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Abstract: Adversarial example generation on Synthetic Aperture Radar (SAR) images is an important
research area that could have significant impacts on security and environmental monitoring. However,
most current adversarial attack methods on SAR images are designed for white-box situations by
end-to-end means, which are often difficult to achieve in real-world situations. This article proposes
a novel black-box targeted attack method, called Shallow-Feature Attack (SFA). Specifically, SFA
assumes that the shallow features of the model are more capable of reflecting spatial and semantic
information such as target contours and textures in the image. The proposed SFA generates ghost data
packages for input images and generates critical features by extracting gradients and feature maps at
shallow layers of the model. The feature-level loss is then constructed using the critical features from
both clean images and target images, which is combined with the end-to-end loss to form a hybrid
loss function. By fitting the critical features of the input image at specific shallow layers of the neural
network to the target critical features, our attack method generates more powerful and transferable
adversarial examples. Experimental results show that the adversarial examples generated by the
SFA attack method improved the success rate of single-model attack under a black-box scenario
by an average of 3.73%, and 4.61% after combining them with ensemble-model attack without
victim models.

Keywords: adversarial attack; deep neural network; black-box attack; targeted attack; feature-
level attack

1. Introduction

A Synthetic Aperture Radar (SAR) is a sensor that uses electromagnetic waves for
imaging, works in the microwave band, and has been developed for half a century. It has
strong information-gathering capabilities and the advantage of working around the clock
and in all weather conditions, making it an essential imaging device today. SAR Automatic
Target Recognition [1–3] (SAR-ATR) is a fundamental problem and challenge in SAR image
recognition. It is widely used in the fields of mapping, surveillance, and environmental
monitoring, and has great practical significance in military and battlefield situations. Due
to the high risk of national security applications, SAR-ATR technology needs to be not
only accurate but also highly reliable and secure. Therefore, SAR-ATR has received great
attention in the past few decades. However, similarly to optical images, SAR images are
vulnerable to adversarial attacks.

Deep neural networks (DNNs) have achieved excellent performance in many remote
sensing applications, such as object detection [4–9], image classification [10–14], and se-
mantic segmentation [15–20]. However, DNNs have been shown by Szegedy [21] to be
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vulnerable to adversarial examples. Attackers can cause machine learning algorithms to
classify images incorrectly by adding perturbations to images, which can have serious
consequences in applications such as object detection and recognition. By using carefully
crafted adversarial attack methods such as FGSM [22] and PGD [23], attackers can generate
intentionally designed perturbations in images. These perturbations are usually impercep-
tible to the human visual system but can fool DNNs, resulting in an incorrect classification
with high confidence. Undoubtedly, this phenomenon poses a threat to the security of deep
learning-based image recognition systems in practical applications.

Deploying adversarial examples in SAR-ATR is a relatively new research field. For
example, attackers can manipulate SAR images containing military facilities to hide or
distort critical information, or manipulate images of environmental disasters to mislead
rescue efforts. Existing research on adversarial attacks on SAR images mainly focuses on the
white-box attack setting. However, it is usually impossible to obtain detailed information
about the victim model in the real world. Therefore, conducting a black-box attack is more
feasible, although it is more challenging. A possible solution is to conduct a white-box
adversarial attack using a substitute model or construct an ensemble model, and then feed
the generated adversarial examples back to the victim model. However, when there are
differences in the model architecture between the training model and the victim model, the
transferability of the adversarial examples is likely to be limited.

Our work is inspired by the works of Xu et al. [24], Yosinski [25], and Wang et al. [18],
which suggest that different models may produce similar feature representations in the
shallow layers of the neural network. Xu et al.’s work [24] generated universal adversarial
perturbations based on black-box untargeted attacks, Wang et al. [26] aimed to generate
more transferable untargeted adversarial attack examples, while targeted attacks are often
more challenging, realistic and relevant. For example, in military scenarios, an attacker
may want to disrupt a specific radar detection device rather than causing misclassification.
Therefore, targeted adversarial attack research is necessary to enhance the robustness of
deep learning models and defend against targeted attacks that may exist in real-world en-
vironments. Inspired by Xu et al.’s work [24], which found common vulnerabilities among
different networks by attacking the features in the shallow layer of a given surrogate model,
we believe that, compared to more abstract deep features, shallow features often retain
more detailed spatial and semantic information of the image (such as object contours and
textures) and share similar features, even in networks of different architectures. The simi-
larity of shallow features, to some extent, promotes similar model classification decisions.
Based on the above analysis, this article aims to conduct a black-box targeted attack on
SAR images and generate adversarial examples with high transferability. In the absence
of knowledge about the victim model, attacks can be carried out on different deep neural
networks with high success rates. To better test the defensive performance and robustness
of the SAR-ATR model, this paper proposes the Shallow-Feature Attack (SFA) method.
Specifically, for a deep neural network, SFA first constructs ghost data packages using a
0–1 random mask in traditional image processing for the target and the clean image, then
chooses the first pooling layer of different networks as the feature layer in our work to
extract the aggregated gradients and feature maps of the input image at that layer, respec-
tively, to construct the critical features. From this, SFA has completed the construction of the
feature-level loss function. Next, we construct the end-to-end cross-entropy loss function
for attack by minimizing the Euclidean distance between the logits of the input image
and the target classification while maximizing the distance between the logits of the input
image and the original classification. Finally, we define the hybrid loss function of SFA
attack by combining the feature-level loss and the end-to-end loss. Through our designed
SFA method, the generation process of adversarial examples will pay more attention to
fitting the data in the specified feature space, while reducing the risk of falling into the
model-specified local optimum, thus effectively improving the attack performance as well
as transferability of adversarial examples in black-box scenarios.
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In summary, the main contributions of this paper are as follows:

1. This article proposes the SFA attack, which utilizes ghost data packages to extract
and fit critical target features that influence model decisions, to enhance the attack
effectiveness of adversarial examples under black-box scenarios.

2. Unlike existing feature-based adversarial attacks, we focus on more realistic and
challenging black-box targeted scenarios and consider the pooling layer that better
reflects spatial and semantic information in the image (such as object contours and
textures) as the target of feature-level attacks in different networks.

3. Extensive single-model and ensemble-model attacks on different classification models
show that the adversarial examples generated by our proposed SFA method have
stronger attack performance and better transferability.

The remaining structure of the paper is as follows: Section 2 mainly introduces related
work on adversarial examples. Section 3 provides a detailed explanation of our proposed
method. Section 4 presents experiments comparing the adversarial examples generated by
our method with other attack methods under single-model and ensemble-model attacks.
The conclusions and future work are presented in Section 5.

2. Related Works
2.1. Adversarial Attack in Deep Learning

For an initial clean image x with a ground-truth label of ytrue and a pre-trained model
classifier of f (·), the initial image should be correctly classified, i.e., f (x) = ytrue. When the
attacker adds a carefully designed noise δ to the initial clean image, a new image xadv is
generated, i.e., xadv = x + δ, resulting in a new classification result for the model classifier,
then f

(
xadv

)
= yadv. Here, yadv is the output classification of xadv in the model classifier

f (·), in order for the adversarial example not to affect human recognition, and the attacker
usually uses Lp norm to constrain xadv within the neighborhood of x, i.e., the allowed

adversarial perturbation should be less than a threshold value ε that
∣∣∣∣∣∣xadv − x

∣∣∣∣∣∣
p
≤ ε,

where p = 0, 1, 2 or ∞. Depending on the different attack objectives, two attack methods
can be introduced: if yadv 6= ytrue, then xadv is called a untargeted adversarial example; if
the attacker wishes the model to classify xadv as a specified target ytar, and if yadv = ytrue,
then xadv is called a targeted adversarial example.

Moreover, according to different threat models, adversarial attacks can also be clas-
sified as white-box attack, gray-box attack [27], and black-box attack. White-box attacks
refer to attackers who have complete access to the internal structure, parameters, and even
the training data distribution of the model. Attackers can probe vulnerable feature spaces
of the model with available information and can achieve high success rates. This is a very
strong adversarial attack. Gray-box attacks refer to attackers who only know everything
about the model except for the model parameters, such as structure, hyperparameters,
training data, etc., which is equivalent to having complete information about an untrained
target model. Black-box attacks refer to attackers who are unfamiliar with the model and
have no access to the internal information of the model, and they can only get information
about the model input and output.

2.2. White-Box Attack Method

Gradient-based adversarial example generation methods are a commonly used white-
box attack method, which mainly involves using the model loss function to calculate the
gradient of the input image, and updating the image through back-propagation to generate
adversarial examples. This section will focus on several gradient-based attack methods.

Goodfellow et al. [22] believed that linear features in high-dimensional space were
sufficient to generate adversarial examples, and proposed a single-step gradient-based
method called fast gradient sign method (FGSM) that only calculates the gradient for one
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time, and amplifies the adversarial noise linearly in the direction of the obtained gradient
using the sign function. FGSM can be expressed as:

xadv = x + ε·sign(∇x J(x, y)), (1)

where sign(·) is the sign function, J(·) is the loss function, ∇x is the partial derivative of x
and the obtained adversarial example perturbation satisfies the norm distance constraint.
The prominent advantage of FGSM is that it has a low computational cost, but its white-box
attack success rate is not high, and its black-box transfer attack success rate is even lower.

Kurakin et al. [28] transformed FGSM to an iterative version named iterative fast
gradient sign method (I-FGSM) with a smaller step size for iterative attack. It can be
expressed as:

xadv
t+1 = Clipxadv

t

{
xadv

t + α·sign·∇xadv
t

J
(

xadv
t , y

)}
, (2)

where t is the number of iterations, xadv
t indicates the adversarial example generated in

the t-th iteration and α is the step size. In the white-box attack scenario, I-FGSM performs
better than FGSM, but its transfer attack success rate is lower.

Momentum iterative fast gradient sign method (MI-FGSM) [29] combines the momen-
tum term with I-FGSM in order to stabilize the update direction, overcome the drawback
of falling into local maximum values, alleviate the overfitting problem, and significantly
improve the success rate of adversarial examples. MI-FGSM can be expressed as:

gt+1 = µ·gt +
∇xadv

t
J
(

xadv
t , y

)
∣∣∣∇xadv

t
J
(
xadv

t , y
)∣∣∣

1

, (3)

xadv
t+1 = Clipxadv

t

{
xadv

t + α·sign(gt+1)
}

, (4)

where gt is the accumulated gradient vector of the loss with a momentum factor µ. Subsequent
work replaced MI-FGSM with the Nesterov optimization algorithm [30] to accelerate the
gradient. MI can also be combined with DI [31] and TI [32] to form more powerful attacks.

2.3. Black-Box Attack Methods

Black-box attacks are usually divided into transfer-based attacks and query-based
attacks. The transfer-based attack idea stems from the transferability of adversarial exam-
ples [21]. Adversarial examples generated by attacking a specific white-box model can also
be used to attack another black-box model that performs the same task. Transfer-based
attack does not rely on internal information of the target model. Instead, they train alternate
models that have similar decision boundaries to the target model using the same or similar
training data [33], and then generate adversarial examples using white-box attacks on the
alternate models. Finally, they use the cross-model transferability of adversarial examples
to attack the target model. Zhou et al. and Huang et al. found that attacks on the interme-
diate layers of the model are more powerful than attacks on the predicted logits [34,35].
Chen et al. [36] proposed conducting adversarial attacks on the attention maps of input
images, which can achieve better results. Peng et al. [37] proposed the SVA attack, which
consists of two major modules, an iterative gradient-based perturbation generator and a
target region extractor, that can generate more transferable adversarial examples. Deep-
fool [38] is a transfer-based adversarial attack algorithm that aims to generate minimal
perturbations to an input sample in order to mislead a neural network model. The ensemble-
based method is a typical transfer-based attack method. The ensemble-based method [39]
applies the idea of ensemble to adversarial example generation. It combines the logits (i.e.,
the output of the fully connected layer) of multiple pre-trained models, i.e., it combines the
predicted values of multiple models, so that the generated adversarial examples can better



Remote Sens. 2023, 15, 2699 5 of 23

break the decision boundary of the target model and improve the attack success rate. The
expression of the ensemble logits is:

f (xadv) = ∑K
k=1 ωk· fk(xadv), (5)

where fk(xadv) is the logit of the kth model for the adversarial example xadv during the attack
process, and ωk is the model weight coefficient, ωk ≥ 0 and ∑K

k=1 ωk = 1. Ensemble-based
attack can be combined with methods such as FGSM, I-FGSM, MI-, NI-, etc.

Query-based attacks first add initial perturbations to images, and then continuously
adjust the pixel values of adversarial examples by directly querying the output of the target
model until convergence or the maximum iteration number is reached. Due to the need
for a large number of queries, the computational cost is high, which is not conducive to
generating a large number of adversarial examples. Query-based attacks pay more attention
to controlling the perturbation of a single adversarial example and can further be divided
into score-based attacks [40,41] and decision-based attacks [42]. The difference between
the two lies in the fact that for the former, the target model sequentially outputs multiple
predicted class labels and corresponding scores, and the attack can use the predicted scores,
while for the latter, the target model only outputs the final decision class label and does not
provide predicted scores, such as only the top-1 classification result without probabilities.

2.4. Feature-Level ATTACK methods

Zhou et al. [35] first proved that maximizing the feature distance between input images
and their adversarial examples in the intermediate layer can enhance the transferability of
images. Huang et al. [36] fine-tuned existing adversarial examples and added perturbations
to the specified layer of the source model to achieve higher transferability. Ganeshan
et al. [43] proposed a principled paradigm to disrupt feature representations for higher
transferability. Xu et al. [24] analyzed the universal adversarial examples in remote sensing
images for the first time, generating universal adversarial perturbations based on black-box
untargeted attacks named Mixup-Attack. Our proposed method belongs to the category
of attacking the internal features of the model, as well. This feature of our method lies in
separating the image features in the model into critical features which play an important
role in the model decision and model-specified features, which enhances the dominant
features of the model decision in different models and suppresses the specific features that
are prone to causing the model to fall into unique local optima.

2.5. Adversarial Attack on SAR Images

Existing studies on adversarial example generation methods are mostly limited to
optical images, with only a few studies attempting to generate adversarial examples on
SAR images [33,44–52]. In these studies, DNN-based SAR-ATR has been shown to be very
vulnerable to small perturbations, and adversarial attacks can effectively manipulate SAR
images. Meng et al. [44] proposed a local SAR-ATR adversarial deception algorithm that
utilizes the Gabor feature-based texture segmentation (GFTS) method to extract the mask
of the target area in SAR images. The mask is then introduced as a parameter into the loss
function of the perturbation generator, thereby aggregating the adversarial perturbations of
SAR samples into the target area. Zhang et al. [45] proposed a novel SAR-ATR adversarial
deception algorithm that fully considers the characteristics of SAR data. The excellent
performance of the algorithm was evaluated using four metrics: fooling rate, confidence
score, structural similarity index (SSIM), and number of disturbed pixels (NDP). The two
articles mentioned above are undoubtedly excellent achievements, playing a crucial role
in the research of SAR image adversarial attacks. Our article mainly focuses on black-
box targeted attacks. The SFA method proposed in our article pays more attention to
the design of the loss function at the feature level compared to the above two methods.
Czaja et al. [46] were the first to reveal the existence of adversarial examples in remote
sensing image classification tasks. Their experiments showed that applying small adver-
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sarial perturbations to remote sensing images can fool deep learning models into making
incorrect classifications. Based on optical and SAR images, Chen et al. [47] conducted
empirical research on adversarial examples in scene classification. They observed an in-
teresting phenomenon that the adversarial examples produced on SAR images often have
higher transferability across different models than those on optical images, indicating that
SAR-ATR models are more vulnerable to adversarial attack. Xu et al. [48] further discovered
the existence of adversarial examples in hyperspectral imaging. Their experiments showed
that adversarial attacks can successfully change the spectral reflection characteristics of ad-
versarial hyperspectral examples. Li et al. [49] comprehensively evaluated the adversarial
vulnerabilities in SAR scene classification and target recognition tasks using existing optical
attack methods, such as fast gradient sign method (FGSM), Carlini and Wagner (C&W) [53],
and Deepfool [38], demonstrating that the prediction class of SAR adversarial images is
highly concentrated. Du et al. [54] designed an accelerated C&W method to balance time
consumption and attack capability. Wang et al. [26] proposed a feature aggregated gradi-
ent based on the feature selection method, which selected the features that maximize the
attack effect.

Due to the relatively limited existing work on generating adversarial examples for
SAR images and the lack of relevant work on targeted black-box scenarios, this paper
intends to use the four methods mentioned above, which have related research on SAR
images, as baseline methods. Table 1 classifies the four attack methods mentioned above.

Table 1. Mainstream adversarial attack algorithms. These attack methods mainly target digital scenes
and conduct attacks in a human-imperceptible form.

Attack
Method Threat Model Target Algorithm

FGSM [22] white-box untargeted gradient-based
I-FGSM [28] white-box untargeted gradient-based

MI-FGSM [29] white-box untargeted gradient-based
Ens-Attack [39] black-box / gradient-based

SVA [37] black-box untargeted transfer-based
Mixup-Attack [24] black-box untargeted feature-based

Deepfool [38] black-box / transfer-based

3. Methods

DNNs tend to extract semantic features which have discriminative ability for target
awareness, effectively helping the model to improve classification accuracy. In theory, if
all target-aware features that can affect model decisions in the input image are similar to
the target class, it is easier for us to generate adversarial examples of the specified class.
However, different networks may have different data features in the solution space for the
same data domain, indicating the existence of specific feature representations of the model.
However, existing adversarial attacks often only consider making the model misjudge
by modifying gradients at the decision layer of the model, attacking images end-to-end
indiscriminately. Such attacks may not always be successful, when facing complex black-
box scenarios, their attack effects are often unsatisfactory, and they are easily trapped in
model-specified local optima, greatly reducing the transferability of adversarial examples.
Therefore, avoiding falling into such local optima is a key to improving the transferability
of adversarial examples.

3.1. Overview

Based on this, this article proposes the SFA attack algorithm, and the flowchart of our
attack method is shown in Figure 1.
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Figure 1. Flowchart of SFA algorithm.

The following is a brief introduction to our algorithm: first, the proposed SFA uses a
0-1 random mask to construct ghost data packages for the input image and target image
(BTR_60 is set as our target label), and then perform gradient back-propagation in the model
for the ground-truth class of the ghost data package, and intercept the back-propagated
gradient at the first pooling layer to construct the aggregated gradient. SFA performs the
dot product of the aggregated gradient with the feature map of the input data forward
propagated at the first pooling layer to obtain the critical features of the input image for the
model. In theory, if we can enable the critical features of the input image to fit the critical
features of the target image, we can promote the model to classify the input image towards
the target class, thus determining the loss function for feature-level attack. Additionally,
SFA constructs an end-to-end loss function for the input image logits at the softmax layer of
the model with respect to both the ground-truth class of the image and the target class we
specify for end-to-end attack. The loss function proposed by our SFA method is obtained
by adding the feature-level loss function and the end-to-end loss function.

In Sections 3.2 and 3.3, we will respectively discuss the two types of loss functions
in detail.

3.2. Loss Function for Feature-Level Attacks

A good image recognition algorithm should be able to effectively extract target features
and quickly locate new targets. Since different neural networks preserve more detailed
semantic information (such as object contours and textures) in the shallow feature space
and share similar features in different networks, these shallow feature spaces may contain
more critical features that can affect the model’s final decision. Considering that the
importance of features is proportional to their contribution to the final decision, we hope to
generate more powerful adversarial examples by attacking the features extracted by the
shallow part of the neural network at the feature level. For targeted attack, we hope to
enable the features extracted by clean examples in the shallow feature space of the deep
neural network to fit the features extracted by examples towards the target class in the
neural network.

However, as shown in Figure 2, we found that the raw feature maps extracted by
the neural network in the shallow layers have noise in the visual sense, with noises and
large gradients in non-object regions, which may be caused by the solution space of a
specified model. In order to accurately extract the features that are truly critical factors
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for the model’s classification, rather than redundant and specific model features, we use
the dot product of the feature map extracted for the specified layer and the gradient back-
propagated to the specified layer to obtain the aggregated feature of that layer. Assuming
that the input of the model is x, and the output of the first pooling layer is a f p(x), the
output features propagated forward to the first pooling layer of the model are

f f p(x) = a f p(x) (6)

Figure 2. From left to right are the original image of BTR-60 and its feature maps extracted from the
first pooling layer of AlexNet, DenseNet121, RegNet_x_400mf, and ResNet18.

Let L be the loss function, ω
f p
ij be the weight from the i-th neuron of the first pooling

layer to the j-th neuron of the next layer, b f p
i be the bias of the i-th neuron of the first pooling

layer, a f p
i be the activation value of the i-th neuron of the first pooling layer, and z f p

i be the
weighted output of the i-th neuron of the first pooling layer. According to the chain rule,
we have:

∂L

∂a f p
i

= ∑
np+1
j=1

∂L

∂zp+1
j

∂zp+1
j

∂a f p
i

, (7)

where zp+1
j is the weighted output of the j-th neuron in the next layer of the first pooling

layer, np+1 is the number of neurons in the next layer of the first pooling layer. According
to the definition of a neuron, we can obtain:

zp+1
j = ∑ f p

i=1 ω
f p
ij a f p

i + b f p
j (8)

Therefore, there are:
∂zp+1

∂a f p
i

= ω
f p
ij (9)

Substituting (9) into (7) we have:

∂L

∂a f p
i

= ∑
np+1
j=1

∂L

∂zp+1
j

ω
f p
ij (10)

Next, by deriving ∂L
∂ω

f p
ij

from ∂L
∂zp+1

j

, we can obtain:

∂L

∂ω
f p
ij

=
∂L

∂zp+1
j

∂zp+1
j

∂ω
f p
ij

(11)

Similarly, according to the definition of a neuron, we can obtain:

∂zp+1
j

∂ω
f p
ij

= a f p
i (12)
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Thus, it is possible to obtain:

∂L

∂ω
f p
ij

=
∂L

∂zp+1
j

a f p
i (13)

In summary, we can obtain the gradient of the model back-propagation to the first
pooling layer.

∂L

∂a f p
i

= ∑
np+1
j=1

∂L

∂zp+1
j

ω
f p
ij , (14)

∂L

∂ω
f p
ij

=
∂L

∂zp+1
j

a f p
i , (15)

where ∂L
∂zp+1

j

can be calculated using the gradient of the previous layer ∂L
∂z f p

j

and the derivative

of the activation function. Then there is:

∇ f px =
∂L

∂a f p
i

, (16)

where ∇ f px denotes the gradient of the model back-propagated to the first pooling layer.
As shown in Figure 3, in this paper, SFA uses a random 0–1 mask with a probability

of p to perform image enhancement on the input image to form a ghost data package.
Assuming that the ghost data package generated for each input image contains N images,
the aggregated gradient of the N images can be represented by the following equation:

∇ f px =
1
N ∑N

n=1∇ f px�Mn
p , Mn

p ∼ Bernoulli(1− p), (17)

where Mn
p denotes the random mask operation performed on the n-th image in the ghost

data package, and � represents the vector dot product.

Figure 3. The process of generating ghost data packages through 0–1 random mask of input data.

To improve numerical stability and facilitate model training, we apply an L2 norm
constraint to the aggregated gradients calculated in the SFA attack. By taking the dot
product with the feature maps output by the first pooling layer, we calculate the critical
features that have the strongest influence on the model decision for the target class in the
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current neural network. Let F represent the critical feature of the input image by the model
at the first pooling layer, then we have:

F = f f p(x)·
∣∣∣|∇ f px|

∣∣∣
2

(18)

Thus, we have implemented an approximate transformation of the image that distorts
the details of the image, blurs the unique features of the model, but preserves the spatial
structure and general texture of the image. Since the critical features of the semantic target
are robust to this type of transformation, while the specific features of the model may
be easily affected, those robust and transferable critical features will be highlighted after
aggregation, while others will be weakened.

As shown in Figure 4, to enable the model to successfully misclassify the adversarial
examples towards the target label by our method, SFA constructs ghost data packages
for the input clean image and the target image, and computes their critical features in the
classification model. We ensure that the critical features extracted from the clean image
fit the critical features extracted from the target label in the same network. Therefore, we
construct the first feature-level loss function: the KL loss. Let LKL represent the KL loss,
Ftar represent the critical features of the target class, Fadv represent the critical features of
the input data, and X represent the set of points on the image. By normalizing the two
features and converting them into approximate probability distributions, we can obtain the
following expression:

LKL = ∑
x∈X

Fadv(x)·log
Fadv(x)
Ftar(x)

(19)

Figure 4. Critical feature loss process.

3.3. Loss Function for End-to-End Level Attacks

For a targeted attack, we want the output logits of the adversarial example to achieve
the maximum value for the targeted class in the deep neural network. Let fθ(x) denote the
output of the input image x in the model f , where θ represents the model parameter, ytrue is
the ground-truth label of x, and ytar denotes the target class we want to classify. Therefore,
we need to minimize the Euclidean distance between the output logits and the target class,
which can be expressed as follows:

Ltar = min
{∣∣| fθ(x)− ytar|

∣∣
2

}
(20)
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At the same time, we hope to promote data crossing the decision boundary by making
the output logits far from the ground-truth label of the image. That is, we maximize the
Euclidean distance between the output logits and the ground-truth label, which can be
expressed as follows:

Ltrue = max
{∣∣| fθ(x)− ytrue|

∣∣
2

}
(21)

From this, we construct the loss function for the end-to-end level attack as follows:

L
(

x, ytrue, ytar, θ
)
= max

{∣∣| fθ(x)− ytrue|
∣∣
2 −

∣∣| fθ(x)− ytar|
∣∣
2

}
, (22)

Lce = L
(

x, ytrue, ytar, θ
)

(23)

where the Euclidean distances of the output logits to both the ground-truth class and the
target class are constrained by the L2 norm.

3.4. Total Loss Function

From Sections 3.2 and 3.3, our total loss function is designed as

Ltotal = LKL + Lce (24)

It should be emphasized that our proposed SFA attack method defaults to a single-step
iterative attack. However, similar to iterative methods such as I-FGSM and MI-FGSM,
SFA can perform multi-step iterations or add momentum terms to form a more powerful
attack. Furthermore, similar to ensemble model attacks, SFA can also be trained on multiple
models to further improve the transferability of adversarial examples. Compared with
the default SFA single-step iterative attack, after increasing the number of iterations, our
SFA method can more accurately and in real-time capture critical features to achieve better
attack effects. Below is the pseudocode for the Ens-I-SFA algorithm of multi-step iterative
SFA under ensemble model (Algorithm 1).

Algorithm 1: Ens-I-SFA

Input: -An Ensemble Model fθ ,
-A clean image x and its ground-truth label ytrue,
-An image of target label ytar,
-Step size α,
-Random mask probability p,
-Number of iteration N

Output: The adversarial image xadv

1: for n = 0 to N-1 do
2: Obtain critical features

∇ f px = 1
N ∑N

n=1∇ f px�Mn
p , Mn

p ∼ Bernoulli(1− p)

F = f f p(x)·
∣∣∣∣∣∣∇ f px

∣∣∣∣∣∣
2

3: Construct feature-level loss:
LKL = ∑x∈X Fadv(x)·log Fadv(x)

Ftar(x)
4: Construct end-to-end-level loss:

Lce = max
{∣∣∣∣ fθ(x)− ytrue

∣∣∣∣
2 −

∣∣∣∣ fθ(x)− ytar
∣∣∣∣

2

}
5: Construct hybrid loss:

Ltotal = LKL + Lce
6: Update x by iterative fast gradient sign method:

xadv
n+1 = Clipxadv

n

{
xadv

n + α·sign·∇xadv
n

Ltotal

}
7: end for
8: return xadv
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4. Experiments and Results
4.1. Experimental Preparation

We conducted model training and adversarial example generation on the MSTAR
dataset, which is a dataset for Synthetic Aperture Radar Automatic Target Recognition
(SAR-ATR) research launched by the Defense Advanced Research Projects Agency (DARPA)
of the United States in 1998. The MSTAR dataset contains 10 different types of targets,
namely: a 2S1 self-propelled howitzer, BMP2 armored infantry fighting vehicle, BRDM_2 re-
connaissance patrol car, BTR_60 light transport vehicle, BTR_70 light transport vehicle,
D7 bulldozer, T62 main battle tank, T72 main battle tank, ZIL131 truck, and a ZSU_23_4 self-
propelled anti-aircraft gun, covering a variety of shapes, sizes, poses, and materials. SAR
images in the MSTAR dataset were obtained under different weather and lighting condi-
tions, which puts higher requirements on the robustness and generalization ability of target
recognition algorithms. The MSTAR dataset contains thousands of SAR images, most of
which are used for training and a small percentage of which are for testing. Each image
contains a target and corresponding true annotation information, including the category,
position, size, and pose of the target, etc. The MSTAR dataset has become a classic dataset in
the field of target recognition and is widely used for algorithm evaluation and comparison.
In the data preprocessing stage, we resized all images to 256*256 and normalized them.

For model selection, we used twelve typical SAR-ATR models. As shown in Table 2,
all models achieved recognition accuracy of over 96% on the MSTAR dataset.

Table 2. Models used in our experiment with their test accuracy on MSTAR dataset.

Model Accuracy

AlexNet [55] 96.3
ResNet18 [56] 96.8
ResNet50 [56] 96.4

ResNet101 [56] 97.5
DenseNet121 [57] 97.8
DenseNet169 [57] 97.9
DenseNet201 [57] 97.9

RegNetX_400MF [58] 98.3
VGG11 [59] 98.1
VGG16 [59] 97.8
VGG19 [59] 98.0

Inception-v3 [60] 98.1

4.2. Experiment Setup

From the tactical and strategic value of the target, BTR-60 and BTR-70 armored vehicles
are usually used for transportation and support operations. Compared with other target
classes, their combat power and strategic value are relatively low. Therefore, in this paper,
the target attack will cause the sensor to identify the target as BTR-60. In our experiment,
we define a successful attack as the target classifier misclassifying the adversarial examples
generated from the source neural network as BTR-60. For the number of ghost data
packages, we refer to the work of Wang et al. [26] and set it to 30. We used gradient-based
attack methods (FGSM, I-FGSM, MI-FGSM) and transfer-based attack methods such as
SVA, as well as its variants, Deepfool and Ensemble-Attack as the baseline method for
this experiment.

Considering the low resolution of the images in the MSTAR dataset and the possibility
of less semantic information contained, we set the size of the perturbation ball ε to 1 in
our work. For attacks other than FGSM, SFA and SVA, the number of iterations N is set
to 5. The step size α is set to 1 for all attack methods, and for MI-FGSM, MI-SVA and
MI-SFA, the momentum decay µ is set to 0.5. For Deepfool, overshoot was set to be 0.02.
Our experiments were performed on a server with the Ubuntu 20.04 operating system,
Intel Xeon CPU E5-2609, and eight NVIDIA GTX 1080Ti, using Pytorch.
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4.3. Single-Model Attack Experiments

We conducted single-model attack experiments on four typical SAR-ATR models,
namely AlexNet [55], ResNet18 [56], DenseNet121 [57], and RegNetX_400MF [58]. The
baseline methods used were FGSM, I-FGSM, and MI-FGSM, while the comparative methods
were SFA, I-SFA, and MI-SFA. We tested the models on eight SOTA SAR-ATR models,
including ResNet50 [56], ResNet101 [56], DenseNet169 [57], DenseNet201 [57], VGG11 [59],
VGG16 [59], VGG19 [59], and Inception-v3 [60]. The experimental results are shown in
Tables 3–6. Each group of three rows in the table corresponds to the success rates of attacks
by SFA or its variants and the corresponding baseline FGSM and SVA methods, with the
best results highlighted in bold.

Table 3. Success rate on different DNNs by different attack methods trained on AlexNet.

Surrogate: AlexNet Target Model
Total

Attack Res-50 Res-101 VGG11 VGG16 VGG19 Dense-169 Dense-201 Inc-v3

FGSM 3.96 3.07 4.24 3.22 3.35 3.42 2.80 2.33 26.39
SVA 4.54 3.59 4.97 3.96 4.03 4.14 3.33 3.02 31.58
SFA 4.99 4.04 5.71 5.17 4.03 6.38 4.48 1.35 36.15

I-FGSM 4.06 3.48 4.44 3.90 3.01 3.09 3.48 2.68 28.14
I-SVA 5.21 4.75 5.02 5.22 4.60 3.95 4.04 3.51 36.30
I- SFA 9.77 7.79 10.98 7.40 9.36 6.11 7.47 4.69 63.57

MI-FGSM 5.12 3.54 4.51 3.89 2.94 4.02 3.54 3.06 30.62
MI-SVA 6.58 5.23 5.91 5.26 4.41 5.34 4.86 4.14 41.73
MI-SFA 11.12 5.44 7.85 5.37 6.53 5.70 5.08 4.00 51.09

Deepfool 1.60 1.27 1.76 1.40 1.39 1.46 1.18 1.07 11.13

Table 4. Success rate on different DNNs by different attack methods trained on ResNet18.

Surrogate: ResNet18 Target Model
Total

Attack Res-50 Res-101 VGG11 VGG16 VGG19 Dense-169 Dense-201 Inc-v3

FGSM 3.69 2.94 3.28 3.14 3.28 3.35 1.85 0.34 21.87
SVA 5.02 4.23 4.74 4.67 4.66 4.36 2.77 1.30 31.75
SFA 8.93 7.33 7.80 9.50 6.11 3.43 2.73 2.86 48.69

I-FGSM 3.95 3.14 3.42 3.21 3.21 3.14 1.93 1.03 23.25
I-SVA 5.61 4.31 4.65 4.29 4.68 4.02 2.86 2.14 32.56
I- SFA 10.62 9.85 8.95 9.27 5.58 2.40 2.31 6.09 55.07

MI-FGSM 4.83 4.48 4.58 4.60 4.24 4.51 2.04 1.76 31.04
MI-SVA 6.60 6.01 5.64 6.02 5.40 5.63 3.26 2.99 41.55
MI-SFA 7.71 7.22 10.63 9.80 7.99 5.61 6.15 6.55 61.66

Deepfool 1.77 1.49 1.67 1.65 1.65 1.54 0.98 0.46 11.21

Table 5. Success rate on different DNNs by different attack methods trained on DenseNet121.

Surrogate: DenseNet121 Target Model
Total

Attack Res-50 Res-101 VGG11 VGG16 VGG19 Dense-169 Dense-201 Inc-v3

FGSM 3.42 2.67 3.35 3.08 3.08 2.46 1.78 0.89 17.65
SVA 4.41 4.08 5.08 4.77 4.60 3.51 2.50 1.66 30.61
SFA 4.01 3.34 5.61 5.97 4.17 6.77 4.16 2.45 36.48

I-FGSM 1.16 0.55 3.28 3.14 3.08 2.49 2.03 1.23 16.96
I-SVA 2.44 2.15 4.68 4.41 4.37 3.42 2.86 2.36 26.69
I- SFA 1.12 4.44 8.52 8.04 7.51 6.37 4.09 5.41 45.50

MI-FGSM 1.40 0.57 3.45 3.42 2.99 2.68 2.10 1.03 17.64
MI-SVA 2.95 2.45 4.89 4.79 4.49 3.82 3.37 2.35 29.02
MI-SFA 5.47 4.02 5.33 7.25 5.51 4.35 2.05 3.61 37.59

Deepfool 1.56 1.44 1.79 1.68 1.62 1.24 0.88 0.59 9.18
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Table 6. Success rate on different DNNs by different attack methods trained on RegNetX_400MF.

Surrogate:
RegNetX_400MF Target Model

Total
Attack Res-50 Res-101 VGG11 VGG16 VGG19 Dense-169 Dense-201 Inc-v3

FGSM 3.35 3.08 3.14 3.08 3.21 3.21 3.01 1.85 24.04
SVA 4.40 4.20 4.83 4.45 4.76 4.33 3.66 2.55 33.18
SFA 3.58 2.94 8.33 6.82 3.63 5.29 4.54 5.96 41.09

I-FGSM 3.35 3.21 3.28 3.08 3.28 3.08 3.14 1.57 23.99
I-SVA 5.07 4.54 4.37 4.75 4.70 4.02 3.82 2.33 33.60
I- SFA 5.38 5.88 7.13 5.55 4.86 2.49 2.26 2.38 35.84

MI-FGSM 4.43 4.35 4.65 4.26 4.31 4.27 4.03 2.78 33.08
MI-SVA 5.93 5.78 5.71 5.64 5.34 5.24 5.16 4.21 43.01
MI-SFA 8.74 5.51 9.06 8.56 8.65 7.44 7.46 7.56 62.98

Deepfool 1.55 1.48 1.71 1.57 1.68 1.53 1.29 0.90 11.71

It can be seen from Tables 3–6 that in almost all black-box scenarios where the substitute
models are different from the target models, the performance of the proposed SFA method
is better than the corresponding baseline methods. Taking the results pertaining to AlexNet-
ResNet50 (the former is the substitute model and the latter is the target model) as an
example, the success rate of MI-FGSM is about 5.12%, the MI-SVA is about 6.58% while
the success rate of MI-SFA is 11.12%, exceeding by 6% to MI-FGSM and 4.54% to MI-SVA.
These results indicate that the SFA method proposed in this paper can generate targeted
adversarial examples with strong transferability to different target models.

At the same time, it can be seen from the horizontal comparison of Tables 3–6 that the
SFA algorithm generates adversarial examples attacking deep models relatively easily using
shallow models as substitute models, and the performance of the generated adversarial
examples also improves more. On the other hand, SFA has relatively more difficulty
in generating adversarial examples attacking shallow models using deep models. We
speculate that this is because deep models usually have more complex structures and
more parameters, and are more sensitive to gradient changes caused by feature loss in
high-dimensional linear space. Therefore, we believe that the reason for the success rate of
the conventional baseline methods in adversarial attacks is that the adversarial examples
are trapped in model-specific local optima. However, through the influence of feature-level
loss on gradients in our SFA algorithm, the adversarial examples can effectively escape
local optima and cross decision boundaries. Furthermore, it can be seen that although
SFA and the baseline methods compared are all transfer-based attack methods, the attack
effectiveness of the FGSM-based approach (SFA, SVA) is significantly higher than Deepfool.

In addition, from the vertical comparison within Tables 3–6, we can see that the SFA
algorithm proposed by us has a greater improvement in multiple iterations of adversarial
attacks than in single iterations (i.e., FGSM, SVA and SFA). We speculate that this is because
in each round of iteration, we reconstruct ghost data packages and calculate the critical
features of the current adversarial image based on the adversarial image generated in
the last round of iteration. Therefore, we can accurately incorporate the feature-level
constraints into the loss function when modifying the gradient of the adversarial example
in each round of iteration, which ensures a higher likelihood of our adversarial examples
escaping the specific local optimum of the model.

According to statistics, we have performed an operation of summing up and taking
the average of the differences between the success rates of the adversarial examples gen-
erated by SFA, I-SFA, and MI-SFA trained on four substitute models (AlexNet, ResNet18,
DenseNet121, and RegNetX_400MF) and the corresponding baseline methods (FGSM,
I-FGSM, MI-FGSM, SVA, I-SVA, and MI-SVA) under different target models. Based on this,
we have drawn the following conclusions: the attack success rate of targeted adversarial
examples generated by the SFA algorithm under single-model attacks has increased by an
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average of 3.73% compared to the corresponding baseline FGSM methods and an average
of 1.71% compared to the SVA methods.

4.4. Multi-Model Attack Experiments

In this section, we constructed an ensemble model consisting of AlexNet, ResNet18,
DenseNet121, and RegNetX_400MF, and conducted attacks on ResNet50, ResNet101,
DenseNet169, DenseNet201, VGG11, VGG16, VGG19, and Inception-v3, respectively. The
attack results are shown in Table 7.

Table 7. Success rate on different DNNs by different attack methods trained on ensemble model.

Ensemble Model Target Model
Total

Attack Res-50 Res-101 VGG11 VGG16 VGG19 Dense-169 Dense-201 Inc-v3

FGSM 3.42 3.08 3.14 3.08 3.21 3.28 3.01 1.35 23.57
SVA 4.91 3.95 5.10 4.60 5.01 3.91 3.70 2.45 33.63
SFA 5.18 4.60 6.25 6.01 5.86 5.23 4.31 3.26 40.70

I-FGSM 4.60 4.13 4.61 4.33 4.15 3.95 3.65 2.63 32.05
I-SVA 6.77 6.03 6.50 5.88 5.26 4.92 4.20 3.79 43.35
I- SFA 6.93 6.21 9.01 8.51 7.82 7.79 6.28 5.34 57.89

MI-FGSM 4.95 4.23 5.30 5.04 4.62 4.87 3.93 3.16 36.10
MI-SVA 6.60 6.08 7.23 6.88 5.83 5.39 4.47 4.06 46.54
MI-SFA 8.82 6.60 9.60 8.69 7.76 8.69 8.01 7.32 66.49

Deepfool 1.73 1.40 1.80 1.62 1.77 1.38 1.31 0.87 11.88

From Table 7, it can be seen that the SFA method based on the ensemble model
generates adversarial examples and is compared with the corresponding baseline FGSM
and SVA methods. Similarly, we calculated the attack success rates of SFA, I-SFA, and
MI-SFA under different target models in the ensemble model, and compared them with the
corresponding baseline methods. The average attack success rate of the ensemble model
was found to be increased by 4.61% compared to the corresponding FGSM method, and by
1.26% compared to the corresponding SVA method. Compared with single-model attacks,
the average success rate of adversarial examples generated by the SFA method based on the
ensemble model is about 0.88% higher. We speculate that this is because the four models
participating in the ensemble model have strengthened the important features that reflect
the target information and promote model decisions at the feature level, while the features
that reflect the characteristics of each model have naturally been weakened.

However, our ensemble attack did not show significant improvement compared to
single-model attacks, and we think this is because ensemble model attacks, as a method
of transfer learning, construct the loss function by obtaining the logits of different models
and weighting them. Due to the nature of black-box scenarios, it is impossible to know the
parameters of the target model. Therefore, existing work often seeks to improve the success
rate of ensemble attacks by increasing the number or types of models in the ensemble.
However, ensemble model attacks face an unavoidable problem: if the number of models
in the ensemble is too large or the model pool does not include the victim model, the
generated adversarial examples often have poor transferability to the victim model. In
traditional ensemble model attacks, the models included in the ensemble model often
include the victim model, while in our experiment, the four models participating in the
ensemble model are not in the victim model pool.

4.5. Hyperparametric Research

In this section, we mainly discuss some hyperparameters on the performance of our
method. First, we conducted a study on the impact of the proportion p of the 0-1 random
mask on the ghost data packages on the attack performance of the SFA method.

As a product of using 0-1 random masks to enhance images, the ghost data package
should reflect more significant and critical features of the input images for the model.
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If the value of p is too large, such as p = 1, the image becomes blank and no longer
contains any information. If the value of p is too small, such as p = 0, the image does
not change at all. Therefore, we hope to obtain empirical data on the value of p as a
support for future research. Based on the SFA basic attack method and ResNet18 as the
substitute model, we used ResNet50, ResNet101, VGG11, VGG16, VGG19, DenseNet169,
DenseNet201, and Inception-v3 as the victim models to evaluate the attack performance
of different values of p. We believe that the value of p cannot exceed 0.5. Therefore, we
conducted comparative experiments with p values of 0.1, 0.2, 0.3, 0.4, and 0.5, and the
experimental results are shown in Figure 5.

Figure 5. Attack success rates on ResNet18 with different 0–1 random mask rate p against 8 test
models using SFA.

From Figure 5, when p = 0.1, the ghost data package almost does not mask the pixels
in the image, and the image enhancement effect is invalid in this case. When p = 0.5, the
attack success rate is the lowest, and the attack effect is even worse than when p = 0.1. We
speculate that a value of p that is too large will destroy the important structural information
of the image, making it impossible to extract critical features of the input image fully at
the feature level, thus causing the input image to learn “false features”. When p = 0.3 and
p = 0.4, the attack success rate is basically the highest. Therefore, in our experiments in
this paper, we set the probability of the 0–1 random mask to p = 0.3.

At the same time, the weights of feature-level loss and end-to-end loss in SAR ad-
versarial training also need to be studied. From Tables 3–6, it can be seen that the attack
success rate improvement of SFA and its variants is more significant when the target model
is from the VGG series. However, when the target model is from the DenseNet series or
Inception-v3, the attack success rate improvement of SFA and its variants is sometimes not
significant enough, and even in some cases, the attack success rate of SFA or its variants
is slightly lower than that of the corresponding baseline methods. It is speculated that
this is because the weight coefficient of the feature-level loss is too large, which causes the
model to overly focus on fitting shallow features when training adversarial examples. This
behavior may cause the perturbation direction to deviate, making the data unable to cross
the decision boundary.

Rewriting formula (24), we have

Ltotal = αLKL + (1− α)Lce (25)

where α is the weight coefficient of LKL. Obviously, when α = 0, the SFA algorithm
degenerates into the FGSM algorithm. When α = 0.5, it is consistent with formula (24).
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Therefore, we discuss the values of α in the range of [0, 0.5]. We conducted experiments on
DenseNet201 and Inception-v3, which are less effective in attack, using the SFA algorithm
with a step size of 0.1. The experimental results are shown in the Table 8.

Table 8. Success rate on DenseNet201 and Inception-v3 by SFA with different α trained on AlexNet.

SFA DenseNet201 Inception-v3

α = 0 2.8 2.33
α = 0.1 3.84 2.46
α = 0.2 4.85 2.50
α = 0.3 4.79 2.53
α = 0.4 4.73 1.97
α = 0.5 4.48 1.35

As shown in Table 8, when DenseNet is the target model, the success rate of SFA attack
varies by no more than 0.37% when α is set between 0.2 and 0.5. However, even when the
lowest value of α is used (i.e., α = 0.5), the success rate of SFA attack is still about 1.64%
higher than that of FGSM attack when α = 0, indicating a significant improvement in attack
effectiveness, which is consistent with the results for other models except Inception-v3. For
Inception-v3, the selection of α values is more cautious, and only when α is set between
0.1 and 0.3, the SFA attack is more effective than the corresponding baseline method. Based
on the characteristics of the model itself, we can only speculate that the Inception module
may affect the effectiveness of the SFA algorithm, which will be explored in future work.
Therefore, setting α to 0.2 is more appropriate in future research.

5. Discussion

From the experiments in Section 4, it is clear that there are still many aspects of our
method that require further discussion. In this section, we will conduct a detailed analysis
and discussion of each aspect.

5.1. Discussion on Target Setting for Targeted Attacks

As mentioned in Section 4.2, we determined the target category BTR_60 for the targeted
attack in this experiment based on the tactical and strategic value of the target. However,
in this section, we discuss whether our attacks can maintain similar effects when the target
is set to the other nine categories. We sequentially set 2S1, BMP2, BRDM_2, BTR_70, D7,
T62, T72, ZIL131, and ZSU_23_4 as the target category and conducted the targeted attack
on VGG11, which performed the best in Section 4.4, using AlexNet as the source model.
The experimental results are shown in the Table 9.

Table 9. Success rate on VGG11 by SFA with different target labels trained on AlexNet.

Target Label Success Rate

2S1 9.55
BMP2 10.19

BRDM_2 11.48
BTR_70 5.71

D7 6.34
T62 6.72
T72 6.73

ZIL131 6.99
ZSU_23_4 10.83

According to Table 9, it can be seen that the success rate of our SFA method in attacking
different categories of targets in the MSTAR dataset varies. Among them, when targeting
2S1, BMP2, BRDM 2, and ZSU 23 4, the attack success rate is almost twice as high as that
of targeting other categories. The lowest attack success rate was achieved when targeting



Remote Sens. 2023, 15, 2699 18 of 23

BTR 60 and BTR 70. From Figure 6, it is not difficult to find that BTR 60 and BTR 70, as
carrier trucks, have a rectangular shape that is too regular and lacks distinctive details
specific to their category. On the other hand, other categories have more or less unique
features. This may be the reason why BTR 60 and BTR 70 are relatively difficult to attack.

Figure 6. Different labels in MSTAR dataset.

5.2. Discussion on the Consumption of SFA with Its Variants

In this section, we want to explore the time consumption of SFA with its variants
compared to the corresponding baseline models on different models. Corresponding
to Tables 3–6, we provide the time consumption of the corresponding algorithms for
generating adversarial examples on a single image on four substitute models.

As shown in Table 10, SFA or its variants have a time consumption that is roughly
30 times that of each corresponding baseline FGSM method and about 5 times that of
each corresponding baseline SVA method. This is because the SFA method needs to create
ghost data packets for the input data during the feature extraction phase and perform a
complete gradient back-propagation for each image in the ghost packet. Therefore, the
time consumed by the SFA method is proportional to the number of images in the ghost
data packet compared to the time consumed by the baseline FGSM methods. In future
work, we hope to explore ways to reduce the number of images in the ghost data packet
while maintaining the same level of attack effectiveness, which would be an interesting
and practical problem to solve.

Table 10. The time required in seconds for training adversarial examples on a single image using SFA
with its variants, as well as the corresponding baseline methods, on four substitute models. The time
consumption of SFA and its variants is highlighted in bold.

Attack

Model
AlexNet ResNet18 Densenet121 RegNetX_400MF

FGSM 0.06 0.07 0.18 0.11
SVA 0.26 0.33 0.85 0.52
SFA 0.78 1.62 4.24 2.87

I-FGSM 0.13 0.18 0.62 0.62
I-SVA 0.22 1.04 3.58 1.04
I-SFA 3.75 8.89 22.23 14.84

MI-FGSM 0.12 0.17 0.62 0.55
MI-SVA 0.17 1.20 4.38 3.89
MI-SFA 3.29 6.48 20.99 13.81

5.3. Discussion of SFA on Conventional Machine Learning-Based Models

In the experiments in Section 4, we have fully demonstrated the powerful effectiveness
of SFA and its variants in different deep neural networks, which can be considered as
a cross-model transferability evaluation. However, we hope to further investigate our
research by applying SFA and its variants to conventional machine learning-based models,
and test the cross-technique transferability of SFA.

We trained a multi-class SVM model based on the MSTAR dataset and tested it using
the adversarial examples generated by the SFA method and its variants trained on the
source model AlexNet with the best performance in the single-model attack experiments
in Section 4.3. As shown in Table 11, the attack effect of the adversarial examples on the
multi-class SVM model is almost twice as effective as that on the target model VGG11.
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Table 11. Success rate of SFA with its variants on VGG11 and SVM model.

Attack
Model

VGG11 SVM

SFA 5.71 9.78
I-SFA 10.98 18.96

MI-SFA 7.85 13.03

Therefore, we believe that the SFA method not only has cross-model transferability but
also has good cross-technique transferability. Meanwhile, it is not difficult to observe that
non-differentiable models based on traditional machine learning such as SVM are more
susceptible to adversarial examples compared with differentiable DNN models.

5.4. Discussion of the Impact of Compression and Reconstruction

As shown in Figure 7, due to the low resolution of SAR images and less semantic
information in the background except for the target, we found through experiments that the
pixel-level jitter of the image is more severe after the SFA attack on a SAR image compared
to an optical image, especially in the target contour. When images are saved (such as
saved as PNG format images), compression algorithms are often used to compress the
images. Most compression algorithms use a DEFLATE algorithm, which tends to reduce
the difference between large and small data in the images. This can weaken the adversarial
nature of the adversarial images to some extent. Therefore, in this section, we will study
the impact of compression and reconstruction methods in traditional image processing on
the adversarial nature of SAR adversarial images.

Figure 7. The pixel differences between the compressed and reconstructed images of the adversarial
samples generated by the SFA method and the images generated solely using the SFA method are
shown in color, with non-zero pixels highlighted for better visualization.

We refer to the SFA method with the added compression and reconstruction module
as SFA-CR. In our comparative experiments, we used ResNet18 as a substitute model,
VGG11 as the victim model, and evaluated the performance of the SFA and its variant
methods against their corresponding -CR methods. The experimental results are shown
in Figure 8.
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Figure 8. The comparison of attack success rates between SFA and its variant methods and their
corresponding -CR methods is shown in the following line graph, where the yellow line represents
the -CR methods and the blue line represents SFA and its variants.

Obviously, the adversarial effect is slightly enhanced when the adversarial images
are compressed to PNG format and then reconstructed to ndarray. This enhancement
is more significant when iterative attacks are used because the adversarial images are
compressed and reconstructed after each iteration. Meanwhile, as shown in Figure 7, the
changes made by compression and reconstruction mainly affect the adversarial regions with
specific constraints, such as fitting shallow features in this paper. Therefore, the adversarial
examples are relatively concentrated in the object regions of the image, and the changes
made by compression and reconstruction are mainly reflected near the target contour.
Thus, we speculate that compression and reconstruction methods may not be effective for
ordinary human-eye-invisible adversarial perturbations without any constraints, but they
will still be effective for adversarial patches.

6. Conclusions and Future Work

Overall, this paper designs a new adversarial attack method called SFA. Compared
to traditional adversarial attack methods, this paper pays more attention to the impact of
image changes in shallow features on the adversarial example. By introducing the critical
features of the first pooling layer generated by the aggregated gradient, SFA proposes a
new loss function that combines feature-level attack loss and end-to-end level attack loss.
Experimental results show that compared with the corresponding baseline methods, our
SFA method increases the success rate of targeted attack on a single model by an average
of 3.73% under the black-box scenario and increases the success rate of ensemble model
attack by an average of 4.61%. Through the SFA method proposed in this paper, the safety
and defense of artificial intelligence in the SAR image field can be improved, and the
discriminative ability of SAR recognition models can be enhanced, making the application
of future deep neural networks on SAR images more robust.

In future work, we hope to explore and study the impact of compression and recon-
struction transformations on adversarial examples at the feature level to identify the true
reasons that affect the adversarial performance of adversarial examples. We also plan to
study the possibility of reducing the number of ghost data packages while maintaining the
attack effectiveness of SFA, in order to develop a more efficient SFA method.



Remote Sens. 2023, 15, 2699 21 of 23

Author Contributions: Conceptualization, G.L. and Z.P.; methodology, G.L.; software, G.L.; valida-
tion, G.L., D.Z. and X.Z.; formal analysis, G.L.; investigation, G.L., G.Z., T.L. and L.Z.; resources, Z.P.;
data curation, G.L.; writing—original draft preparation, G.L.; writing—review and editing, W.B. and
Y.D.; visualization, G.L.; supervision, Z.P. and Y.D.; project administration, Z.P.; funding acquisition,
Z.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China, grant
number 62076251.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Leng, X.; Feng, S.; Ma, X.; Ji, K.; Kuang, G.; Liu, L. Domain Knowledge Powered Two-Stream Deep Network for

Few-Shot SAR Vehicle Recognition. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5215315. [CrossRef]
2. Li, Y.; Du, L.; Wei, D. Multiscale CNN Based on Component Analysis for SAR ATR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12.

[CrossRef]
3. Zhao, Y.; Zhao, L.; Liu, Z.; Hu, D.; Kuang, G.; Liu, L. Attentional Feature Refinement and Alignment Network for Aircraft

Detection in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5211212. [CrossRef]
4. Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar

Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5205516. [CrossRef]
5. Ma, F.; Sun, X.; Zhang, F.; Zhou, Y.; Li, H.-C. What Catch Your Attention in SAR Images: Saliency Detection Based on Soft-

Superpixel Lacunarity Cue. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5200817. [CrossRef]
6. Ali, R.; Reza, S.; Saeid, H. An Unsupervised Saliency-Guided Deep Convolutional Neural Network for Accurate Burn Mapping

from Sentinel-1 SAR Data. Remote Sens. 2023, 15, 1184.
7. Deng, B.; Zhang, D.; Dong, F.; Zhang, J.; Shafiq, M.; Gu, Z. Rust-Style Patch: A Physical and Naturalistic Camouflage Attacks on

Object Detector for Remote Sensing Images. Remote Sens. 2023, 15, 885. [CrossRef]
8. Li, C.; Ye, X.; Xi, J.; Jia, Y. A Texture Feature Removal Network for Sonar Image Classification and Detection. Remote Sens. 2023,

15, 616. [CrossRef]
9. Xi, Y.; Jia, W.; Miao, Q.; Liu, X.; Fan, X.; Lou, J. DyCC-Net: Dynamic Context Collection Network for Input-Aware Drone-View

Object Detection. Remote Sens. 2022, 14, 6313. [CrossRef]
10. Yang, S.; Peng, T.; Liu, H.; Yang, C.; Feng, Z.; Wang, M. Radar Emitter Identification with Multi-View Adaptive Fusion Network

(MAFN). Remote Sens. 2023, 15, 1762. [CrossRef]
11. Zhao, K.; Gao, Q.; Hao, S.; Sun, J.; Zhou, L. Credible Remote Sensing Scene Classification Using Evidential Fusion on Aerial-

Ground Dual-View Images. Remote Sens. 2023, 15, 1546. [CrossRef]
12. Marjan, S.; Dragi, K.; Sašo, D. Deep Network Architectures as Feature Extractors for Multi-Label Classification of Remote Sensing

Images. Remote Sens. 2023, 15, 538.
13. Wang, B.; Wang, H.; Song, D. A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism.

Remote Sens. 2022, 14, 6170. [CrossRef]
14. Jing, L.; Dong, C.; He, C.; Shi, W.; Yin, H. Adaptive Modulation and Coding for Underwater Acoustic Communications Based on

Data-Driven Learning Algorithm. Remote Sens. 2022, 14, 5959. [CrossRef]
15. Wang, F.; Mitch, B. Tree Segmentation and Parameter Measurement from Point Clouds Using Deep and Handcrafted Features.

Remote Sens. 2023, 15, 1086. [CrossRef]
16. Eduardo, A.; Pedro, D.; Ricardo, M.; Maria, P.; Khadijeh, A.; André, V.; Hugo, P. Real-Time Weed Control Application Using a

Jetson Nano Edge Device and a Spray Mechanism. Remote Sens. 2022, 14, 4217.
17. Daniel, H.; José, M.; Juan-Carlos, C.; Carlos, T. Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial

Vehicles on Edge-Computing Platform. Remote Sens. 2022, 14, 223.
18. Zou, Y.; Holger, W.; Barbara, K. Towards Urban Scene Semantic Segmentation with Deep Learning from LiDAR Point Clouds: A

Case Study in Baden-Württemberg, Germany. Remote Sens. 2021, 13, 3220. [CrossRef]
19. Yang, N.; Tang, H. Semantic Segmentation of Satellite Images: A Deep Learning Approach Integrated with Geospatial Hash

Codes. Remote Sens. 2021, 13, 2723. [CrossRef]
20. Wu, B.; Ma, C.; Stefan, P.; David, R. An Adaptive Human Activity-Aided Hand-Held Smartphone-Based Pedestrian Dead

Reckoning Positioning System. Remote Sens. 2021, 13, 2137. [CrossRef]
21. Szegedy, C.; Zaremba, W.; Sutskever, I. Intriguing Properties of Neural Networks. In Proceedings of the International Conference

on Learning Representations, Banff, AB, Canada, 14–16 April 2014.
22. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the International

Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

https://doi.org/10.1109/TGRS.2021.3116349
https://doi.org/10.1109/TGRS.2021.3100137
https://doi.org/10.1109/TGRS.2021.3139994
https://doi.org/10.1109/TGRS.2023.3264231
https://doi.org/10.1109/TGRS.2022.3231253
https://doi.org/10.3390/rs15040885
https://doi.org/10.3390/rs15030616
https://doi.org/10.3390/rs14246313
https://doi.org/10.3390/rs15071762
https://doi.org/10.3390/rs15061546
https://doi.org/10.3390/rs14236170
https://doi.org/10.3390/rs14235959
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/rs13163220
https://doi.org/10.3390/rs13142723
https://doi.org/10.3390/rs13112137


Remote Sens. 2023, 15, 2699 22 of 23

23. Madry, A.; Makelov, A.; Schmidt, L. Towards Deep Learning Models Resistant to Adversarial Attacks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

24. Xu, Y.; Ghamisi, P. Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 5619815. [CrossRef]

25. Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding Neural Networks through Deep Visualization. arXiv 2015,
arXiv:1506.06579.

26. Wang, Z.; Guo, H.; Zhang, Z.; Liu, W.; Qin, Z.; Ren, K. Feature Importance-aware Transferable Adversarial Attacks. In Proceedings
of the International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021.

27. Meng, D.; Chen, H. MAGNET: A Two-Pronged Defense against Adversarial Examples. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017.

28. Alexey, K.; Ian, J.G.; Samy, B. Adversarial examples in the physical world. In Proceedings of the 5th International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

29. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting Adversarial Attacks with Momentum. In Proceedings of the
2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

30. Lin, J.; Song, C.; He, K.; Wang, L.; John, E. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. In
Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

31. Xie, C.; Zhang, Z.; Zhou, Y.; Bai, S.; Wang, J.; Ren, Z.; Yuille, A.L. Improving Transferability of Adversarial Examples with Input Diversity.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019.

32. Dong, Y.; Pang, T.; Su, H.; Zhu, J. Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 4307–4316. [CrossRef]

33. Papernot, N.; McDaniel, P.; Goodfellow, I.; Somesh, J.; Berkay, C.; Ananthram, S. Practical Black-Box Attacks against Machine
Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United
Arab Emirates, 2–6 April 2017.

34. Zhou, W.; Hou, X.; Chen, Y.; Tang, M.; Huang, X.; Gan, X.; Yang, Y. Transferable Adversarial Perturbations. In Proceedings of the
Computer Vision 15th European Conference, Munich, Germany, 8–14 September 2018.

35. Qian, H.; Isay, K.; Zeqi, G.; Horace, H.; Serge, J.B.; Ser, N. Enhancing adversarial example transferability with an intermediate
level attack. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–
2 November 2019.

36. Chen, S.; He, Z.; Sun, C.; Yang, J.; Huang, X. Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet.
IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2188–2197. [CrossRef]

37. Peng, B.; Peng, B.; Zhou, J.; Xia, J.; Liu, L. Speckle-Variant Attack: Toward Transferable Adversarial Attack to SAR Target
Recognition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4509805. [CrossRef]

38. Seyed-Mohsen, M.; Alhussein, F.; Pascal, F. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

39. Liu, Y.; Chen, X.; Liu, C. Delving into Transferable Adversarial Examples and Black-Box Attacks. arXiv 2016, arXiv:1611.02770.
40. Narodytska, N.; Kasiviswanathan, S.P. Simple Black-Box Adversarial Perturbations for Deep Networks. arXiv 2016, arXiv:1612.06299.
41. Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Cho-jui, H. ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural

Networks without Training Substitute Models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
Dallas, TX, USA, 3 November 2017.

42. Brendel, W.; Rauber, J.; Bethge, M. Decision-Based Adversarial Attacks: Reliable Attacks against Black-Box Machine Learning
Models. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April
30–3 May 2018.

43. Ganeshan, A.; Vivek, B.S.; Radhakrishnan, V.B. FDA: Feature Disruptive Attack. In Proceedings of the 2019 IEEE/CVF Interna-
tional Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.

44. Meng, T.; Zhang, F.; Ma, F. A Target-region-based SAR ATR Adversarial Deception Method. In Proceedings of the 2022 7-th
International Conference on Signal and Image Processing, Suzhou, China, 20–22 July 2022.

45. Zhang, F.; Meng, T.; Ma, F. Adversarial Deception Against SAR Target Recognition Network. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2022, 15, 4507–4520. [CrossRef]

46. Czaja, W.; Fendley, N.; Pekala, M. Adversarial Examples in Remote Sensing. In Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 6–9 November 2018.

47. Chen, L.; Xu, Z.; Li, Q.; Peng, J.; Wang, S.; Li, H. An Empirical Study of Adversarial Examples on Remote Sensing Image Scene
Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7419–7433. [CrossRef]

48. Xu, Y.; Du, B.; Zhang, L. Self-Attention Context Network: Addressing the Threat of Adversarial Attacks for Hyperspectral Image
Classification. IEEE Trans. Image Process. 2021, 30, 8671–8685. [CrossRef]

49. Li, H.; Huang, H.; Chen, L.; Peng, J.; Huang, H.; Cui, Z.; Mei, X.; Wu, G. Adversarial Examples for CNN-Based SAR Image
Classification: An Experience Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1333–1347. [CrossRef]

50. Wang, Z.; Wang, B.; Zhang, C.; Liu, Y. Defense against Adversarial Patch Attacks for Aerial Image Semantic Segmentation by
Robust Feature Extraction. Remote Sens. 2023, 15, 1690. [CrossRef]

https://doi.org/10.1109/TGRS.2022.3156392
https://doi.org/10.1109/cvpr.2019.00444
https://doi.org/10.1109/TPAMI.2020.3033291
https://doi.org/10.1109/LGRS.2022.3184311
https://doi.org/10.1109/JSTARS.2022.3179171
https://doi.org/10.1109/TGRS.2021.3051641
https://doi.org/10.1109/TIP.2021.3118977
https://doi.org/10.1109/JSTARS.2020.3038683
https://doi.org/10.3390/rs15061690


Remote Sens. 2023, 15, 2699 23 of 23

51. Rasol, J.; Xu, Y.; Zhang, Z.; Zhang, F.; Feng, W.; Dong, L.; Hui, T.; Tao, C. An Adaptive Adversarial Patch-Generating Algorithm
for Defending against the Intelligent Low, Slow, and Small Target. Remote Sens. 2023, 15, 1439. [CrossRef]

52. Wang, Z.; Wang, B.; Liu, Y.; Guo, J. Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial
Image Semantic Segmentation. Remote Sens. 2023, 15, 1325. [CrossRef]

53. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy, San Jose, CA, USA, 22–26 May 2017.

54. Du, C.; Huo, C.; Zhang, L.; Chen, B.; Yuan, Y. Fast C&W: A Fast Adversarial Attack Algorithm to Fool SAR Target Recognition
with Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4010005. [CrossRef]

55. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems,
Lake Tahoe, NV, USA, 3–6 December 2012.

56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

57. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

58. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing Network Design Spaces. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.

59. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

60. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs15051439
https://doi.org/10.3390/rs15051325
https://doi.org/10.1109/lgrs.2021.3058011

	Introduction 
	Related Works 
	Adversarial Attack in Deep Learning 
	White-Box Attack Method 
	Black-Box Attack Methods 
	Feature-Level ATTACK methods 
	Adversarial Attack on SAR Images 

	Methods 
	Overview 
	Loss Function for Feature-Level Attacks 
	Loss Function for End-to-End Level Attacks 
	Total Loss Function 

	Experiments and Results 
	Experimental Preparation 
	Experiment Setup 
	Single-Model Attack Experiments 
	Multi-Model Attack Experiments 
	Hyperparametric Research 

	Discussion 
	Discussion on Target Setting for Targeted Attacks 
	Discussion on the Consumption of SFA with Its Variants 
	Discussion of SFA on Conventional Machine Learning-Based Models 
	Discussion of the Impact of Compression and Reconstruction 

	Conclusions and Future Work 
	References

