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Abstract: The unique geographical diversity and rapid urbanization across the Indian subcontinent
give rise to large-scale spatiotemporal variations in urban heating and air emissions. The complex
relationship between geophysical parameters and anthropogenic activity is vital in understanding
the urban environment. This study analyses the characteristics of heating events using aerosol
optical depth (AOD) level variability, across 43 urban agglomerations (UAs) with populations of a
million or more, along with 13 industrial districts (IDs), and 14 biosphere reserves (BRs) in the Indian
sub-continent. Pre-monsoon average surface heating was highest in the urban areas of the western
(42 ◦C), central (41.9 ◦C), and southern parts (40 ◦C) of the Indian subcontinent. High concentration of
AOD in the eastern part of the Indo-Gangetic Plain including the megacity: Kolkata (decadal average
0.708) was noted relative to other UAs over time. The statistically significant negative correlation
(−0.51) between land surface temperature (LST) and AOD in urban areas during pre-monsoon time
illustrates how aerosol loading impacts the surface radiation and has a net effect of reducing surface
temperatures. Notable interannual variability was noted with, the pre-monsoon LST dropping in
2020 across most of the selected urban regions (approx. 89% urban clusters) while it was high in 2019
(for approx. 92% urban clusters) in the pre-monsoon season. The results indicate complex variability
and correlations between LST and urban aerosol at large scales across the Indian subcontinent. These
large-scale observations suggest a need for more in-depth analysis at city scales to understand the
interplay and combined variability between physical and anthropogenic atmospheric parameters in
mesoscale and microscale climates.

Keywords: land surface temperature; aerosol optical depth; urban agglomeration; industrial districts;
biosphere reserve

1. Introduction

Urbanization and industrialization have led to a rise in pollution levels and increased
urban heating. The widespread urbanization likely leads to a large-scale scenario of urban
heating and pollution domes over the Indian subcontinent. Such pollutant loading can
have significant impacts on the environment and public health. Urban environments
and dwellers are heterogeneously impacted by different types of air pollution and urban
heating. This, inequity emphasizes the need for researching the impacts of urban pollution
islands (UPIs) and urban heat islands (UHIs) on local and regional scales [1]. The Indian
subcontinent, where 18.1% of the world’s population resides, was responsible for 26.2% of
the disability-adjusted life years caused by air pollution in the world in 2017 [2]. Assessing
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these issues requires a multi-faceted approach, including reducing emissions from vehicles
and industrial activity, increasing green space and urban forestry, and promoting public
transportation and sustainable urban planning.

During the pre-monsoon season, urban meteorological processes across the Indian
subcontinent due to lack of active rain events have a considerable impact on aerosol
optical depth (AOD) and air pollution loading, thereby affecting air quality [3]. In this
study, AOD, a unitless quantity, which quantifies the total amount of solar radiation
absorbed or scattered by particles suspended in the atmosphere at specific wavelengths
is used as a measure of aerosol loading [4]. Aerosols alter the surface-atmosphere energy
budget by directly reducing solar irradiance through absorption and scattering, altering
the tropospheric temperatures, and regionally warming or cooling the earth’s surface
temperature [5–9].

Anthropogenic aerosols from southern and eastern Asia are mainly found in an air
mass extending from the Indian Ocean to the North Pacific Ocean. The aerosol-induced
surface temperature changes have an impact on a local to global scale [10]. A notable dust
source region in southern Asia disperses the dust to form a crescent-shaped dust plume
extending from the Thar Desert to the Indo-Gangetic Plain in India. The pre-monsoon
(March, April, and May) period is the peak period for such dust transport. Mineral dust
transported from Africa, Arabia, and the Thar Desert as well as crop residue burning
in northwest India are often the main causes of the dust optical depth (DOD) over the
entire Indo-Gangetic plain [11–13]. The Indo-Gangetic Plain (IGP) in Southern Asia is a
global hot spot with unremitting high AOD as routinely monitored by a variety of satellite
remote sensors (MODIS, MISR, SeaWiFS), and ground-based sensors (AERONET) [14]. The
relationship between AOD and surface temperature was negative for both seasons (winter
& summer) over north-eastern India and the western coastal area around Mumbai [15].

The unique topography of the Indian subcontinent, particularly the Himalayan region
in the north and the Thar Desert in the west, is primarily responsible for its temperature
variation patterns [15]. Nearly all the climate zones in northwest, central, and western
India, as well as some subdivisions in the south, have experienced high temperatures and
an increasing number of hot days during the pre-monsoon period from March to May [16].
Climatologically, western and southern regions experience the warmest temperatures in
April, while northern regions experience the warmest temperatures in May [17].

A city’s near-surface air temperatures and land surface temperatures are of primary
interest in studying how anthropogenic activities interact with the urban environment
and urban climate and in observing how urbanization affects the environment. Studies
examining the surface urban heat island (SUHI) effect are based mainly on land surface
temperature (LST) estimates. LST is a prominent geophysical variable that can be estimated
remotely by satellite sensors (MODIS, AVHRR, etc.). It has been used in several SUHI-
related applications, including the estimation of surface fluxes and energy budgets [18,19].

In this study, LST and AOD were studied during the pre-monsoon (March–May) to
observe spatiotemporal variations in urban areas and biosphere reserves. An understand-
ing of the relationship between AOD and LST was also sought in different geophysical
environments across the Indian subcontinent. Worldwide, several studies show a negative
relationship between LST and AOD, while some show a positive one [20–26]. Increasing
AOD levels affect the earth’s energy budget by scattering and absorbing insolation. As a
result, the land surface may be cooled [23]. Based on a study conducted in Delhi in 2007
and 2008, high levels of AOD tend to have lower surface temperatures during daytime [20].
Researchers also have found that in urban centers of Berlin, incoming solar radiation was
reduced due to increased aerosols in the atmosphere (2010–2017), and the outgoing long-
wave radiation also increased with the aerosol levels in the atmosphere. With a correlation
coefficient of −0.31, the AOD shows a negative association with the LST, especially at
night when the longwave radiation is more significant [21]. Similar results have been
observed in Bengaluru including a negative correlation between urban and non-urban LST
and AOD. It was also found that AOD increased significantly in winter [22]. Most of the
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studies over the Indian subcontinent related to AOD and LST are in the Indo-Gangetic
Plain. A two-decade long analysis over the Ganga River Basin (2001–2019), showed LST is
negatively correlated with AOD. Incoming solar radiation is more likely to be absorbed by
aerosols [26]. In contrast, a similar two-decade long analysis of data over Dhaka showed a
positive correlation between AOD and LST (1999–2019) [25]. Elsewhere, across the entire
boreal region, no clear relationship between AOD and LST has been observed [27]. This
follows that AOD and LST have a complex relationship that is a function of the location,
season, and time of day. There is a gap in the literature due to the absence of a comparison
between the previously mentioned relationship in forests and urban areas. Therefore, it is
important to consider different geophysical settings of the Indian subcontinent to observe
the relation between the parameters.

2. Materials and Methods

In this study over the Indian region, 43 urban agglomerations (UAs) (Table 1) and
13 industrial districts (IDs) (Table 2) were initially identified to study the relationship
between geophysical parameters and their effects on the urban climate. As per the 2021
census, an urban agglomeration is a densely populated, continuously growing urban area
with a combined effect of two or more physically adjacent towns and their outgrowths
(OGs) or of two or more outgrowths of those towns. From the 2011 Census, an UA must
include at least one statutory town with a total population of at least 20,000 [28].

Table 1. Population data of urban agglomerations (UAs) according to the 2011 census.

Code Urban
Agglomeration Population Code Urban

Agglomeration Population

UA1 Kolkata 14,112,536 UA23 Surat 4,585,367
UA2 Asansol 1,243,008 UA24 Vadodara 1,817,191
UA3 Dhanbad 1,195,298 UA25 Rajkot 1,390,933
UA4 Ranchi 1,126,741 UA26 Mumbai 18,414,288
UA5 Jamshedpur 1,337,131 UA27 Pune 5,049,968
UA6 Patna 2,046,652 UA28 Nashik 1,562,769
UA7 Lucknow 2,901,474 UA29 Raipur 1,122,555
UA8 Kanpur 2,920,067 UA30 Durg-Bhilainagar 1,064,077
UA9 Allahabad 1,216,719 UA31 Hyderabad 7,749,334

UA10 Varanasi 1,435,113 UA32 Vijayawada 1,491,202
UA11 Meerut 1,424,908 UA33 Bangalore 8,499,399
UA12 Ghaziabad 2,358,525 UA34 Chennai 8,696,010
UA13 Agra 1,746,467 UA35 Coimbatore 2,151,466
UA14 Delhi 16,314,838 UA36 Madurai 1,462,420
UA15 Chandigarh 1,025,682 UA37 Kannur 1,642,892
UA16 Amritsar 1,183,705 UA38 Kozhikode 2,030,519
UA17 Jodhpur 1,137,815 UA39 Kollam 1,110,005
UA18 Gwalior 1,101,981 UA40 Thiruvanantapuram 1,687,406
UA19 Bhopal 1,883,381 UA41 Thrissur 1,854,783
UA20 Indore 2,167,447 UA42 Kochi 2,117,990
UA21 Jabalpur 1,267,564 UA43 Malappuram 1,698,645
UA22 Ahmedabad 6,352,254

The 13 industrial districts refer to a geographic concentration of small and medium
enterprises (SMEs) and some large firms in the same or related industries that are in close
proximity to each other. These districts are characterized by a strong emphasis on local
entrepreneurship and are highly specialized in several stages of the process and actively
involved in producing a specific product or group of products through a dense network of
inter-firm cooperative and competitive relationships [29]. In India, the Ministry of Micro,
Small and Medium Enterprises (MSME) have implemented The Cluster Development
Program, which provides financial and technical support to clusters of industries [30].
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Table 2. Population data of industrial districts (IDs) according to the 2011 census.

Code Industrial
Districts Population

ID1 Jalpaiguri 107,351
ID2 Purnia 280,547
ID3 Gorakhpur 671,048
ID4 Cuttak 606,007
ID5 Lucknow 2,901,474
ID6 Kanpur 2,920,067
ID7 Bareilly 898,167
ID8 Gwalior 1,101,981
ID9 Jabalpur 1,267,564
ID10 Bhopal 1,883,381
ID11 Nagpur 2,497,777
ID12 Kota 1,001,365
ID13 Hyderabad 7,749,334

To analyze the LST and AOD level variability and to identify the interaction between
the parameters, 14 biosphere reserve (BR) forests were also chosen (Table 3). A biosphere
reserve forest is a protected area that prohibits human interference to conserve forest
ecosystems [31].

Table 3. Selected biosphere reserves (BRs) for the study.

Code Biosphere
Reserve

BR1 Panna
BR2 Sundarban
BR3 Seshachalam
BR4 Nilgiri
BR5 Agasthyamalai
BR6 Khanchendzonga
BR7 Nokrek
BR8 Nanda Devi
BR9 Pachmarhi
BR10 Achanakmar-Amarkantak
BR11 Simlipal
BR12 Manas
BR13 Dibru-Saikhowa
BR14 Dihang-Dibang

The current secondary data from UNESCO shows that the Nokrek biosphere reserve
has a 90% forest cover while the Pachmarhi and Achanakmar-Amarkantak biosphere
reserves both have 63% forest cover [32–34]. The India State Forest Report 2021 [35] shows
the green cover percentage of some of the urban agglomerations (Table 4).

Table 4. Green cover percentage of some of the million-plus urban agglomerations (UAs) in India.

Urban Agglomerations Green Cover (%)

Ahmedabad 2.07
Bengaluru 6.81
Chennai 5.28

Delhi 12.61
Hyderabad 12.90

Kolkata 0.95
Mumbai 25.41
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2.1. Data Sources

AOD data were extracted for the period: 2010 to 2020, from the MODIS-TERRA
monthly Deep Blue Aerosol Optical Depth 550 nm product MOD08 M3 v6.1 at a spatial
resolution of 111 km at the equator. The data was downloaded using Giovanni, the
Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive
Online Visualization, and the NASA Analysis Infrastructure tool [36,37]. The daytime
pre-monsoon (March to May) LST was also extracted for the concurrent period (2010 to
2020) from the MODIS-TERRA monthly land surface temperature product MOD11C3.006
at 5.6 km at the equator also using Giovanni.

2.2. Data Mapping

ArcMap 10.4 was used for mapping urban agglomerations (UAs), industrial districts
(IDs), industrial regions, and biosphere reserve (BR) forests across the study domain (India).
The maps were created with the help of a georeferencing tool and digitized using point layer
in ArcMap. The grid analysis and display system (GrADS), an interactive desktop tool [38],
was used for mapping the time average map of LST and AOD, which was extracted as a
netCDF file from Giovanni. ArcMap was used to extract the LST and AOD values of the
UAs, IDs, and BRs for India through the point layer. The extracted pixel values were used
to understand the spatiotemporal distribution of LST and AOD values in India’s UAs, IDs,
and BRs. The LST anomaly was calculated using the following calculation:

LST of each UA for a specific year − average LST of each UA for that specific year (1)

The LST anomaly map was created using ArcMap and a raster calculator as follows.
The time series average LST map was created, and then subtracted from each LST map
(2010–2020). A point layer was generated to extract the anomaly values. The resulting LST
anomaly map shows the spatial patterns of the difference between the actual and average
LST values for each UA for a specific year. To comprehend the spatial distribution of LST
anomalies, the LST anomaly map pinpoints areas where LST was unusually high or low
compared to the average.

2.3. Data Analysis

As part of the spatiotemporal analysis, the percentage of annual change of values
calculation formula is used to determine how much the values of physical parameters have
changed over the past year. The calculation follows as:

(((Physical parameter value of subsequent year − Physical parameter value
of previous year)/Physical parameter value of previous year) × 100)

(2)

This normalization provides insights into the temporal variability of physical param-
eters. By analyzing the percentage of annual change in physical parameter values, it is
possible to identify areas or regions where significant changes are occurring and to investi-
gate the underlying causes of these changes. To analyze the variability of the parameters,
point layers have been generated through ArcMap. The pixel values of specific regions
have been extracted further.

For comparing two different resolution datasets AOD and LST, it is important to
account for their spatial mismatch. An interpolation method was used to integrate and
improve resolution for comparing two datasets in this study. In interpolation, new, am-
biguous data points are added to discrete, known points. Based on this, all interpolation
techniques find more similarities and correlations between close points than those that are
farther apart [39,40]. As the resolution improvement process does not include real data
points, there would be some accuracy estimation problems.
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As the LST values did not follow a normal distribution, the non-parametric Spearmen
rank-order correlation [41] was applied to find the correlation between AOD and LST. The
rank correlation coefficient, abbreviated rS, is typically written as:

rS = 1 −
6∑ d2

i
n3 − n

(3)

In this expression, ‘n’ represents the number of measurements for each of the two
variates in the correlation; di is obtained from the difference between each pair of ranks [42].
Although correlation by rank is generally a desirable method, gradation by rank is essen-
tially practicable in a short series [42]. One argument against rank is that it provides a
theoretically less complete criterion of correspondence than a normal distribution measure-
ment. However, the two methods provide roughly equivalent correlation values [42].

3. Results and Discussion

This study analyses the characteristics of heating events combined with AOD level
variability and their relationship in different UAs, IDs, and BRs across the Indian sub-
continent. The industrial regions and districts and the 14 biosphere reserves, which are
remote forest areas, were chosen for this study to observe and analyze their natural and
anthropogenic atmospheric processes (Figure 1, and Tables 1–3). In a large-scale scenario
of urban heating and pollution domes over the Indian subcontinent, several key factors
come into play: urbanization, industrialization, population growth, and geography. Rapid
urbanization and the impervious areas in cities lead to warming over cities and the for-
mation of UHIs. The presence of industries, power plants, and manufacturing units in
urban areas typically contributes to air pollution. Emissions from factories, vehicles, and
power generation release pollutants such as particulate matter (PM), nitrogen oxides (NOx),
sulfur dioxide (SO2), volatile organic compounds (VOCs), and greenhouse gases (GHGs)
such as carbon dioxide (CO2). The rapid increase in the number of vehicles, especially in
densely populated urban areas, leads to higher levels of air pollution. Exhaust emissions
from vehicles release harmful pollutants, including fine particulate matter and nitrogen
dioxide (NO2). Agricultural practices, waste burning, and cooking methods involving solid
fuels contribute to significant amounts of smoke and particulate matter, especially in rural
areas. These pollutants can be transported and trapped within urban heating and pollution
domes. Geographical features, including mountain ranges and wind patterns, influence
the formation and persistence of pollution domes. Local weather conditions, such as calm
winds or inversions, can stall pollutants within a specific region, exacerbating the situation.

3.1. Pre-Monsoon Aerosol Optical Depth (AOD)
3.1.1. Spatiotemporal Comparison of Aerosol Optical Depth (AOD) for Industrial Regions
(IDs) and Biosphere Reserves (BRs)

Comparison of the AOD levels of industrial regions and protected forest areas can
provide insights into the impact of industrial activities on the environment. It is important
to choose industrial relatively nearby regions, districts, and biosphere reserves of India
for such a comparison. The central points of 9 major industrial regions, 7 minor industrial
regions, 13 IDs, and 14 BRs with forest cover were chosen to compare the AOD level of
industrial regions and protected forest areas (Figure 2).

In Figure 3, the spatiotemporal variation of pre-monsoon AOD pixels indicates the
changing AOD variation across the Indo-Gangetic region, Utkal, and the Andhra plain
(greenish area except for the northeastern region). As the convergence zone shifts north-
ward during the pre-monsoon season, the surface itself is also intensely heated, causing
local convection associated with strong dust storms. These storms, mainly over north-
western India, yield a great deal of soil and mineral dust into the atmosphere [43]. Based
on the pixel values of time average maps of AOD, it is notable that the AOD levels vary
over time and across different regions in the Indian subcontinent.
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(UA5) Jamshedpur, (UA6) Patna,(UA7) Lucknow, (UA8) Kanpur, (UA9) Allahabad, (UA10)
Varanasi, (UA11) Meerut, (UA12) Ghaziabad, (UA13) Agra, (UA14) Delhi, (UA15) Chandigarh,
(UA16) Amritsar, (UA17) Jodhpur, (UA18) Gwalior, (UA19) Bhopal, (UA20) Indore, (UA21) Ja-
balpur, (UA22) Ahmedabad, (UA23) Surat, (UA24) Vadodara, (UA25) Rajkot, (UA26) Mum-
bai, (UA27) Pune, (UA28) Nasik, (UA29) Raipur, (UA30) Durg_Bhilainagar, (UA31) Hyder-
abad, (UA32) Vijayawada, (UA33) Bangalore, (UA34) Chennai, (UA35) Coimbatore, (UA36)
Madurai, (UA37) Kannur, (UA38) Kozhikode, (UA39) Kollam, (UA40) Thiruvananthapuram,
(UA41) Thrissur, (UA42) Kochi, (UA43) Malappuram and industrial districts (ID1) Jalpaiguri,
(ID2) Purnia, (ID3) Gorakhpur, (ID4) Cuttak, (ID5) Lucknow, (ID6) Kanpur, (ID7) Bareilly, (ID8)
Gwalior, (ID9) Jabalpur, (ID10) Bhopal, (ID11) Nagpur, (ID12) Kota, (ID13) Hyderabadand bio-
sphere reserves(BR1) Panna, (BR2) Sundarban, (BR3) Seshachalam, (BR4) Nilgiri, (BR5) Agasthya-
malai, (BR6) Khanchendzonga, (BR7) Nokrek, (BR8) Nanda Devi, (BR9) Pachmarhi, (BR10)
Achanakmar_Amarkantak, (BR11) Simlipal, (BR12) Manas, (BR13) Dibru_Saikhowa, (BR14) Di-
hang_Dibang in India.
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The Hooghli industrial region has the highest mean AOD level, followed by the
Bhojpur-Munger and Allahabad-Varanasi-Mirzapur industrial regions. Specifically, the
Hooghli industrial region and the Bhojpur-Munger industrial region have >0.6 AOD level
on average (Figure 4). Industrial districts situated in the Indo-Gangetic plain and the
eastern region of the Indian subcontinent also have higher AOD levels than other industrial
districts (Figure 4). Similarly, Sundarban (BR2), Nokrek (BR7), Manas (BR12), Simlipal
(BR11), and Dibru-Saikhawa (BR13) have higher AOD levels relative to other biosphere
reserves. Manas has the highest mean AOD level (Figure 5).
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The AOD levels in the central area of the industrial regions and districts are generally
higher than those in the nearest biosphere reserves, with the exception of the northeastern
region (Figure 5). Specifically, in the Hooghli industrial region in the eastern part of
the Indian subcontinent, the average pre-monsoon AOD level in the central point is
0.704, which is higher than the nearest biosphere reserve Sundarban (0.544), and the
same feature is noted for the industrial district Cuttack (0.544) and the nearest biosphere
reserve Simlipal (0.519).

However, in the northeastern region, the middle of the Brahmaputra valley industrial
region has a lower AOD level (0.531) compared to the Dibru-Saikhowa biosphere reserve
(0.534), which is also situated in the same industrial region. More in-depth study is needed
to understand the reason behind such anomaly. The high AOD levels noted across India
during the pre-monsoon period can have several impacts on the environment, climate,
and human health. It is important to note that the impacts of pre-monsoon AOD can vary
across different regions of India, depending on the sources and composition of aerosols,
local weather patterns, and other factors. Monitoring and understanding these impacts
are important for implementing effective air pollution control measures, climate change
mitigation strategies, and public health interventions.
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Figure 5. Spatiotemporal comparison of aerosol optical depth (AOD) level of industrial region and
biosphere reserve; Respective year_wise AOD level of BRs (a) BR8, (b) BR2, (c) BR6, (d) BR11, (e) BR13,
(f) BR14, (g) BR12, (h) BR7, (i) BR1, (j) BR10, (k) BR9, (l) BR3, (m) BR4, (n) BR5 and industrial regions
and industrial districts (1) Gurgaon_Delhi_Meerut, (2) Ambala_Amritsar, (3) Jaipur_Ajmer, (4) ID12,
(5) ID7, (6) ID6,(7) ID5, (8) ID3, (9) Chotonagpur, (10) Hooghli, (11) Bhojpur_Munger, (12) ID2, (13) ID1,
(14) ID4, (15) Brahmaputra Valley, (16) Bilaspur_Korba, (17) Indore_Dewas_Ujjain, (18) Durg_Raipur,
(19) ID10, (20) ID9, (21) ID8, (22) Vishakhapatnam_Guntur, (23) Bangalore_Tamilnadu, (24) Kol-
lam_Thiruvananthapuram, (25) Adilabad_Nizamabad, (26) Kolhapur_South Kannada, (27) Northern
Malabar, (28) Middle Malabar, (29) Hyderabad, (30) Gujrat, (31) Mumbai_Pune, (32) ID11.
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3.1.2. Pre-Monsoon Aerosol Optical Depth (AOD) Level of Urban Agglomerations (UAs)
and Industrial Districts (IDs)

Observing the AOD level of urban areas is important to understand the impact of
human activities and urbanization on air pollution. The 43 UAs and 13 IDs have been
analyzed further with regards to the AOD levels. The UAs and IDs were selected from
different regions with varying levels of industrialization and urbanization to compare the
AOD levels in these areas to identify the areas with the highest levels of air pollution.

The pixel values of time-series maps (Figure 3) indicate that Kolkata (Hooghli indus-
trial region) has a much higher AOD (decadal average 0.708) than other UAs throughout
the years due to the high concentration of AOD in the eastern portion of the Indo-Gangetic
Plain (Figure 4). AOD in Kolkata (UA1) reached its maximum values in 2018 (0.899) and
2019 (0.82). The Sundarban biosphere reserve, situated in the lower Indo-Gangetic plain,
about 100 km from Kolkata, had the highest pre-monsoon AOD level (0.749) in 2010, with
a corresponding annual increase of 51.40%, while the AOD level decreased by 74.73% in
2012 (Table S2). AOD concentrations were typically higher in eastern and north-eastern
urban areas in India, e.g., Kolkata and Cuttack (ID4), and at forest sites, e.g., the Sunderban
biosphere reserve, the Simlipal biosphere reserve, the Nokrek biosphere reserve, and the
Manas biosphere reserve. Marine aerosols originating from the Bay of Bengal and the
emission from biomass burning in the northeastern parts of India may also have some
impact on the high AOD levels there [44]. Throughout the study period (2010–2020), the
urban agglomerations Patna (UA6) (Bhojpur-Munger industrial region), Allahabad (UA9),
Varanasi (UA10) (Allahabad-Varanasi-Mirzapur), Meerut (UA11), Ghaziabad (UA12), and
Delhi (UA14) (Gurgaon-Delhi-Meerut industrial region), and the industrial districts Kan-
pur (ID6), Purnia (ID2), Gorakhpur (ID3), Bareilly (ID7), all located in the Indo-Gangetic
plain, also had higher AOD (decadal average > 0.54). High pre-monsoon AOD values
occurred in Patna (0.873), Agra (0.734), and Varanasi (0.712) in 2018. Since 1979, the TOMS
aerosol index over the Indo-Gangetic region in northern India showed an increasing trend
during the pre-monsoon months (March–April–May) [45]. While transitioning from the
winter season to the pre-monsoon season, the dust influx in northern India becomes more
pronounced than during the winter season of dense haze and fine-particle aerosols. Dust
activity typically increases during March and April and peaks in May, accompanied by
severe atmospheric pollution over northern India, resulting in maximum aerosol concentra-
tion in the pre-monsoon season [45,46]. In the Utkal plain, the industrial district Cuttack
has a 0.544 mean AOD level, while the nearest biosphere reserve Simlipal has a 0.510
mean AOD level. For 14 urban areas in southern India, e.g., Hyderabad (ID13), Banga-
lore (UA33) (Bangalore-Tamilnadu industrial region), Kannur (UA37) (Northern Malabar
industrial region), Kozhikode (UA38), Thrissur (UA41), Malappuram (UA43) (Middle
Malabar industrial region) Kollam (UA39), Thiruvananthapuram (UA40), Kochi (UA42)
(Kollam-Thiruvananthapuram industrial region), Vijayawada (UA32), Chennai (UA34),
Coimbatore (UA35), and Madurai (UA36), the mean pre-monsoonal AOD level was 0.414
in the study period (2010–2020). The highest mean AOD level was observed in Vijayawada
in the Andhra plain, with a decadal average > 0.54, and the highest pre-monsoonal AOD
(0.702) occurred in 2018. It appears that AOD in southern India is lower than in the north,
which may be due to aerosol transport by the land-sea winds. Regarding human-produced
aerosols in southern India, several factors contribute to them, including transportation and
electricity production, biomass used as fuel for cooking in rural areas, crop residue burning,
combustion products from small factories, and forest fires [47].

3.1.3. Pre-Monsoon Land Surface Temperatures (LSTs) in Urban Areas and
Their Characteristics

In the Indian subcontinent, in the western, central, and southern parts, a particular
pattern of surface heating can be identified in the spatiotemporal variations of pre-monsoon
land surface temperature (Figure 6).
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Increasing temperatures in urban areas are caused mainly by lower vegetation cover,
impervious surfaces, human-induced heating, and increased atmospheric pollution [48–50].
The pixel values of time series maps (Figure 6) denote that the UAs and IDs of the western part
of India have an average pre-monsoon LST level of 42 ◦C and show the highest pre-monsoon
average LST among other parts of India.

The second highest average pre-monsoon LST has been observed in the UAs and IDs
of the central part of India with an average pre-monsoon LST level of 41.9 ◦C. Pre-monsoon
LST levels in the upper southern part of India typically reach 40 ◦C in the UAs and IDs.
Meanwhile, the UAs and IDs in the Indo-Gangetic plain experienced an average pre-
monsoon LST level of 36.2 ◦C during the study period (2010–2020). Evaporative demand
depletes the soil moisture in surrounding non-urban areas before the end of March. LSTs
become much higher during April and May in India when air temperatures are also at their
highest [51]. Gautam et al. [45] found that in the Indo-Gangetic plain, each pre-monsoon
month displays a warming trend, but with the highest warming trend occurring in May
with 2.7 ◦C of statistically significant warming over the three decades 1979–2009.

3.1.4. Annual Pre-Monsoon Land Surface Temperature (LST) Level Percentage Change

It appears that there have been fluctuations in pre-monsoon LST percentages among
UAs and IDs in India from 2010–2020 (Figure S1, Table S3). In 2010–2011, UAs and IDs ex-
perienced an average pre-monsoon LST percentage decrease. However, this trend reversed
in the following year (2011–2012) with a 75% increase in pre-monsoon LST percentages.
The subsequent year (2012–2013) saw 66.07% of UAs and IDs experiencing LST increases in
the pre-monsoon season. The trend then shifted back to a decrease in pre-monsoon LST
percentages in 2013–2014 with a 58.93% decrease for UAs and IDs.

It is also noted that the pre-monsoon LST levels in 2020 were significantly different from
the previous year, as the pre-monsoon LST in 2019 was anomalously high. The LST values
notably decreased in several UAs and IDs. However, some studies observed that there was a
temporary decline in land surface temperatures in certain urban areas during the COVID-19
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pandemic [52,53]. For example, one study conducted in Wuhan, China, found that land surface
temperatures decreased during the city’s lockdown period due to reduced human activity and
associated reductions in energy consumption and vehicle emissions [52]. Another study in
India concluded that the lockdown measures implemented during the COVID-19 pandemic
had varying impacts on reducing the mean LST of different urban agglomerations, though
the magnitude of this impact has varied between urban areas due to multiple factors such as
regional land use, local meteorology, and climate [53].

3.1.5. Land Surface Temperatures (LST) Anomaly Map Showing Increasing and Decreasing
Trends during Pre-Monsoon (March–May) Season in India 2010–2020

The time series maps of the LST anomaly (Figure 7) denote the increasing LST anomaly
in 2010 and decreasing LST anomaly in the 2020 pre-monsoon season.
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Figure 7. Land surface temperature (LST) anomaly map showing increasing and decreasing trends
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A decline in pre-monsoon LST anomalies had been observed in 40 UAs and IDs out
of 56 UAs and IDs in 2020 (Table S4). The increasing or decreasing pattern or variable
suggests that the LST level of the 56 UAs and IDs reflects the influence of many factors,
such as climatological trends, geography, air quality, and level of industrial activity [53]. A
decline in pre-monsoon LST anomalies had been observed in 9 out of 14 BR forests in 2020,
including Pachmarhi (−3.77 ◦C), Panna (−2.92 ◦C), Agasthyamalai (−3.5 ◦C), Seshacha-
lam (−4.46 ◦C), Dibru-Saikhowa (−0.8 ◦C), Dihang-Dibang (−3.21 ◦C), Khanchendzonga
(−2.37 ◦C), Achanakmar-Amarkantak (−7.6 ◦C), and Simlipal (−0.46 ◦C). One exception
is Sundarban (105 km from Kolkata), where no notable change was observed during the
study period (2010–2020) (Table S5). Since anthropogenic activity was curbed across the
country to contain the spread of COVID-19, the severity and extent of forest and nearby
emissions were expected to dramatically decrease, as the vast majority of forest fires in
India are due to anthropogenic activity [54]. This may affect the LST level in forests.
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3.1.6. Year-Wise LST of Urban Agglomerations (UAs), Industrial Districts (IDs), and
Biosphere Reserves (BRs)

Most BRs have lower pre-monsoon LST levels compared to nearby UAs and IDs
(Figure 8). In the central part of India, the average pre-monsoon LST level of UAs and IDs
(41.9 ◦C) was higher than that of BRs (41.15 ◦C).
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Figure 8. Year_wise corresponding land surface temperature (LST) of urban agglomerations (UAs) and
industrial districts (IDs) and biosphere reserves (BRs); Respective year wise LST of UAs and IDs (ID1,
UA2, UA21, UA2, UA3, UA4, UA5, UA6, UA19, UA20, UA10, UA8, UA9, UA11, UA12, UA13, UA14,
UA15, UA16, UA17, UA18, UA19, UA20, UA21, UA22, UA23, UA24, UA25, UA26, UA27, UA28, UA29,
UA30, UA31, UA32, UA33, UA34, UA35, UA36, UA37, UA38, UA39, UA40, UA41, UA42, UA43, ID2,
ID3, ID4, ID5, ID6, ID7, ID8, ID9, ID10, ID11, ID12) and BRs (a) BR14, (b) BR15, (c) BR12, (d) BR7, (e) BR6,
(f) BR2, (g) BR1, (h) BR9, (i) BR10, (j) BR3, (k) BR4, (l) BR5, (m) BR11, (n) BR8.
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Similarly, in the upper southern part of India, the average pre-monsoon LST level
of UAs and IDs (40.6 ◦C) was also higher than that of BRs (38.6 ◦C) in the same region.
Forest-covered areas have lower LSTs relative to other land covers due to the combined
effects of albedo, surface roughness, and thermal properties [55–58].

However, the Seshachalam biosphere reserve (BR3) in the upper southern part of India
has the highest pre-monsoon LST level (43.3 ◦C) among all BRs and is also higher than the
UAs and IDs in the same region (Figure 8). The high LST level of the Seshachalam biosphere
reserve is possibly due to its geographic location situated in a semi-arid climate zone that
has a rugged topography with steep slopes, ridges, and sparse vegetation cover [59].

The pixel values indicate that BRs have lower pre-monsoon LST levels than nearby
UAs and IDs in most cases, but there were exceptions with high LST levels, such as the
Seshachalam biosphere reserve. The UAs, IDs, and BRs are distinct concepts that relate to
different aspects of human activity and environmental conservation. However, there can
be some interactions and relationships between these three entities, which can vary based
on their specific geographical context and management practices.

Within UAs, there can be variations in LST based on factors such as land use patterns,
building density, vegetation cover, and surface materials. By considering the relationship
between LST and IDs, it is possible to develop strategies that mitigate heat emissions,
reduce the impact on local temperatures, and promote sustainable development practices
that prioritize energy efficiency and environmental sustainability. BRs are often designated
to promote the conservation of biodiversity and sustainable development in the face of
climate resiliency. Monitoring LSTs within biosphere reserves can help assess the resilience
of these areas to climate impacts. Changes in LST can provide insights into temperature
trends, identify areas prone to heat stress, and guide conservation strategies to enhance the
adaptive capacity of ecosystems within biosphere reserves.

UAs contribute to the formation of UHIs. The higher LSTs in urban areas can impact the
microclimate within the urban agglomeration. The increased heat can affect local weather
patterns, precipitation, wind patterns, and the formation of clouds. It can also influence the
energy demand for cooling purposes, exacerbating the UHI and creating a feedback loop. IDs
often consist of factories, power plants, and other industrial facilities that release heat as a
byproduct of their operations. The waste heat generated by these activities can contribute to
elevated land surface temperatures in and around industrial districts.

3.2. Pre-Monsoonal Relationship between Land Surface Temperature (LST) and Aerosol Optical
Depth (AOD) in the Indian Subcontinent

As part of the spatiotemporal analysis, correlation analysis has been used. In the
56 urban agglomerations and industrial districts in the Indian subcontinent, there is a
statistically significant negative relationship between AOD and LST levels in the pre-
monsoon season (Figure 9, and Table 5).

Table 5. Correlation between pre-monsoon aerosol optical depth (AOD) and land surface temperature
(LST) in urban agglomerations (UAs) and industrial districts (IDs).

Year Correlation p-Value

2010 −0.44 0.000633
2011 −0.63 1.99 × 10−7

2012 −0.65 7.20 × 10−8

2013 −0.61 5.19 × 10−7

2014 −0.49 0.000122
2015 −0.39 0.002639
2016 −0.52 4.32 × 10−5

2017 −0.52 4.18 × 10−5

2018 −0.38 0.004166
2019 −0.52 3.29 × 10−5

2020 −0.46 0.00039
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This denotes that as AOD levels increase, LST levels tend to decrease, possibly due to
the solar dimming effect, as the thick layer of aerosol acts as a barrier to incoming solar radi-
ation and can reduce surface insolation, resulting in a lower surface temperature [23,45,60].
Sen Roy [15] also observed in a study on the Indo-Gangetic plain that AOD was generally
negatively related to temperature to some extent over the urban domain.

This relationship was strongest in 2012 with a correlation coefficient of −0.65 but
weakened in 2018 with a coefficient of −0.38 (Table 5). However, in biosphere reserves in
the Indian subcontinent, there does not appear to be a significant relationship between
AOD and LST levels (Figure 9 and Table 6).

Table 6. Correlation between pre-monsoon aerosol optical depth (AOD) and land surface temperature
(LST) in biosphere reserves (BRs).

Year Correlation p-Value

2010 −0.14 0.6369
2011 −0.45 0.1022
2012 −0.22 0.4549
2013 −0.19 0.5126
2014 −0.40 0.154
2015 −0.06 0.8403
2016 −0.17 0.5528
2017 −0.24 0.4001
2018 0.13 0.6696
2019 −0.48 0.08142
2020 −0.44 0.1178
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This suggests that the factors influencing LST levels in BRs may be different from
those in UAs and IDs.

4. Conclusions

This study used time series analysis to examine spatiotemporal variations, character-
istics, and correlations between natural and anthropogenic physical parameters in urban
areas. The pre-monsoonal season (March–May) data of LST and AOD of the Indian sub-
continent during 2010–2020, shed light on both large-scale and regional-scale atmospheric
characteristics. AOD and LST are important parameters for studying the air quality and
thermal environment of a region, and they can be affected by various factors such as human
activities, weather conditions, vegetation cover, and topography.

As shown by the time series analysis, the Indo-Gangetic plain, especially the eastern
portion, including Kolkata had higher AOD concentrations throughout the study period
(decadal average 0.708). Whereas the urban areas of the western (decadal average 42 ◦C),
central (decadal average 41.9 ◦C), and southern regions (decadal average 40 ◦C) of the
Indian subcontinent experienced the highest pre-monsoon surface heating. During the
2020 pre-monsoon season, there was a decrease (for 89% urban areas) in LSTs compared
to the previous year. Urban agglomerations and industrial districts are characterized by
high levels of anthropogenic activities such as transportation, industrial production, and
energy consumption, which can lead to increased emissions of particulate matter and other
pollutants that can affect AOD and LST levels.

An increased concentration of AOD impacts the energy budget and reduces sur-
face temperature, as evidenced by the negative correlation (average −0.51) between pre-
monsoonal time-averaged LST and AOD in UAs and IDs. The correlation analysis also
pointed out that other factors can influence LST levels in BRs, and these factors may be
different from those in urban and industrial areas. In contrast to the AOD and LST rela-
tionship in urban areas, biosphere reserves may have lower levels of human activity and
more natural vegetation cover, which can have a moderating effect on AOD and LST levels.
Additionally, topographical factors such as altitude, slope, and aspect can also influence
local climate patterns and affect AOD and LST levels.

Compared to non-forested areas, forests have different thermal patterns due to the
vegetation’s ability to provide shade, change the microclimate, and affect the local energy
balance. To fully understand the relationship between LST and AOD in forests, it is
important to consider the unique features of the forest ecosystem as well as the regional
environmental factors that may affect this relationship. It is significant to further study in a
more detailed way these factors and their effects on mesoclimate and microclimate patterns.
Other possible influencing geophysical factors can be studied to better understand them
and their practical use for policymakers.

Addressing urban heating and pollution domes requires a multi-faceted approach.
Implementing green building practices, incorporating green spaces, and promoting sus-
tainable transportation systems can help mitigate the UHI effects and reduce pollution.
Encouraging the adoption of renewable energy sources and improving energy efficiency
can reduce the reliance on fossil fuels and lower emissions from power generation and
transportation. Raising awareness about the impacts of urban heating and pollution on
health and the environment is important.

This study has some notable limitations, such as the use of the point layer to derive
pixel-based values of LST and AOD for selected UAs, IDs, and BRs; this method may
cause some observational and analysis errors. Another limitation is the use of interpolation
algorithms for image enhancement; this estimates the values of missing pixels based on
the pixels around them, and this estimation process can cause errors and distortions in the
image. These errors and distortions may affect the correlation result slightly. The large-scale
observations of this study serve as preliminary work before looking at the physics and
chemistry behind the combined variations of atmospheric parameters on smaller scales in
mesoclimates and microclimates.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15102681/s1, Table S1. Annual pre-monsoon AOD level per-
centage change of 43 urban agglomerations and 13 industrial districts. Table S2. Annual pre-monsoon
AOD level percentage change of 14 biosphere reserves. Table S3. Annual pre-monsoon LST level
percentage change of 43 urban agglomerations and 13 industrial districts. Table S4. LST anomaly
of pre-monsoon average LST of 43 urban agglomerations and 13 industrial districts. Table S5. LST
anomaly of pre-monsoon average LST of 14 biosphere reserves. Figure S1. Annual pre-monsoon LST
level percentage change.

Author Contributions: T.C.: Conceptualization, methodology, software, validation, and formal analy-
sis, resources, data curation, writing—original draft preparation, writing—review and editing, visual-
ization; D.D.: Conceptualization, writing—review, visualization, supervision; R.H.: Writing—review,
visualization, supervision; A.K.: Conceptualization, writing—review, visualization, supervision;
D.N.: Conceptualization, writing—review, supervision. All authors have read and agreed to the
published version of the manuscript.

Funding: T.C. would like to express her gratitude to the UGC Junior Research Fellowship (India),
grant number UGC-Ref No.: 3421/(NET-DEC 2018), for funding this research. D.N. acknowledges
the William Stamps Farish Chair endowments at the University of Texas at Austin.

Data Availability Statement: Data used in this paper are open source; they can be downloaded from
the official site https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 8 December 2022) without
any charges. More information about the results and analysis is available on reasonable request to
the corresponding author.

Acknowledgments: T.C. and D.D. would like to thank the Department of Architecture of Jadavpur
University, Kolkata for providing the laboratory and computational facilities for the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crutzen, P.J. New Directions: The growing urban heat and pollution “island” effect—Impact on chemistry and climate. Atmos.

Environ. 2004, 38, 3539–3540. [CrossRef]
2. Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.D.; Beig, G.; Joshi, T.K.; Aggarwal, A.N.;

et al. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of
Disease Study 2017. Lancet Planet. Health 2019, 3, e26–e39. [CrossRef] [PubMed]

3. Khan, A.; Khorat, S.; Khatun, R.; VanDoan, Q.; Nair, U.S.; Niyogi, D. Variable impact of COVID-19 lockdown on air quality across
91 Indian cities. Earth Interact. 2021, 25, 57–75. [CrossRef]

4. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2016 (GBD 2016); Institute for Health Metrics and
Evaluation (IHME): Seattle, WA, USA, 2017.

5. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere: Aerosols, climate, and the hydrological cycle. Science 2001,
294, 2119–2124. [CrossRef]

6. Wang, H.; Shi, G.Y.; Zhang, X.Y.; Gong, S.L.; Tan, S.C.; Chen, B.; Che, H.Z.; Li, T. Mesoscale modeling study of the interactions
between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region-Part 2:
Aerosols’ radiative feedback effects. Atmos. Chem. Phys. Discuss. 2014, 14, 28269–28298. [CrossRef]

7. Wang, Z.; Lin, L.; Yang, M.; Guo, Z. The Role of Anthropogenic Aerosol Forcing in Interdecadal Variations of Summertime
Upper-Tropospheric Temperature Over East Asia. Earth’s Future 2019, 7, 136–150. [CrossRef]

8. Das, S.; Giorgi, F.; Giuliani, G.; Dey, S.; Coppola, E. Near-Future Anthropogenic Aerosol Emission Scenarios and Their Direct
Radiative Effects on the Present-Day Characteristics of the Indian Summer Monsoon. J. Geophys. Res. Atmos. 2020, 125,
e2019JD031414. [CrossRef]

9. Grey, I.; Arora, T.; Thomas, J.; Saneh, A.; Tohme, P.; Abi-habib, R. Since January 2020 Elsevier has created a COVID-19 resource
centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is
hosted on Elsevier Connect, the company’ s public news and information. Psychiatry Res. 2020, 14, 293.

10. Merikanto, J.; Nordling, K.; Räisänen, P.; Räisänen, J.; O’donnell, D.; Partanen, A.I.; Korhonen, H. How Asian aerosols impact
regional surface temperatures across the globe. Atmos. Chem. Phys. 2021, 21, 5865–5881. [CrossRef]

11. Kumar, R.; Barth, M.C.; Pfister, G.G.; Naja, M.; Brasseur, G.P. WRF-Chem simulations of a typical pre-monsoon dust storm in
northern India: Influences on aerosol optical properties and radiation budget. Atmos. Chem. Phys. 2014, 14, 2431–2446. [CrossRef]

12. Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and
their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 1–36. [CrossRef]

13. Prasad, A.K.; Singh, S.; Chauhan, S.S.; Srivastava, M.K.; Singh, R.P.; Singh, R. Aerosol radiative forcing over the Indo-Gangetic
plains during major dust storms. Atmos. Environ. 2007, 41, 6289–6301. [CrossRef]

https://www.mdpi.com/article/10.3390/rs15102681/s1
https://www.mdpi.com/article/10.3390/rs15102681/s1
https://giovanni.gsfc.nasa.gov/giovanni/
https://doi.org/10.1016/j.atmosenv.2004.03.032
https://doi.org/10.1016/S2542-5196(18)30261-4
https://www.ncbi.nlm.nih.gov/pubmed/30528905
https://doi.org/10.1175/EI-D-20-0017.1
https://doi.org/10.1126/science.1064034
https://doi.org/10.5194/acpd-14-28269-2014
https://doi.org/10.1029/2018EF001052
https://doi.org/10.1029/2019JD031414
https://doi.org/10.5194/acp-21-5865-2021
https://doi.org/10.5194/acp-14-2431-2014
https://doi.org/10.1029/2012RG000388
https://doi.org/10.1016/j.atmosenv.2007.03.060


Remote Sens. 2023, 15, 2681 19 of 20

14. Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P.R.; Diehl, T.L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; et al. A
multi-model evaluation of aerosols over South Asia: Common problems and possible causes. Atmos. Chem. Phys. 2015, 15,
5903–5928. [CrossRef]

15. Roy, S.S. Impact of aerosol optical depth on seasonal temperatures in India: A spatio-temporal analysis. Int. J. Remote Sens. 2008,
29, 727–740. [CrossRef]

16. Kothawale, D.R.; Revadekar, J.V.; Kumar, K.R. Recent trends in pre-monsoon daily temperature extremes over India. J. Earth Syst.
Sci. 2010, 119, 51–65. [CrossRef]

17. Available online: https://mausam.imd.gov.in/imd_latest/contents/ar2020.pdf (accessed on 25 May 2022).
18. Keramitsoglou, I.; Daglis, I.A.; Amiridis, V.; Chrysoulakis, N.; Ceriola, G.; Manunta, P.; Maiheu, B.; De Ridder, K.; Lauwaet, D.;

Paganini, M. Evaluation of satellite-derived products for the characterization of the urban thermal environment. J. Appl. Remote
Sens. 2012, 6, 061704. [CrossRef]

19. Chakraborty, K.; Raju, P.L.N. Remote sensing technique-a tool for environmental studies. ADBU J. Eng. Technol. Chakraborty 2017,
6, 1–6.

20. Pandey, P.; Kumar, D.; Prakash, A.; Kumar, K.; Jain, V.K. A Study of the Summertime Urban Heat Island over Delhi. Int. J. Sustain.
Sci. Stud. 2009, 1, 27–34.

21. Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between Urban Heat Island and Urban
Pollution Island during Summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [CrossRef]

22. Sussman, H.S.; Ajay Raghavendra, A.; Zhou, L. Impacts of increased urbanization on surface temperature, vegetation, and
aerosols over Bengaluru, India. Remote Sens. Appl. Soc. Environ. 2019, 16, 100261. [CrossRef]

23. Sarthi, P.P.; Kumar, S.; Barat, A.; Kumar, P.; Sinha, A.K.; Goswami, V. Linkage of Aerosol Optical Depth with Rainfall and
Circulation Parameters over the Eastern Gangetic Plains of India. J. Earth Syst. Sci. 2019, 128, 171. [CrossRef]

24. Han, W.; Li, Z.; Wu, F.; Zhang, Y.; Guo, J.; Su, T.; Cribb, M.; Fan, J.; Chen, T.; Wei, J.; et al. The Mechanisms and Seasonal
Differences of the Impact of Aerosols on Daytime Surface Urban Heat Island Effect. Atmos. Chem. Phys. 2020, 20, 6479–6493.
[CrossRef]

25. AlFaisal, A.; Rahman, M.M.; Haque, S. Retrieving Spatial Variation of Aerosol Level over Urban Mixed Land Surfaces Using
Landsat Imageries: Degree of Air Pollution in Dhaka Metropolitan Area. Phys. Chem. Earth 2022, 126, 103074. [CrossRef]

26. Mal, S.; Rani, S.; Maharana, P. Estimation of Spatio-Temporal Variability in Land Surface Temperature over the Ganga River Basin
Using MODIS Data. Geocarto Int. 2022, 37, 3817–3839. [CrossRef]

27. Mielonen, T.; Hienola, A.; Merikanto, J.; Lipponen, A.; Laakso, A.; Bergman, T.; Korhonen, H.; Kolmonen, P.; Ghent, D.; Arola, A.; et al.
The Climatic Significance of Biogenic Aerosols in the Boreal Region Now and in the Future. Authorea Prepr. 2018, 5–6. [CrossRef]

28. Census 2021-Formation of Urban Agglomerations.pdf. Available online: https://censusindia.gov.in/nada/index.php/catalog/
40512/download/44144/ORGI_circular003_2021.pdf (accessed on 1 January 2023).

29. Putnik, D.G.; Cruz-Cunha, M.M. Encyclopedia of Networked and Virtual Organizations (3 Volumes); IGI Global: Hershey, PA,
USA, 2008. [CrossRef]

30. Available online: https://msme.gov.in/ (accessed on 1 January 2022).
31. Available online: https://en.unesco.org/biosphere/about/ (accessed on 1 January 2023).
32. Available online: https://en.unesco.org/biosphere/aspac/nokrek (accessed on 28 April 2023).
33. Available online: https://en.unesco.org/biosphere/aspac/pachmarhi (accessed on 28 April 2023).
34. Available online: https://en.unesco.org/biosphere/aspac/achanakmar-amarkantak (accessed on 28 April 2023).
35. Available online: https://fsi.nic.in/forest-report-2021-details (accessed on 28 April 2023).
36. Acker, J.G.; Leptoukh, G. Online analysis enhances use of NASA Earth Science Data. Eos Trans. Am. Geophys. Union 2007, 88,

14–17. [CrossRef]
37. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 20 May 2022).
38. Available online: http://cola.gmu.edu/grads/ (accessed on 2 March 2022).
39. Aftab, H.; Mansoor, A.B.; Asim, M. A New Single Image Interpolation Technique for Super Resolution. In Proceedings of the 2008

IEEE International Multitopic Conference, Karachi, Pakistan, 23–24 December 2008; pp. 592–596. [CrossRef]
40. Setianto, A.; Triandini, T. Comparison of Kriging and Inverse Distance Weighted (Idw) Interpolation Methods in Lineament

Extraction and Analysis. J. Appl. Geol. 2015, 5, 21–29. [CrossRef]
41. Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [CrossRef]
42. Zar, J.H. Significance Testing of the Spearman Rank Correlation Coefficient. J. Am. Stat. Assoc. 1972, 67, 578–580. [CrossRef]
43. Acharya, P.; Sreekesh, S. Seasonal variability in aerosol optical depth over India: A spatio-temporal analysis using the MODIS

aerosol product. Int. J. Remote Sens. 2013, 34, 4832–4849. [CrossRef]
44. Singh, N.; Mhawish, A.; Deboudt, K.; Singh, R.S.; Banerjee, T. Organic aerosols over Indo-Gangetic Plain: Sources, distributions

and climatic implications. Atmos. Environ. 2017, 157, 59–74. [CrossRef]
45. Gautam, R.; Hsu, N.C.; Lau, K.M.; Tsay, S.C.; Kafatos, M. Enhanced pre-monsoon warming over the Himalayan-Gangetic region

from 1979 to 2007. Geophys. Res. Lett. 2009, 36, 1–5. [CrossRef]
46. Gautam, R.; Hsu, N.C.; Tsay, S.C.; Lau, K.M.; Holben, B.; Bell, S.; Smirnov, A.; Li, C.; Hansell, R.; Ji, Q.; et al. Accumulation

of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: Distribution, properties and radiative effects
during the 2009 pre-monsoon season. Atmos. Chem. Phys. 2011, 11, 12841–12863. [CrossRef]

https://doi.org/10.5194/acp-15-5903-2015
https://doi.org/10.1080/01431160701352121
https://doi.org/10.1007/s12040-010-0008-7
https://mausam.imd.gov.in/imd_latest/contents/ar2020.pdf
https://doi.org/10.1117/1.JRS.6.061704
https://doi.org/10.1016/j.scitotenv.2018.04.254
https://doi.org/10.1016/j.rsase.2019.100261
https://doi.org/10.1007/s12040-019-1204-8
https://doi.org/10.5194/acp-20-6479-2020
https://doi.org/10.1016/j.pce.2021.103074
https://doi.org/10.1080/10106049.2020.1869331
https://doi.org/10.1002/essoar.10500840.1
https://censusindia.gov.in/nada/index.php/catalog/40512/download/44144/ORGI_circular003_2021.pdf
https://censusindia.gov.in/nada/index.php/catalog/40512/download/44144/ORGI_circular003_2021.pdf
https://doi.org/10.4018/978-1-59904-885-7
https://msme.gov.in/
https://en.unesco.org/biosphere/about/
https://en.unesco.org/biosphere/aspac/nokrek
https://en.unesco.org/biosphere/aspac/pachmarhi
https://en.unesco.org/biosphere/aspac/achanakmar-amarkantak
https://fsi.nic.in/forest-report-2021-details
https://doi.org/10.1029/2007EO020003
https://giovanni.gsfc.nasa.gov/giovanni/
http://cola.gmu.edu/grads/
https://doi.org/10.1109/INMIC.2008.4777808
https://doi.org/10.22146/jag.7204
https://doi.org/10.2307/1412159
https://doi.org/10.1080/01621459.1972.10481251
https://doi.org/10.1080/01431161.2013.782114
https://doi.org/10.1016/j.atmosenv.2017.03.008
https://doi.org/10.1029/2009GL037641
https://doi.org/10.5194/acp-11-12841-2011


Remote Sens. 2023, 15, 2681 20 of 20

47. Dey, S.; Rongali, G. Aerosol Climatology and Intercomparison. In Satellite Meteoreology and Remote Sensing; Indian Institute of
Technology: Delhi, India, 2014; pp. 1–17. Available online: https://web.iitd.ac.in/~sagnik/SN1.pdf (accessed on 2 January 2023).

48. Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88.
[CrossRef]

49. Grimmond, C.S.B.; Ward, H.C.; Kotthaus, S. How is urbanization altering local and regional climate? In The Routledge Handbook of
Urbanization and Global Environmental Change; Routledge: New York, NY, USA, 2016; pp. 1–10.

50. Hamdi, R.; Kusaka, H.; Van Doan, Q.; Cai, P.; He, H.; Luo, G.; Kuang, W.; Caluwaerts, S.; Duchêne, F.; Van Schaeybroek, B.; et al.
The State-of-the-Art of Urban Climate Change Modeling and Observations. Earth Syst. Environ. 2020, 4, 631–646. [CrossRef]

51. Kumar, R.; Mishra, V.; Buzan, J.; Kumar, R.; Shindell, D.; Huber, M. Dominant control of agriculture and irrigation on urban heat
island in India. Sci. Rep. 2017, 7, 14054. [CrossRef]

52. Hadibasyir, H.Z.; Rijal, S.S.; Sari, D.R. Comparison of Land Surface Temperature During and Before the Emergence of Covid-19
using Modis Imagery in Wuhan City, China. Forum Geogr. 2020, 34, 1–15. [CrossRef]

53. Nanda, D.; Mishra, D.R.; Swain, D. COVID-19 lockdowns induced land surface temperature variability in mega urban agglomer-
ations in India. Environ. Sci. Processes Impacts 2021, 23, 144–159. [CrossRef]

54. Gupta, A.; Bhatt, C.M.; Roy, A.; Chauhan, P. COVID-19 Lockdown a Window of Opportunity to Understand the Role of Human
Activity on Forest Fire Incidences in the Western Himalaya, India. Curr. Sci. 2020, 119, 390. [CrossRef]

55. Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined Climate and Carbon-Cycle Effects of
Large-Scale Deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [CrossRef]

56. Betts, R.A. Offset of the Potential Carbon Sink from Boreal Forestation by Decreases in Surface Albedo. Nature 2000, 408, 187–190.
[CrossRef] [PubMed]

57. Marland, G.; Pielke, R.A.; Apps, M.; Avissar, R.; Betts, R.A.; Davis, K.J.; Frumhoff, P.C.; Jackson, S.T.; Joyce, L.A.; Kauppi, P.; et al.
The Climatic Impacts of Land Surface Change and Carbon Management, and the Implications for Climate-Change Mitigation
Policy. Clim. Policy 2003, 3, 149–157. [CrossRef]

58. Peng, S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B. Afforestation in China Cools Local Land Surface
Temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [CrossRef] [PubMed]

59. Available online: https://www.britannica.com/place/Seshachalam-Hills/ (accessed on 3 March 2023).
60. Jin, M.; Shepherd, J.M.; Zheng, W. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing

and WRF Model Sensitivity Study. Adv. Meteorol. 2010, 2010, 681587. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://web.iitd.ac.in/~sagnik/SN1.pdf
https://doi.org/10.1111/j.1475-4959.2007.232_3.x
https://doi.org/10.1007/s41748-020-00193-3
https://doi.org/10.1038/s41598-017-14213-2
https://doi.org/10.23917/forgeo.v34i1.10862
https://doi.org/10.1039/D0EM00358A
https://doi.org/10.18520/cs/v119/i2/390-398
https://doi.org/10.1073/pnas.0608998104
https://doi.org/10.1038/35041545
https://www.ncbi.nlm.nih.gov/pubmed/11089969
https://doi.org/10.3763/cpol.2003.0318
https://doi.org/10.1073/pnas.1315126111
https://www.ncbi.nlm.nih.gov/pubmed/24516135
https://www.britannica.com/place/Seshachalam-Hills/
https://doi.org/10.1155/2010/681587

	Introduction 
	Materials and Methods 
	Data Sources 
	Data Mapping 
	Data Analysis 

	Results and Discussion 
	Pre-Monsoon Aerosol Optical Depth (AOD) 
	Spatiotemporal Comparison of Aerosol Optical Depth (AOD) for Industrial Regions (IDs) and Biosphere Reserves (BRs) 
	Pre-Monsoon Aerosol Optical Depth (AOD) Level of Urban Agglomerations (UAs) and Industrial Districts (IDs) 
	Pre-Monsoon Land Surface Temperatures (LSTs) in Urban Areas and Their Characteristics 
	Annual Pre-Monsoon Land Surface Temperature (LST) Level Percentage Change 
	Land Surface Temperatures (LST) Anomaly Map Showing Increasing and Decreasing Trends during Pre-Monsoon (March–May) Season in India 2010–2020 
	Year-Wise LST of Urban Agglomerations (UAs), Industrial Districts (IDs), and Biosphere Reserves (BRs) 

	Pre-Monsoonal Relationship between Land Surface Temperature (LST) and Aerosol Optical Depth (AOD) in the Indian Subcontinent 

	Conclusions 
	References

