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Abstract: In the field of unmanned systems, cameras and LiDAR are important sensors that provide
complementary information. However, the question of how to effectively fuse data from two different
modalities has always been a great challenge. In this paper, inspired by the idea of deep fusion,
we propose a one-stage end-to-end network named FusionPillars to fuse multisensor data (namely
LiDAR point cloud and camera images). It includes three branches: a point-based branch, a voxel-
based branch, and an image-based branch. We design two modules to enhance the voxel-wise features
in the pseudo-image: the Set Abstraction Self (SAS) fusion module and the Pseudo View Cross (PVC)
fusion module. For the data from a single sensor, by considering the relationship between the
point-wise and voxel-wise features, the SAS fusion module self-fuses the point-based branch and the
voxel-based branch to enhance the spatial information of the pseudo-image. For the data from two
sensors, through the transformation of the images’ view, the PVC fusion module introduces the RGB
information as auxiliary information and cross-fuses the pseudo-image and RGB image of different
scales to supplement the color information of the pseudo-image. Experimental results revealed that,
compared to existing current one-stage fusion networks, FusionPillars yield superior performance,
with a considerable improvement in the detection precision for small objects.

Keywords: object detection; point cloud; computer vision

1. Introduction

In recent years, with the improvement of the average precision of LiDAR, the applica-
tion of LiDAR in cars and robots has been receiving improved research interest (Figure 1).
Consequently, the question of how to use LiDAR for target detection has become an
important research topic.

LiDAR has its own numbering and a fixed vertical angle. To obtain a full range of
environmental information, LiDAR performs rotational motion at a constant angular speed
and emits lasers to gather information through the reflected points. In addition to the
distance of the reflected points, information regarding the occurrence time and horizontal
angle (Azimuth) is recorded. In this manner, the coordinates of all reflected points form a
point cloud.

As 3D (three-dimensional) data, the point cloud includes both depth and geometric
information. However, due to its unordered, sparse, and non-uniform distribution, it is a
special challenge to efficiently use this information for object detection.

Based on the aforementioned characteristics of the point cloud, its object detection
methods can be classified into three categories: (1) point-based methods [1–4], (2) voxel-
based methods [5–8], and (3) projection-based methods [9–14].

Remote Sens. 2023, 15, 2692. https://doi.org/10.3390/rs15102692 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15102692
https://doi.org/10.3390/rs15102692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8495-2804
https://doi.org/10.3390/rs15102692
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15102692?type=check_update&version=1


Remote Sens. 2023, 15, 2692 2 of 18

Figure 1. Visualization of detection results. The top of the figure is the RGB image from the camera.
The lower left part of the figure shows the original point cloud. The lower right part of the figure
shows the detection results. The experiment is based on the KITTI dataset [15].

However, a point cloud is less effective in detecting distant objects and small objects
because of its missing color information. Thus, researchers have considered fusing RGB
images into a point cloud to improve detection precision. According to the different fusion
levels for the objects, the fusion strategies can be classified into three categories: (1) early
fusion [16–20], (2) deep fusion [21–24], and (3) late fusion [25–27].

Currently, the detection of 3D objects is focused on large-scale objects, such as cars.
As large-scale objects, cars have more feature points and are easier to detect. However,
in practical application scenarios, small objects (pedestrians and cyclists) are the most easily
ignored because of factors such as occlusion and distance.

The existing fusion network also presents some problems in need of improvement.
F-pointnet [28] does not make use of point cloud information, so the effects of illumination
and occlusion make the missed detection more serious. PMPF [20] is still ineffective in
finding the relationship between pixels and point cloud key points. The proposed method
in [14] lacks the use of multi-scale intermediate feature maps, which makes it impossible
to effectively use the context semantic information. Consequently, we hope for a strategy
to efficiently fuse the information of point cloud and RGB images and utilize multi-scale
information, thereby improving detection average precision (AP).

In this study, inspired by the deep fusion strategy and oriented to practical industrial
needs, we propose a novel one-stage small model 3D object detection network, FusionPillars.
It is designed to improve the detection precision of small objects by supplementing the
spatial information and color information of the pseudo-image through cross-fusion and
self-fusion. FusionPillars proposes two fusion modules: the Set Abstraction Self (SAS)
fusion module and Pseudo View Cross (PVC) fusion module.

In the point-based branch, the most direct motivation of the SAS fusion module is to
exploit the advantages of the voxel-based method and the point-based method. Point-based
methods enable the complete utilization of structural information of the object. Voxel-based
methods employ spatial convolution to extract multi-scale and multi-level local feature
information efficiently. At the same time, the SAS fusion module effectively reduces the
impact of the disadvantages of the two methods. Set Abstraction [2] down-samples point
clouds to effectively reduce memory resource consumption. Furthermore, the self-fusion of
two different point cloud representations compensates for the lack of voxel-wise features
(pseudo-image) and enables features to more strongly represent the spatial information of
small objects.

In the image-based branch, to utilize the color information from RGB image and the
depth information from the point cloud, the PVC module cross-fuses the data of the point
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cloud and the image. Specifically, through the pseudo-conversion of the images’ view,
we realize the registration of the pseudo-image and the RGB image; then, cross-fusion
is used to supplement the color information of the image into the pseudo-image. Now,
the pseudo-image contains both depth information and color information.

In summary, the contributions of this study are as follows:

• The SAS fusion module performs self-fusion by using the point-based method and
voxel-based method to strengthen the spatial expression of the pseudo-image.

• The PVC fusion module cross-fuses the pseudo-image and the RGB image through
the pseudo-conversion of the view angle to strengthen the color expression of the
pseudo-image.

• We aggregate the SAS and PVC modules in the proposed network called FusionPillars,
a one-stage end-to-end trainable modal that performs well on the KITTI dataset, with a
particularly pronounced improvement in detection precision for small objects.

2. Materials
2.1. Point-Based Methods

Point-based methods directly operate on the raw point cloud. First, a point cloud is
converted to sparse representations, and subsequently low-dimensional feature vectors
are extracted. Next, these vectors are then aggregated into larger, more complex high-
dimensional features. The main advantage of this method is that the structural information
of the object is retained intact. Pointnet [1] has designed a highly efficient and effective
architecture for solving three key issues: unordered interaction, interaction among points,
and invariance under transformations, laying the foundation for subsequent research
work [2–4]. PointRCNN [29] is a bottom-up 3D object detection network. It first splits the
point cloud into foreground and background to generate a small amount of high-quality 3D
proposals, and then combines semantic and local spatial features to predict box coordinates.
Instead of using upsampling layers, 3DSSD [30] employs a fusion sampling strategy based
on the distance and features and uses a candidate generation layer to generate key points,
which are input into an anchor-free regression head to predict the 3D object box.

2.2. Voxel-Based Methods

Voxel-based methods convert the point cloud into regular discrete voxel represen-
tations, and then apply convolutional neural networks to predict object categories and
3D bounding boxes. Voxelization enables point clouds to be stored in memory in order,
which is conducive to reducing random memory access and increasing the efficiency of
data operation. This advantage enables the network to perform better when processing
magnitude point clouds. Vote3deep [5] converts point cloud data into hand-crafted voxels
for real-time 3D inspection. However, such voxels are not suitable for complex real-world
environments. VoxelNet [6] is a voxel-based network framework that can be trained end-
to-end. A sparse 4D tensor is encoded by dividing the point cloud into equal voxels.
The convolutional middle layers and a Region Proposal Network [31] processes the 4D
tensor to generate the 3D detection. SECOND [7] further overcomes the computational
barrier of VoxelNet by applying sparse convolution. It also proposes a new loss function
and a new data enhancement method. PointPillars [8] learns point cloud features contained
in point pillars in the z-direction by PointNet, and encodes these features as a pseudo-
image. Then, it employs a well-established 2D image object detection process to predict 3D
bounding boxes. Voxel-RCNN [32] has designed a Voxel RoI (Region of Interest) pooling
on the basis of PV-RCNN [33], which directly extracts RoI features from voxel features for
further refinement.

2.3. Lidar-Camera Fusion Methods

The RGB image (R, G, B) contains color information but lacks depth information.
In contrast, the point cloud (x, y, z, r) has depth information but lacks color information.
Therefore, a key challenge for fusion methods is how to fuse the color and depth information
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by using fusion methods. According to the different fusion objects, fusion strategies can
be classified into three categories: early fusion, deep fusion, and late fusion. Early fusion
mainly focuses on data-level fusion. It fuses data from different modalities into a single
feature vector before inputting them for subsequent operations. The data can be either raw
data from the sensors or pre-processed data. Pointpainting [17] adds a new dimension to
point cloud data by fusing them with semantic segmentation scores after matrix projection.
Deep fusion mainly focuses on feature-level fusion. The raw data of different modalities are
first transformed into a high-dimensional feature representation after extracting features,
and then some interactive fusion operations are done in different feature layers. EPNet [21]
extracts features from the point cloud and image several times and then fuses the features
at different scales to improve the corresponding point-wise feature representation. Late
fusion mainly focuses on decision-level fusion. The raw data from different modalities are
processed with their respective networks to output classification scores, which are fused at
the score. CLOCS [27] processes 2D and 3D candidates by converting them into consistent
joint detection candidates based on geometric and semantic consistencies.

3. Methods

In this section, we show the specific details of FusionPillars. As shown in the Figure 2,
our network architecture consists of three main sub-networks:

1. Feature Extraction Network: it is the preprocessing network for point cloud voxelization.
2. Dual-fusion Backbone: it fuses feature information from secondary branches into

features of primary branches.
3. Detection Head: it performs the concatenation operation for feature maps to generate

the final feature map and outputs the label and bounding box of the object.

Figure 2. Illustration of the architecture of FusionPillars, which is composed of a point-based branch,
a voxel-based branch, and an image-based branch. We employ the SAS fusion module and PVC
fusion module to enhance the feature expression of the pseudo-image.

3.1. Feature Extraction Network

To utilize the relationship between features of different heights, we adopt an improved
pseudo-image generation network [34] as Feature Extraction Network: at height dimension,
a pillar is equally divided into four smaller pillars, and the final pseudo-image is generated
after height-dimension and channel-dimension attention to retain the more expressive
point cloud spatial information (Figure 3). The process is described as follows:

• The point cloud (x, y, z, r) is separated using a uniform grid network with a size of
0.16 m2 in the x-y direction. With the grid network as the bottom and the point cloud
height (4 ∗ 1 m) as the height, the point cloud space is divided into P pillars.

• The arithmetic mean (xc, yc, zc) and the offset (xp, yp) from the central point in the
x-y direction are calculated, and then the coordinate data (D = 4 dimensional) is aug-
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mented. Now, the augmented coordinate data are D = 9 dimensional (x, y, z, r, xc, yc, zc,
xp, yp).

• The sparsity of the point cloud results in an uneven distribution of the point cloud,
which results in a large number of empty pillars. Thus, a threshold is set to randomly
sample the pillars with an excessive amount of points, whereas the pillars with too
few points are operated zero-padding. In this manner, dense tensors (D, P, N, 4) are
created, where N represents the number of points in each pillar.

• Features are learned by using simplified PointNet. Specifically, tensors (C, P, N, B)
are generated by processing each point through a linear-layer, BatchNorm [35], and
ReLU [36]; then, a maximum pool operation is operated to obtain tensors (C, P, B).
B represents the number of batches.

• The features are encoded and scattered back to the locations of the original pillars to
create B pseudo-images of size (C, H, W, B), where H and W indicate the height and
width of the pseudo-image.

• B pseudo-images (C, H, W, B) are fed into two attention sub-modules to calculate
the height-attention weight S and the channel-attention weight T. The final pseudo-
image (C, H, W) is then obtained by performing operations such as multiplication and
maximum pooling.

S = W2δ(W1F) (1)

T = W4δ(W3F) (2)

Wi indicates fully connected layer, F indicates 4 pseudo-images.

Figure 3. Illustration of the architecture of the the Feature Extraction Network.

3.2. Dual-Fusion Backbone

In the Dual-Fusion Backbone, the input is the raw point cloud and RGB image. We
designed a Set Abstraction Self (SAS) fusion module (Figure 4) to fuse two feature repre-
sentations of a point cloud, and a Pseudo View Cross (PVC) fusion module (Figure 5) to
fuse point cloud and RGB images. Moreover, based on the two modules, three branches are
designed to utilize multi-scale information (Figure 2): a point-based branch and a voxel-
based branch for point cloud, and an image-based branch for RGB images, respectively.
Among them, the voxel-based branch acts as the primary branch and other branches as
secondary branches. The SAS module is designed with the motivation to integrate the
spatial information of the point-based branch into the pseudo-images of the voxel-based
branch. The PVC module is designed with the motivation to integrate the color information
of the image-based branch into the pseudo-images of the voxel-based branch.
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Figure 4. Illustration of the architecture of the SAS fusion module.

Figure 5. Illustration of the architecture of the PVC fusion module.

3.2.1. Voxel-Based Branch

The voxelized pseudo-images allow irregular and huge point clouds to be stored in
an orderly manner and use efficient convolution, ensuring the computational efficiency of
the algorithm. The voxel-based branch is the main branch of the dual-fusion backbone,
which receives the pseudo-image from the Feature Extraction Network as input. In the
feature extraction network, the point cloud is divided into voxels in a spatial division, and a
voxel may contain multiple points within it. Then local features are extracted from the
point groups within voxels instead of extracting features for each point, which reduces the
memory load on subsequent algorithms while ensuring that the pseudo-images contain
most of the information of the point cloud.

The voxel-based branch utilizes three lightweight convolution blocks to successively
hierarchically generate the feature map Pi with different resolutions. The multi-scale and
multi-level local feature information is extracted and utilized by the lightweight convolution
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module. Each convolution block comprises a 3 ∗ 3 convolution layer, a BatchNorm, and
a ReLU activation function. The feature maps Pi with different resolutions are sent to the
SAS fusion module and PVC fusion module to obtain the enhanced feature maps P′i .

3.2.2. Point-Based Branch

The raw point cloud contains all three-dimensional features of objects. However, the vol-
ume of point cloud data is huge, and direct processing has high hardware requirements and a
high time cost. The point-based branch directly operates the raw point cloud and extracts the
spatial information to enhance the spatial representation of the pseudo-image.

Specifically, the point-based branch directly extracts features of the point cloud with
the idea of hierarchical fashion. We accomplish point cloud refinement and self-fusion
with the pseudo-image Pi by three SAS fusion modules. Point cloud refinement selects key
points in small neighborhoods and samples them to reduce computational effort, achieving
efficiency. Self-fusion extracts and assigns spatial information to the corresponding feature
map of the voxel-based branch.

For description, the output of every SAS fusion module is recorded as Ri(i = 0, 1, 2).
In addition, under the premise of ensuring the maximum information transmission be-
tween point-wise feature Ri in the network, all point-wise features are directly connected.
In order to ensure the characteristics of feed-forward, each point-wise feature combines
the inputs of all the previous point-wise features, and then passes the output feature to
all subsequent modules. Dense connections enable feature reuse, which further enriches
feature map information.

3.2.3. Image-Based Branch

Although the camera is vulnerable to the external environment, the RGB images taken
by the camera contain the color information of objects, which is also essential and significant
for object detection task.

The image-based branch operates the RGB images. Similarly, to extract and fuse
semantic information of the images, we employ three PVC fusion modules to the input
with the idea of hierarchical processing. In the PVC fusion module, we implement the
pseudo-transformation of the images’ view and supplement color information for the
pseudo-image after registration between the RGB image and the pseudo-image. As can be
seen in Figure 2, we record the pseudo-view map of the image as Fi.

3.2.4. Set Abstraction Self (SAS) Fusion Module

Self-fusion refers to the fusion of different feature representations (Voxel and point)
within the point cloud. So, we proposed the Set Abstraction Self (SAS) fusion module.

The LIDAR-guided SAS fusion module (Figure 4) refines the raw point cloud and
completes the self-fusion of enhanced spatial information by establishing correspondence.
It consists of a Self-modal Registrar, a SA Sampler, and a Fusion Coefficient Generator.

Self-modal Registrar establishes firstly the correspondence relationship between
pseudo-pixels (pixels of the pseudo-image) and points in space. Two feature representations
(point-based feature Ri, pseudo-image feature Pi) are registered to generate an self-modal
mapping matrix MRP. In more detail, in the self-modal registrar, for a particular point in
the raw point cloud and its corresponding position in the pseudo-image, the self-modal
mapping matrix MRP is obtained as follows:

p′ = MRP ∗ p (3)

SA Sampler then takes the point-based feature Ri and the self-modal mapping matrix
MRP as inputs to output new point-based feature R′′i for the next stage.

To avoid the huge amount of operations, the raw point cloud Ri is subjected to the set
abstraction operation to realize local feature extraction, generating point-based feature R′i.

After the correspondence is established, the sampling position p′ and the self-modal
mapping matrix MRP are used as inputs of the SA sampler. The pseudo-image sampler
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generates a point-based feature representation VRP for the point-based feature. Because
the sampling locations may lie between adjacent pixels, we apply bilinear interpolation to
image features on continuous coordinates, i.e.:

VRP = K(F(N(p′))) (4)

where VRP is the corresponding feature representation of the point p′, K indicates the
bilinear interpolation function, and F(N(p′)) indicates the feature of the neighboring pixels
at the sampling position p′.

The feature representation VRP and the point-based feature R′i are fused point by
point. In the Point-wise Fusion, we first perform a concatenation operation for VRP and
Ri, and then, enter a fully connected layer, adjust it with a 1 ∗ 1 convolution, and then
normalize it to the range of [0, 1] following the BN and ReLU weight graph w. Finally, new
point-wise features R′′i are obtained.

R′′i = σ(Wtanh(UVRP + VRi)) (5)

where W,U,and V denote the learnable weight matrices. σ represents the sigmoid activa-
tion function.

Fusion Coefficient Generator generates fusion coefficients for point-based features
R′′i finally. It uses two fully connected layers to generate spatial enhancement coefficients.
The fusion coefficient is then multiplied with the pseudo-image to obtain the enhanced
pseudo image P′i .

The obtained spatial enhancement coefficient is accumulated with the pseudo-image
to obtain the enhanced pseudo image P′i .

P′i = Pi ∗ FC(FC(R′′i )) (6)

The SAS module uses a pseudo-image and raw point cloud to achieve efficient fusion
in single modal data so that the pseudo-image has more comprehensive spatial information.

3.2.5. Pseudo View Cross (PVC) Fusion Module

Cross-fusion refers to the fusion of point cloud and RGB images. So, we propose a
Pseudo View Cross (PVC) fusion module, which consists of a Pseudo View Transformation
and a Cross modal Fusion. The PVC module (Figure 5) provides an effective solution for
determining the differences between the RGB image and pseudo-image.

Most voxel-based methods densely divide the space and generate feature maps to
ensure high-quality detection. The pseudo-image is created by dividing the grid in the x-y
plane and squeezing the z-oriented points. So, the pseudo-image shows a vertical view of
the scene. In contrast, combined with the actual scene and camera characteristics, the RGB
image shows a frontal view of the current scene. This makes it necessary to fully consider
the spatial relationship between the two in the process of fusing feature maps. For this
reason, we aim to perform cross-view fusion based on the spatial overlap relationship
between the front view and the vertical view.

Specifically, because of the characteristics of LIDAR and camera, objects exhibit spatial
correspondence in each pair of images and pseudo images. Based on this fact, First, through
the Pseudo View Transformation (Figure 6), a pseudo-view map Fi of the image is obtained
pixel by pixel, which size is the same as that of the pseudo-image.
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Figure 6. Illustration of the architecture of the Pseudo View Transformation.

Pseudo View Transformation generates pseudo-view mapping by pseudo-view trans-
formation matrix. First, based on the characterization of the LIDAR and the camera,
the input RGB image is scaled to be equal in size to the pseudo-image by performing a
scale-invariant projection. Subsequently, after BatchNorm and Relu operations are per-
formed in order to attenuate the differences in the numerical meanings of the two images
(RGB image and pseudo-image) within the computer. Then, the two images are executed
as a concatenation operation. Finally, the following equation is used to extract the pseudo-
view transformation matrix Mcs and generate the pseudo-view map Fi mapped to the BEV
view with the resized RGB image.

Mcs = 0.4 ∗Mc + 0.6 ∗Ms; (7)

where, we consider that the image receives the influence of channel dimension and spatial
dimension in the pseudo-view transformation. Using the channel attention module and
spatial attention module to generate the channel transformation influence matrix Mc and
spatial transformation influence matrix Ms, respectively. After several experiments, we set
the weighting coefficients as 0.4 and 0.6, respectively.

Cross modal Fusion is used to register and fuse the pseudo-view map with the
pseudo-image to produce an enhanced pseudo-image. More carefully, the same size
pseudo-view map Fi and pseudo-image Pi are concatenated in the channel dimension.
Next, using Channel Attention, the image information is fused into the pseudo-image to
produce an enhanced pseudo-image.

At this time, the pseudo-image is infused with color information, and the feature
expression capability is further enhanced.

3.3. Detection Head

As shown in Figure 7, Pi provides semantic image information at different scales.
Three parallel transposed convolutional layers with different steps are employed to recover
the resolution of pseudo-images, obtaining three feature maps of the same size as P1. These
feature maps are performed for the concatenate operation and yield a more representative
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feature graph PU . Now, the PU contains rich semantic image information with different
receptive domains. Then, the PU is sent to an adaptive detection head.

Figure 7. Illustration of the architecture of the Detection Head.

We employ an adaptive detection head [37], which consists of three parts: Head Back-
bone Network, Original Information Fusion Module (OIFM), and Adaptive Adjustment
Module (AAM). It adaptively adjusts the sparse feature maps so that the network detail
information is complemented, thus improving the object detection performance.

The Head Backbone Network is a top-down network that aggregates a Block module
and a DeBlock module through concatenation operation, allowing the use of information
at different scales. These multi-scale feature maps enhance the regression effect of object
detection. The Original Information Fusion Module compensates for sparse feature maps
by aggregating pseudo-image features. The Adaptive Adjustment Module emphasizes key
information by adjusting the size of the feature maps.

3.4. Loss Function

We use the same loss function as the SECOND [7]. It further includes three different
loss functions: regression loss, classification loss, and directional loss. The regression loss
is used to accurately predict the position of three-dimensional boxes. The classification
loss is used to determine the class of the object. Additionally, the directional loss is used to
determine the direction of the object.

Regression loss function: In 3D object detection, parameters (x, y, z, h, w, l, θ) are used to
define a 3D bounding boxes a 3D bounding box.The positioning residual coding of ground
truth and anchors are defined below.

∆x = xgt−xa

da , ∆y = ygt−ya

da , ∆z = zgt−za

da

∆x = xgt−xa

da , ∆y = ygt−ya

da , ∆z = zgt−za

da

∆w = log wgt

wa , ∆l = log lgt

la , ∆h = log hgt

ha

∆θ = sin
(
θgt − θa), da =

√
(wa)2 + (la)2

(8)

The regression loss function can be expressed as:

Lloc = ∑
b∈(x,y,z,w,l,h,θ)

SmoothL1(∆b) (9)

Classification loss function: We also use focal loss to deal with the class imbalance
problem. The classification loss is defined as:

Lcls = −αa(1− pa)γ log pa (10)

where pa is the class probability of an anchor. We use the parameters mentioned in the
paper: a = 0.25 and γ = 2.
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Directional loss function: We use SoftMax as the directional loss function Ldir so that the
network can learn the directional information of the bounding box. By combining all the
loss functions, the total loss is defined as:

L =
1

Npos
(βlocLloc + βclsLcls + βdirLdir) (11)

where, Nposrepresents the number of positive matching boxes, loss weights βloc, βcls, βdir
are empirically set to 2.0, 1.0, and 0.2.

4. Experiment

In this section, we present the experimental data, including the experiment environ-
ment, the experimental dataset, the experimental settings, and the experimental results.

4.1. Experiment Environment

The following is the experimental environment:

1. CUDA: 10.2
2. Pytorch: 1.10.2
3. Python: 3.6
4. GPU: GeForce RTX 2080Ti

4.2. Experiment Dataset

The KITTI dataset [15] is the largest computer vision algorithm evaluation dataset
for autonomous driving scenarios in the world. All of our experiments are based on the
KITTI dataset. The KITTI dataset provides us with samples of lidar point cloud and images,
which contains 7481 training samples and 7518 test samples. Among them, the training
samples are divided into two parts, namely, the training set composed of 3712 samples
and the validation set composed of 3769 samples. The dataset includes three categories:
car, pedestrian, and cyclist. Additionally, based on the size, the occlusion level, and the
truncation of each category, the dataset is stratified into three levels of difficulty level:
easy, mod., and hard. Average Precision (AP) and mean Average Precision (mAP) are
used as the evaluation indicators in this study. To ensure a fair comparison, we adopted a
comprehensive evaluation scheme.

4.3. Experimental Settings

For the feature extraction network, we used the PointPillars setting to set the grid
size to 0.4 m ∗ 0.4 m, the maximum number of pillars: P = 12,000, and the maximum
number of points per pillar: N = 100. For the point-based branch, three set abstraction
layers subsample the raw point cloud with sizes of 4096, 1024, and 256. For the voxel-
based branch, the enhanced pseudo-images are down-sampled using the 3 ∗ 3 convolution,
and the number of channels after convolution is set as 64, 128, and 256, successively.
The number of transposed convolution output channels is 128.

The detection range is [(0, 70), (−40, 40), and (−3, 1)]m, respectively. For the car,
its anchor has a width, length, and height of (1.6, 3.9, 1.5). Matching uses positive and
negative thresholds of 0.6 and 0.45. For the pedestrian and the cyclist, their anchor sizes are
(0.6, 0.8, 1.73) and (0.6, 1.76, 1.73), respectively. Additionally, 0.5 and 0.35 are the positive
and negative matching thresholds they shared.

4.4. Experimental Results

In this section, our method is compared with typical methods based on the KITTI
dataset. Our network detects three categories (cars, pedestrians, and bicycles) and obtains
reports that contain different AP at three difficulty levels (easy, moderate, and hard).
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4.5. Evaluation Indicators

The IoU indicates the coincidence degree between the network prediction object frame
and the original real object frame:

IoU =
Detectionresult ∩ GroundTruth
Detectionresult ∪ GroundTruth

(12)

In this study, the IoU threshold is set as three different values of 0.7, 0.5, and 0.25.
On this foundation, the results can be classified into four categories: TP (True Positives),
TN (True Negatives), FP (False Positives), FN (False Negatives).

Additionally, the precision represents the correct ratio of all predicted objects:

precision =
TP

TP + FP
(13)

Recall is defined as the proportion of all positive samples in the test set that are
correctly identified, i.e.,

recall =
TP

TP + FN
(14)

AP is the area under the precision-recall curve. To verify the effectiveness of our
algorithm, mAP is used as the main evaluation indicator in this paper to compare with
existing algorithms.

4.5.1. Results with Single-Modal Networks

In Table 1, compared with the 3D detection networks of the single point cloud includ-
ing MV3D [38], TANet [39], Point-GNN [40], and LSNet [41]. Our network achieves the
best results in detecting small objects (pedestrians and cyclists). The mAP (mean Average
Precision) of small objects under all difficulties has been improved greatly.

Table 1. The comparison with 3D detection network of single point cloud on the KITTI test set.

Benchmark Network
Cars Pedestrains Cyclists

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

BEV

MV3D 66.77 52.73 51.31 N/A N/A N/A N/A N/A N/A

VoxelNet 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

SECOND 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

PointPillars 89.46 86.65 83.44 57.89 53.05 49.73 82.36 63.63 60.31

PointRCNN 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59

H23D RCNN 92.85 88.87 86.07 58.14 50.43 46.72 82.76 67.90 60.49

Point-GNN 93.11 89.17 83.90 55.36 47.07 44.61 81.17 67.28 59.67

LSNet 92.12 85.89 80.80 N/A N/A N/A N/A N/A N/A

FusionPillars 92.15 88.00 85.53 62.33 55.46 50.13 87.63 66.56 62.67

3D

MV3D 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A

VoxelNet 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37

SECOND 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

PointPillars 83.68 74.56 71.82 53.32 47.76 44.80 71.82 56.62 52.98

PointRCNN 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59

TANet 83.81 75.38 67.66 54.92 46.67 42.42 73.84 59.86 53.46

H23D RCNN 90.43 81.55 77.22 52.75 45.26 41.56 78.67 62.74 55.78

Point-GNN 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

LSNet 86.13 73.55 68.58 N/A N/A N/A N/A N/A N/A

FusionPillars 86.96 75.74 73.03 55.87 48.42 45.42 80.62 59.43 55.76
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On the BEV benchmark, compared to the one-stage classic network, PointPillars, mAP
is improved by an average of 2.66%. Among them, for small objects, the mAP is improved
by 2.97% on average. Additionally, the mAP for cyclists with easy difficulty exhibits the
maximum improvement (5.27%). Compared to the two-stage classic network PointRCNN,
the mAP is improved by an average of 11.50%. Among them, for small objects, the mAP is
improved by 11.30% on average. Additionally, the AP for cyclists with easy difficulty is
improved the most (13.70%).

On the 3D benchmark, compared to the one-stage classic network, PointPillars, mAP is
improved by an average of 2.65%. Among them, for small objects, the mAP is improved by
3.04% on average. Additionally, the performance of cyclists with easy difficulty is boosted
from 71.82% to 80.62%. Compared to the two-stage classic network PointRCNN, AP is
improved by an average of 3.81%. Among them, for small objects, the mAP is improved
by 4.76% on average. Additionally, the performance for pedestrians with hard difficulty is
boosted the most (6.79%).

In order to prove the innovation and effectiveness of FusionPillars, we made a further
comparison with PointPillars on all benchmarks. Based on Table 2, we can see that our
network has a particularly strong detection effect on small objects. The detection AP of
pedestrians has improved by an average of 1.36%, and the maximum improvement is
4.44% (easy, BEV). The detection precision of cyclists has improved by an average of 3.81%,
and the maximum improvement is 8.80% (easy, 3D).

Table 2. The comparison of pedestrians and cyclists on the all benchmarks.

Benchmark Network
Pedestrians Cyclists

Easy Mod. Hard Easy Mod. Hard

BBOX

PointPillars 59.54 56.14 54.29 86.23 70.24 66.87

FusionPillars 63.58 58.21 54.55 90.88 73.18 69.99

Delta 4.04 2.07 0.26 4.65 2.94 3.11

BEV

PointPillars 57.89 53.05 49.73 82.36 63.63 60.31

FusionPillars 62.33 55.46 50.13 87.63 66.56 62.67

Delta 4.44 2.41 0.40 5.27 2.93 2.36

3D

PointPillars 53.32 47.76 44.80 71.82 56.62 52.98

FusionPillars 55.87 48.42 45.42 80.62 59.43 55.76

Delta 2.55 0.66 0.62 8.80 2.81 2.78

AOS

PointPillars 45.06 42.51 41.08 85.67 67.98 64.59

FusionPillars 46.44 41.98 39.06 90.43 70.49 67.38

Delta 1.38 −0.53 −2.02 4.76 2.51 2.79

4.5.2. Results with Multi-Modal Networks

FusionPillars is a one-stage multi-modal network. So, in this section, we compare
FusionPillars with other fusion networks (LIDAR and RGB images).

Firstly, we compare it with other one-stage fusion networks (FusionRCNN [24],
F-PointNet [28], HDNet [42], Cont-Fuse [43], and MVX-Net [44]) to demonstrate that Fu-
sionPillars are the better performing one-stage fusion network.

As can be seen from Table 3, FusionPillars achieves the best performance for various
difficulty objects. Among them, compared with the latest algorithm, MVX-Net, its mAP
is improved by 3.0%, 2.1%, and 7.4%, respectively, on the BEV benchmark; its mAP is
improved by 3.8%, 3.0%, and 7.8%, respectively, on the 3D benchmark.

Table 4 shows the comparison results with the two-stage fusion networks (AVOD-
FPN [9], IPOD [45], F-ConvNet [46], PointPainting [17], and H23D-RCNN [13]) under
the BEV benchmark. The two-stage fusion network has one more refinement stage com-
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pared to the one-stage network, including FusionPillars, and it has the advantage of high
average precision and the disadvantage of slow speed. As can be seen from the table,
although FusionPillars is only a one-stage network, it achieves the best detection of small
objects in several indicators, and it is not weaker than most two-stage fusion networks for
the detection of car objects.

Table 3. The comparison with 1-Stage multi-modal networks on the BEV and 3D benchmark.

Benchmark Network Easy Mod. Hard

BEV

F-PointNet 88.7 84 75.3

HDNet 89.1 86.6 78.3

Cont-Fuse 88.8 85.8 77.3

MVX-Net 89.2 85.9 78.1

FusionRCNN 89.9 86.45 79.32

FusionPillars 92.2 88.0 85.5

3D

F-PointNet 81.2 70.4 62.2

HDNet N/A N/A N/A

Cont-Fuse 82.5 66.2 64.0

MVX-Net 83.2 72.7 65.2

FusionPillars 87.0 75.7 73.0

Table 4. The comparison with 2-stage multi-modal networks on the BEV benchmark.

Network
Cars Pedestrains Cyclists

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D 86.62 78.93 69.8 N/A N/A N/A N/A N/A N/A

AVOD-FPN 90.99 84.82 79.62 58.49 50.32 46.98 69.39 57.12 51.09

IPOD 89.64 84.62 79.96 60.88 49.79 45.43 78.19 59.4 51.38

F-ConvNet 89.69 83.08 74.56 58.9 50.48 46.72 82.59 68.62 60.62

PointPainting 92.45 88.11 83.36 58.7 49.93 46.29 83.91 71.54 62.97

H23D RCNN 92.85 88.87 86.07 58.14 50.43 46.72 82.76 67.90 60.49

FusionPillars 92.15 88.00 85.53 62.33 55.46 50.13 87.63 66.56 62.67

4.6. Ablation Studies

We have conducted extensive experiments on the 3D benchmark of the KITTI dataset.
We verify the validity of SAS modules and PVC modules by comparing mAP. The result of
PointPillars is set as a baseline.

As can be seen from Table 5, on the 3D benchmark, SAS modules improve the mAP of
individual objects. Compared to the baseline, the mAP of pedestrians is boosted by 0.27%,
and the mAP of cyclists is boosted by 0.45%. In the SAS module, we also design dense
connections. Combined with dense connections, the detection capability of SAS modules
is further strengthened, with mAP for cars, pedestrians, and cyclists increasing to 76.75%,
48.96%, and 61.52%, respectively.

In the case of a single PVC module, compared with the baseline, our network improves
the mAP of three types of objects from 0.01% to 2.09%. The detection mAP of cyclists is
significantly improved (2.09%), and that of pedestrians is improved by 0.39%.

After the combination of the two modules, all the detection results have been further
boosted. Finally, the mAP of FusionPillars for three types of objects are boosted to 77.42%,
49.12%, and 63.95%, respectively.
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Table 5. Ablation experiments on the 3D benchmark.

SAS Dense PVC Cars Pedestrains Cyclists

8 8 8 76.68 48.62 60.47
4 8 8 76.71 48.89 60.92
4 4 8 76.75 48.96 61.52
8 8 4 76.69 49.01 62.56
4 4 4 77.86 49.37 63.95

To verify the effectiveness of the improved feature extraction network and detection
head in FusionPillars, we conducted additional ablation studies (Table 6) based on Table 5.
Where 8 represents the use of the corresponding module in the original PointPillars,
and 4 represents the use of the improved module from other papers. The deployment of
improved network architecture improved by 0.72%, 0.54%, and 1.32% in each of the three
object categories.

Table 6. Ablation experiments for network architecture.

Fea. Ext. Net. Dua. Bac. Det. Hea. Car. Ped. Cyc.

8 4 8 77.86 49.37 63.95
4 4 8 77.88 49.52 64.47
8 4 4 77.93 49.47 64.81
4 4 4 78.58 49.91 65.27

SAS modules and PVC modules can be deployed at different depths of the feature map,
which means that the network can continuously deepen the pyramid backbone structure
as long as the resolution allows. Figure 8 analyzes the detection speed and improvement
of AP by different layers. We choose (pedestrians, easy) as an indicator to analyze the
impact of pyramid layers on the network. The four solid lines represent the detection
AP under the four benchmarks (BBOX, BEV, 3D, AOS), and the dotted line represents
the time to detect each sample. From the trend of solid line and dotted line, it can be
seen that from the third layer, although increasing the number of layers can improve the
detection AP, the improvement is limited and tends to be flat; at the same time, the time
consuming for detecting each sample increase significantly. The reasons are analyzed
as follows. The detection of large objects depends on the small-scale feature map at the
pyramid backbone, because the small-scale feature map contains more obvious feature
information of large objects. Unlike the big objects, most of the semantic information of
small objects is stored in the large feature map. The smaller the feature map is, the weaker
the small object is. Therefore, in order to give consideration to the detection AP and speed,
we set the number of pyramid layers of the branch to 3.

Figure 8. The impact of different layers.
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4.7. Effectiveness Analysis

This subsection analyzes the effectiveness of the method by analyzing comparative
and ablation experiments.

The motivation of the method is supplementing object features and improving the
ability to expressions in order to expect to improve small object detection average precision.
As can be seen from Tables 1 and 4, we not only have particularly significant improvement
in small objects, but also the detection average precision of large objects is guaranteed.
Among them, there are some results that we did not achieve the best performance. The
reason for this is that some networks are two-stage networks. The two-stage networks
refine the proposal in the second stage to obtain the final detection results, and although
the detection average precision is improved, the detection speed becomes slower. Our
network, FusionPillars, is a one-stage network that is only faster, but also performs better.

The comparison experiment (Table 2) between FusionPillars and baseline illustrates
that the introduction of multi-modality indeed complements the features of the object,
improves the information representation of the feature map, and achieves the improvement
of small object detection average precision.

Comparative experiments (Table 3) with other classical 1-stage fusion networks illus-
trate the superior performance of FusionPillars.

In addition, the progressive improvement of the ablation studies (Table 5) demon-
strates the effectiveness of the two main fusion modules (PVC module and SAS module)
operating independently and operating jointly for the network. The experimental data in
Table 6 show the effectiveness of introducing the improved network.

5. Conclusions

In this paper, we propose a novel one-stage multi-modal detection network, FusionPil-
lars. It consists of a feature extraction network, a dual-fusion backbone, and a detection
head. The feature extraction network preprocesses the raw point cloud to generate a
pseudo-image. The dual-fusion backbone includes the SAS module and the PVC fusion
module. The SAS Fusion Module self-fuses point-wise features and voxel-wise features,
enhancing the spatial representation of the pseudo-image. The PVC fusion module cross-
fuses the pseudo-image and RGB image, and the semantic information of the RGB image
is given to the pseudo-image so that the pseudo-image has color expression capability.
These two modules effectively enhance the feature expression ability of small objects of
the pseudo-image by performing self-fusion and cross-fusion of point clouds and images.
A large number of experiments have verified the effectiveness of the SAS fusion module
and PVC fusion module.

For a long time, the biggest challenge faced by multi-modal network researchers has been
how to overcome the differences in two or more different data characteristics. So in the next
step, our research focus will still be on finding the relationships between data with different
characteristics in order to achieve better fusion methods to improve detection accuracy.
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