77 99.31 99.66
C14 93.53 99.41 99.70 97.85 97.83 99.02 98.50 98.38 100.0 95.85 98.34
C15 49.26 77.90 92.17 83.55 82.49 99.09 72.51 71.52 99.03 93.78 92.66
C16 94.07 100.0 98.50 100.0 98.12 100.0 98.85 97.20 100.0 100.0 99.72

OA (%) 87.94 95.24 97.23 95.54 94.29 96.07 90.52 93.84 95.64 97.24 97.74
AA (%) 92.67 97.39 97.96 97.25 96.83 98.88 93.38 97.10 98.65 98.49 98.76

Kappa×100 86.54 94.71 96.91 95.04 93.64 95.61 89.46 93.17 95.13 96.93 97.49
Parameters (M) \ 0.40 1.54 0.50 3.92 0.53 0.51 0.49 0.42 0.10 4.32
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Table 10. Classification accuracies of various approaches on the PC dataset (The best results are
highlighted in bold).

Number Color SVM SSRN FDSS DBMA DMFN PCIA MDAN MDBN SSGC OSDN MHNA
C1 99.95 99.53 99.97 99.99 99.97 100.0 99.98 99.97 99.99 99.98 100.0
C2 90.71 99.46 98.35 98.02 97.66 98.65 96.91 96.49 97.72 98.89 97.13
C3 84.54 99.85 91.09 90.68 89.87 89.36 90.20 93.26 90.35 83.34 96.47
C4 86.87 84.32 90.34 90.51 79.04 96.87 78.77 85.89 89.08 89.38 96.31
C5 91.96 98.85 95.16 95.41 91.48 97.99 99.40 98.03 99.10 99.57 98.54
C6 93.96 96.96 98.42 97.34 96.02 93.71 93.84 96.63 93.98 97.31 99.52
C7 84.54 82.44 99.48 99.01 98.55 99.57 95.96 97.02 99.93 99.98 96.49
C8 99.1 99.91 99.84 99.81 99.65 99.62 97.67 99.40 99.37 99.92 99.80
C9 99.93 99.85 99.24 98.67 98.07 99.81 99.96 99.96 98.77 97.20 99.75

OA (%) 97.1 97.96 99.13 99.02 98.41 99.00 97.88 98.76 98.81 99.05 99.38
AA (%) 92.4 94.57 96.51 96.60 94.48 97.29 94.74 96.29 96.48 96.17 98.22

Kappa×100 96.2 97.10 98.55 98.62 97.75 98.58 96.99 98.25 98.32 98.66 99.13
Parameters (M) \ 0.21 0.34 0.21 4.06 0.22 0.49 0.49 0.21 0.05 3.33
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There are nine landcovers in the LK dataset, which includes numerous samples. The
precise experimental results are displayed in Table 11. It can be easily seen that the OA of the
SVM is 90.77%. For specific classes, the accuracy is less than 70% of the SVM, such as with
C5 (Narrow leaf soybean) and C9 (Mixed weed). The SSRN, FDSS, and MDNA use spectral
and spatial features, and these approaches outperform SVM in terms of classification
accuracy. The performance of these methods (the DBMA, DMFN, PCIA, MDBN, SSGC,
OSDN, and MHNA) is relatively stable, and satisfactory results have been obtained. It
proves that the structure of dual-branch networks is more stable. It is remarkable that
the designed MHNA achieved the largest number of parameters while also obtaining
the highest OA, AA, and Kappa. The maps displaying the full-factor classification are
presented in Figure 12. It is evident that the salt-pepper noise presents in Figure 12b, which
is achieved by the SVM. Conversely, the classification maps of the DL-based method are
smoother. This suggests that the smoothness of the classification maps can be enhanced by
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extracting spatial features in DL-based methods. As shown in Figure 12a,l, the classification
map obtained by MHNA is the most approximate to the real landcovers.

Table 11. Classification accuracies of various approaches on the LK dataset (The best results are
highlighted in bold).

Number Color SVM SSRN FDSS DBMA DMFN PCIA MDAN MDBN SSGC OSDN MHNA
C1 98.28 97.78 99.40 99.91 99.79 99.93 97.41 99.77 99.93 99.44 99.69
C2 76.61 84.70 92.93 99.34 97.36 99.97 96.12 99.13 96.70 99.69 98.82
C3 76.52 99.77 100.0 100.0 96.45 98.97 50.27 92.53 99.62 100.0 100.0
C4 96.52 96.57 99.40 97.67 99.24 99.55 94.83 99.59 99.47 96.99 99.54
C5 61.37 100.0 91.85 95.84 99.46 95.61 79.16 95.47 99.86 99.15 98.38
C6 97.93 97.58 99.74 99.92 99.94 98.44 95.85 99.45 100.0 98.39 99.46
C7 99.99 99.92 99.99 99.93 99.93 99.95 99.66 99.88 99.99 99.94 99.98
C8 82.58 91.09 88.82 93.30 98.50 92.89 95.80 96.65 87.36 98.01 96.51
C9 67.30 99.96 88.53 96.35 93.33 91.56 90.01 93.96 83.07 93.30 93.60

OA (%) 90.77 97.30 98.52 98.78 99.30 99.16 96.12 99.25 98.70 98.57 99.40
AA (%) 84.12 96.37 95.63 98.03 98.22 97.43 88.79 97.38 96.22 98.32 98.44

Kappa×100 93.38 96.43 98.05 98.40 99.09 98.90 94.89 99.02 98.30 98.12 99.21
Parameters (M) \ 0.47 2.22 0.50 3.24 0.53 0.49 0.52 0.51 0.10 3.61
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Figure 12. Full-factor classification maps for the LK dataset: (a) ground-truth; (b) SVM; (c) SSRN;
(d) FDSS; (e) DBMA; (f) DMFN; (g) PCIA; (h) MDAN; (i) MDBN; (j) SSGC; (k) OSDN; (l) MHNA;
(m) false-color image.

Additionally, to assess the effectiveness of the introduced MHNA, a high spatial
resolution HSI dataset named HH is selected. From Table 12, maximum and minimum
parameters are achieved by the OSDN and the DMFN, respectively. The SVM based only on
spectral signatures achieves the lowest OA of 73.24%. The difficulty of classifying various
landcovers, utilizing spectral signatures exclusively on the HH dataset, is highlighted by
the results. Contrasting the classification accuracy across different categories, the results
indicate that some categories—such as C2 (Road), C7 (Chinese cabbage), C9 (Cabbage),
C17 (White radish), and C18 (Garlic sprout)—are difficult to classify precisely using SVM,
DBMA, MDAN, and MDBN. The proposed MHNA, as a dual-branch multiscale network,
achieves more stable classification results compared to other methods. From Figure 13l,
C3 (Bare soil) is almost completely correctly classified by the proposed method. On the
contrary, the boundary between C2 and C3 is unclear in Figure 13b–d,h,j,k. However, it can
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be seen that there are small patches of misclassification in Figure 13l. These may be caused
by using the dilated convolution injecting holes to expand the receptive field, which leads
to discontinuity in information extraction.

Table 12. Classification accuracies of various approaches on the HH dataset (The best results are
highlighted in bold).

Number Color SVM SSRN FDSS DBMA DMFN PCIA MDAN MDBN SSGC OSDN MHNA
C1 69.01 94.35 94.89 99.65 97.38 98.01 66.32 76.74 98.33 97.87 98.59
C2 70.59 84.21 85.55 78.19 93.26 88.21 79.76 86.08 98.77 83.35 94.47
C3 93.98 94.88 95.22 95.11 94.98 98.91 86.73 96.19 96.71 97.80 99.18
C4 89.48 99.52 95.23 96.29 96.90 97.25 86.11 80.93 98.24 98.80 98.88
C5 96.52 99.33 99.19 98.67 98.66 99.27 90.88 99.43 100.0 99.79 99.80
C6 63.53 81.75 92.35 95.77 92.12 98.09 62.36 91.98 98.19 95.42 97.89
C7 17.56 93.28 92.81 86.21 80.46 84.02 45.23 74.66 66.35 88.46 98.46
C8 88.44 97.03 99.82 98.44 97.88 99.44 64.83 96.40 99.82 99.78 99.11
C9 6.67 86.71 97.79 83.73 95.81 91.66 65.85 70.24 98.40 93.04 92.42
C10 20.21 98.30 91.89 94.07 94.66 96.10 54.21 87.57 96.33 96.78 97.68
C11 49.29 99.13 99.21 99.61 98.69 97.55 92.86 60.60 100.0 99.70 98.10
C12 46.27 96.03 88.42 90.38 91.08 98.20 75.60 93.41 98.10 90.01 98.48
C13 40.44 98.17 95.66 98.61 96.55 97.59 83.30 93.43 99.19 98.54 98.37
C14 55.82 96.78 97.45 92.88 94.46 94.55 77.51 54.81 93.23 98.58 92.02
C15 73.42 85.16 85.85 90.97 84.58 97.49 80.64 87.63 100.0 96.70 96.48
C16 61.59 91.51 77.52 91.94 92.80 94.95 70.34 66.88 82.20 91.64 97.98
C17 0 97.99 80.98 75.63 88.76 98.33 42.52 48.18 84.34 89.14 89.49
C18 63.34 86.42 91.03 91.98 87.68 74.85 64.69 68.28 82.08 91.75 97.92

OA (%) 73.24 94.59 94.78 95.20 94.82 96.83 79.34 90.94 95.51 96.78 98.59
AA (%) 55.92 93.36 92.27 92.12 93.15 94.69 71.65 79.63 93.90 94.90 96.96

Kappa×100 67.55 93.51 93.81 94.30 93.85 96.25 75.20 89.27 94.68 96.19 98.33
Parameters (M) \ 0.47 2.22 0.51 4.37 0.54 0.50 0.49 0.51 0.11 3.75
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The HO dataset contains 15 categories, such as roads, soils, and trees. The classification
accuracies and parameter number of the eleven approaches are detailed in Table 13. The
HO dataset includes a smaller number of training samples than others. Therefore, it is
extremely challenging to classify categories precisely under this condition. The lowest
classification results are still achieved by the SVM. The phenomenon is enough to demon-
strate the importance of spatial information of HSIs. Spectral and spatial characteristics are
simultaneously exploited by the MHNA, which obtains the highest levels of OA, AA and
Kappa. All the classification maps are presented in Figure 14. It can be clearly seen that
there are plenty of misclassified samples in all maps.

Table 13. Classification accuracies of various approaches on the HO dataset (The best results are
highlighted in bold).

Class Color SVM SSRN FDSS DBMA DMFN PCIA MDAN MDBN SSGC OSDN MHNA
C1 85.11 84.47 90.08 79.96 95.59 85.97 92.07 97.75 96.24 79.29 82.75
C2 65.12 99.90 99.52 99.49 87.34 96.79 95.68 98.51 90.53 93.95 97.75
C3 99.41 79.47 100.0 100.0 90.55 100.0 89.26 91.04 100.0 100.0 100.0
C4 80.81 98.36 97.95 94.88 87.85 93.81 94.29 92.31 96.22 92.28 99.64
C5 89.37 85.71 95.52 92.97 97.32 88.26 92.30 98.74 87.50 93.69 95.59
C6 67.44 97.85 100.0 99.61 98.75 100.0 82.16 91.00 100.0 87.39 99.27
C7 56.43 53.68 82.78 78.11 92.22 85.21 50.19 66.39 92.44 86.99 75.45
C8 62.08 99.62 89.72 91.52 96.19 97.97 58.38 52.34 75.92 90.36 93.44
C9 38.92 78.87 70.87 89.63 85.51 80.28 75.27 77.31 64.07 76.38 86.88
C10 55.68 94.97 71.85 87.96 75.44 65.51 78.98 77.93 80.27 91.52 84.99
C11 79.20 40.45 91.78 86.93 78.23 90.84 70.39 67.48 92.86 86.53 91.81
C12 74.74 53.58 91.39 86.83 88.88 81.74 66.55 69.98 94.61 93.88 88.72
C13 87.61 100.0 71.25 82.12 96.69 84.70 16.03 11.43 60.47 80.12 97.64
C14 92.67 94.53 95.62 100.0 97.10 95.45 80.73 80.63 100.0 100.0 92.58
C15 73.29 98.58 99.84 98.18 94.96 100.0 97.33 98.74 96.14 95.43 97.83

OA (%) 68.58 73.32 88.33 89.62 89.13 87.41 77.10 79.37 87.09 88.94 90.43
AA (%) 73.86 84.00 89.88 91.21 90.91 89.77 75.97 78.09 88.48 89.85 92.29

Kappa×100 66.03 71.09 87.39 88.77 88.24 86.38 75.23 77.67 86.04 88.05 89.65
Parameters (M) \ 0.27 0.65 0.28 3.52 0.31 0.49 0.49 0.28 0.06 3.31
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Figure 14. Full-factor classification maps for the HO dataset: (a) ground-truth; (b) SVM; (c) SSRN;
(d) FDSS; (e) DBMA; (f) DMFN; (g) PCIA; (h) MDAN; (i) MDBN; (j) SSGC; (k) OSDN; (l) MHNA;
(m) false-color image.

5. Discussion
5.1. Discussion of Various Spatial Patch Sizes

We now discuss the influence of the patch size on the classification accuracy of the
MHNA. An appropriate patch size is selected to help the network extract useful spatial
information and to reduce the waste of computer resources. The large spatial patch may
contain more information, but it also contains redundant information. In contrast, the
small spatial patch contains insufficient spatial information, which is not conducive to
extracting discriminative features to distinguish between similar categories. As shown in
Figure 15, we summarize the OAs for various spatial patch sizes, which range from 5 × 5
to 13 × 13 with a 4-pixel interval. The reason for the 4-pixel interval is the continuous
down-sampling operations applied in the spatial inverted network. It can be seen clearly
that the classification accuracy varies with the spatial patch size. When the spatial patch
size is 9 × 9, the highest OA is achieved on the five datasets. The experimental results
show that the spatial patch sizes are not proportionate to the classification accuracy. In
conclusion, the selected 9 × 9 patch sizes are applied in five datasets in our experiments.
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5.2. Analysis of the Impact of Varying Training Sample Proportions

The classification performance among all methods is discussed on five datasets with
various proportions of training samples in this section. It is well known that DL-based
approaches require numerous labeled samples to extract discriminative features that are
used for classification tasks. However, obtaining labeled samples is considered to be a time-
consuming and laborious process. Consequently, the number of training samples is crucial
for the learning process of DL-based methods. In order to compare and clearly analyze the
performance of the designed approach in classification and the competitors with various
proportions of training samples, we randomly chose 1%, 1.5%, 2%, 3%, 5%, 6%, and 7% of
labeled training samples from each dataset. As shown in Figure 16, it is evident that the
classification accuracy varies with the proportion of training samples. Additionally, the
larger the number of training samples selected, the higher the OAs obtained by all methods.
In contrast to other classification algorithms, the classification accuracies of FDSS, OSDN,
and the proposed MHNA grow more slowly, especially in the LK and HH datasets, which
are shown in Figure 16c,d. It demonstrates that these approaches can capture discriminative
features to improve classification performance, even when limited training data is available.
Satisfactory OAs are achieved by all methods when the proportion is 7% of the labeled
training data. The accomplishment of the proposed method is extremely competitive.
It is attributed to the important role played by the spectral-spatial pyramid network in
our approach. By leveraging two networks, we can extract spectral-spatial features and
abundant spatial features, which are crucial for classification tasks. In conclusion, the
experimental results confirm the effectiveness of the designed MHNA in HSI classification
tasks with limited training data.
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5.3. Ablation Analysis

Six ablation experiments are conducted to analyze the performance of the modules in
the designed method on five datasets. Additionally, dilated convolution, combined with
ResNet blocks (DR), a hybrid attention mechanism, a multi-head attention mechanism, and
spatial inverted pyramid blocks, are contained in six individual models. For the sake of
fairness in comparison, the same hyperparameters and training samples selected are used
in ablation experiments, which are introduced in Section 4.3. First, we apply the model that
contains only one spatial inverted pyramid block (SIPB), and a DR block as the baseline
named Base 0. The model of Base 1 consists of one SIPB and two DR blocks. One SIPB and
three DR blocks are included in Base 2 and Base 3. In addition, hybrid attention is embedded
in Base 3, and Base 4 is composed of 4 DR blocks, one SIPB, and hybrid attention. Base 0,
Base 1, Base 2, Base 3, and Base 4 are employed to verify the capability of multiscale network
feature extraction and the interaction with hybrid attention. The difference between Base
5 and Base 4 is that Base 5 incorporates two SIPBs to verify the validity of the SIPB. In
the proposed MHNA, there are two separate attention mechanisms: hybrid attention and
multi-head attention. Base 6 is based on Base 5 with the addition of multi-headed attention
to verify whether this attention mechanism contributes to the network’s classification
capability. The usage of modules is presented in Table 14. The results of the ablation
experiments are illustrated in Figure 17. It is clear that the classification accuracies on five
datasets are improved to varying degrees by incorporating the DB blocks, SIPBs, and the
two attention mechanisms. In detail, the OAs of the Base 1 include two DR blocks and are
improved by 1.54%, 3.68%, 0.93%, 1.20%, and 2.45% compared to Base 0, which contains
one DR block on five different datasets. Compared to Base 1, which contains two DR blocks,
the OAs of Base 2 that includes three DR blocks increased by 0.93% to 3.68%. Experimental
results show that a multiscale network can capture image features more comprehensively
to improve network performance. Compared with Base 3 and Base 5 without attention,
Base 4 with hybrid attention and Base 6 with multi-head attention both show improved
OAs on five datasets to varying degrees. This suggests that attention mechanisms play an
essential role in the MHNA. The OAs of the Base 5 include two SIPBs, which are improved
by 1.38%, 1.32%, 0.69%, 0.15%, and 0.65%, respectively, compared to Base 4 contains, which
one SIPB. This indicates that the spatial inverted pyramid network can contribute to the
proposed MHNA to capture more informative features. It can be observed that the best
classification accuracy obtained by Base 6 includes four DR blocks, two SIPBs, and attention
mechanisms on five HSI datasets, which indicates the usefulness of the modules applied in
the proposed approach.

Table 14. The Usage of modules.

Name DR1 DR2 DR3 DR4 SIPB1 SIPB2 Hybrid Attention Multi-Head Attention

Base 0
√ √

Base 1
√ √ √

Base 2
√ √ √ √

Base 3
√ √ √ √ √

Base 4
√ √ √ √ √ √

Base 5
√ √ √ √ √ √ √

Base 6
√ √ √ √ √ √ √ √
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5.4. Visualization of Attention Mechanisms on a PC Dataset

In the section, attention mechanisms are visualized as heat maps to further verify
their facilitating effect on the designed MHNA. The PC dataset is selected as an example,
and the visualized results are displayed in Figure 18. According to the input size of the
network, a feature map of 9 × 9 pixels is taken out. It is clear from Figure 18a that the
black pixels are background information and do not belong to any one category. While
HSIs contain the spectral information of each pixel in a certain band range, not every pixel
is meaningful for the classification task. Specifically, the labeled species are essential for
the classification. The attention mechanism plays a crucial role in helping the network
identify useful features and in improving its classification ability. To see it more directly,
the weight matrices as heat maps. Figure 18b,c represent the heat maps before and after
the hybrid attention is applied, respectively, and the darker the color of the pixel in the
heat map, the higher its weight. Comparing Figure 18b,c with (a), it is clear that the
weight corresponding to the key information in Figure 18b is lower, which is unfavorable
for the subsequent classification task. However, the weights of the parts containing the
landcovers in Figure 18b are increased by the hybrid attention. Therefore, the addition of a
hybrid attention is beneficial for spectral-spatial feature extraction network. The multi-head
attention is located after the fusion of two different features. As can be seen in Figure 18d,
which is a grayscale image before the multi-head attention. In Figure 18e, the values of the
weight matrix vary widely, and the one processed by multi-head attention is displayed in
Figure 18f. We can see that the attention weight matrix has less variation in values and
does not focus excessively on one part. Consequently, the multi-head attention prevents
the network from focusing too much on one part, increasing the generalization ability of
the model. In summary, both attention mechanisms, located at different locations, can
contribute to the network and help in the subsequent classification tasks.
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5.5. Analysis of the Classification Performance of the Proposed MHNA Visualized by t-SNE

T-distributed stochastic neighbor embedding (t-SNE) was jointly developed by Lau-
rens van Maaten and Geoffrey Hinton in 2008 [70]. t-SNE is considered as an effective
technique for visualizing high-dimensional data. Specifically, it can preserve the local
features of the datasets by mapping data points from high-dimensional to low-dimensional
space, which more clearly demonstrates intra-class proximity and inter-class dissimilarity.
In this section, the sample distributions of the five original datasets and the sample distri-
butions, after being processed by the MHNA, are mapped to the 2D spaces. To make the
results clearer, 400 samples from each class on the PC dataset, 260 samples from each class
on the HO dataset, and 500 samples from each on the other three datasets are selected. In
order to evaluate the classification performance of the designed MHNA, the same number
of samples are selected from the test sets of the network.

The visualization results on five HSI datasets are displayed in Figure 19. The results
of the sample distribution of the PC dataset are illustrated in Figure 17. From Figure 19a,
it is evident that C2 (Trees) overlaps with C3 (Asphalt) and C1 (Water) overlaps with
C5 (Bitumen). It indicates that there is a high degree of similarity between overlapping
different categories and it is difficult to distinguish them. The above problem is alleviated
by the proposed MHNA, as shown in Figure 19b. It suggests that the proposed method
has the ability to extract discriminative features for distinguishing similar classes. The
visualization results from the SA dataset, the LK dataset and the HO dataset are shown in
Figure 19c,e,i. As we can see, there are some samples of the same category with scattered
distribution, such as C10 (Corn) on the SA dataset; C1 (Corn), C2 (Cotton), and C8 (Roads
and houses) on the LK dataset; and C10 (Highway) and C15 (Running Track) on HO
dataset. Figure 19d,f,j are visualization results processed by MHNA; the distance between
samples of the same category is significantly reduced. This demonstrates that the proposed
MHNA can effectively reduce intra-class intervals to aggregate the samples in the same
category. Finally, the HH dataset contains a substantial number of samples of various
categories, as shown in Figure 19g. All kinds of samples are mixed together except C8
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(Pak choi), which has no obvious boundaries. The results, after being processed by the
network, are exhibited in Figure 19h, and it can be seen that the samples in the same
category are grouped together and clear boundaries appear between the different classes.
This demonstrates that the MHNA can effectively increase the inter-class distance, which
can contribute to the enhancement the classification accuracy. In summary, the MHNA
contains a spectral-spatial feature extraction network, a spatial inverted pyramid network,
and attention mechanisms, which can help the network to capture extensive spectral and
spatial features.
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5.6. Discussion of Training Times and Testing Times

In this section, the training times and testing times of all approaches are discussed
and analyzed with regard to five HSI datasets. A detailed report is displayed in Table 15.
It is apparent that the shortest training times and testing times are achieved by the SVM;
this is because there is a minimal number of parameters in the SVM. The training times
obtained by the OSDN are the shortest of all DL-based methods on the LK and HH datasets.
Because of the improved dense connection, named one-shot aggregation is implemented in
the OSDN, and the training speed of the FDSS network, which used the dense connection,
is slower than the OSDN within five datasets. This shows that one-shot aggregation is
more efficient than the dense connection in the network, which is beneficial to reduce the
training times. The SSRN and the proposed MHNA receive the shortest training times on
the PC, HO, and SA datasets, separately, because the technique called ResNet is used in the
SSRN and the proposed MHNA. This indicates that residual connections have the ability to
shorten the training process. The dual-branch structure of these methods (the DBMA, PCIA,
and SSGC), combined with attention mechanisms, have a similar computational efficiency.
The MDAN achieves the longest training times and testing times of all approaches within
the five datasets, because the MDAN is a three-branch network that contains several
dense connections. This suggests that the lengths of training times and testing times are
associated with the structure and technology applied in the network. From Table 15, it is
clearly demonstrated that the training times and testing times obtained by the proposed
method are not the shortest. This may have been caused by the dimensionality reduction
technique used only in the spatial inverted pyramid network, and because several feature
extraction blocks and feature fusion blocks are applied to the spatial inverted pyramid
network. Although these structures slightly increase the complexity of the proposed
network, the increase in classification performance is still worthwhile.

Table 15. Training times and testing times of various models in five datasets.

Model SVM SSRN FDSS DBMA DMFN PCIA MDAN MDBN SSGC OSDN MHNA

PC
Train (s) 27.63 69.60 103.94 156.31 391.81 155.18 979.75 160.88 103.70 72.49 120.27
Test (s) 1.23 27.45 24.92 34.07 45.50 44.54 439.62 71.63 41.46 41.33 51.42

SA
Train (s) 25.21 210.14 386.69 180.68 130.92 224.46 3562.48 302.06 183.92 128.53 92.33
Test (s) 1.44 17.04 21.01 21.28 26.27 26.60 802.50 52.35 29.06 30.29 33.71

LK
Train (s) 61.62 453.45 290.62 106.71 250.96 144.33 2752.99 313.72 239.29 117.39 303.13
Test (s) 6.42 69.96 138.49 95.32 115.02 118.89 2257.85 254.36 174.03 76.49 123.66

HH
Train (s) 20.03 127.12 71.96 55.39 109.90 58.59 8232.32 129.47 75.54 54.96 100.85
Test (s) 3.47 57.48 53.26 40.73 49.72 55.71 1007.42 117.33 62.42 36.59 41.36

HO
Train (s) 3.31 15.51 37.62 94.04 42.50 26.03 167.65 104.77 69.15 32.92 50.31
Test (s) 0.18 2.49 2.23 23.92 10.38 5.52 19.19 29.13 13.66 6.47 14.42
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6. Conclusions

A multiscale hybrid network with attention mechanisms is proposed in this article,
which is capable of extracting spectral and spatial features from HSI data concurrently. It
contains three components: a spectral-spatial feature extraction network, a spatial inverted
pyramid network, and a classification network. The multiscale hybrid network is employed
to increase the receptive field and preserve the shallow features of the low-level layers
in the spectral-spatial feature extraction subnetwork. The hybrid attention is used to
focus on useful features and suppress useless features. Furthermore, a spatial inverted
pyramid network is applied for extracting spatial features, which allows more informative
information to pass further. Finally, the multi-head attention in the classification network
provides multiple subspaces and helps the network to pay attention to the information from
different subspaces, compared with ten approaches on five different datasets. This indicates
that the MHNA is extremely competitive with the limited labeled samples. However,
compared to traditional methods, it remains a time-consuming and laborious model. In the
future, we plan to concentrate on simplifying the network architecture while maintaining
classification accuracy.
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