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Abstract: The Wuwei area in the arid region of northwestern China is impacted by the harsh natural
environment and human activities, and the problem of ecological degradation is severe there. In order
to ensure the sustainable development of the regional social economy, it is necessary to monitor the
changes in vegetation in Wuwei and its corresponding nonlinear relationships with climate change
and human activities. In this study, the inter-annual and spatial–temporal evolution characteristics
of vegetation in Wuwei from 1982 to 2015 have been analyzed based on non-parametric statistical
methods. The analysis revealed that the areas of vegetation restoration and degradation accounted
for 77 and 23% of the total area of the research area, respectively. From 1982 to 1999, vegetation
degradation became extremely serious (14.4%) and was primarily concentrated in Gulang County and
the high-altitude areas in the southwest. Since the ecological restoration project was implemented in
2000, there have been prominent results in vegetation restoration. The geographically and temporally
weighted regression model shows that each climate factor has contributed to the vegetation restoration
in the Wuwei area during the last 34 years, with their contributions ranked as precipitation (71.2%),
PET (43.9%), solar radiation (34.8%), temperature (33.1%), and wind speed (31%). An analysis of the
land-use data with 30 m resolution performed in this study revealed that the conversion area among
land cover from 1985 to 2015 accounts for 14.9% of the total area. In it, the conversion area from
non-ecological land to ecological land accounts for 5.7% of the total area. The farmland, grassland,
and woodland areas have increased by 20.1, 20.6, and 8.5%, respectively, indicating that human
activities such as agricultural intensification and ecological restoration projects have played a crucial
role in vegetation restoration.

Keywords: NDVI trend; climate change; land-use change; geographical and temporal weighted
regression model

1. Introduction

Vegetation in arid areas is an important participator in carbon cycling, climate change,
and energy exchange [1–4], providing multiple ecosystem services and core human well-
being [5]. Since the end of the 20th century, with methods of model simulation and field
observation, many studies have found that vegetation in most areas worldwide has signifi-
cantly turned green [6–8], and that a series of human management measures (agricultural
intensification and ecological restoration projects) have increased vegetation coverage and
terrestrial carbon sinks [8,9]. At the same time, other human activities, such as farmland
expansion, urbanization, and land abandonment, have led to the alternating emergence
of vegetation greening and browning, thus increasing the uncertainty of vegetation and
ecosystem structure changes [9–12]. Vegetation change is primarily affected by the “fer-
tilization effect” of atmospheric CO2, climate change, nitrogen deposition, and land-use
change [6,9,13,14]. Vegetation in arid areas coupling humans and land is more vulnerable
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to climate and land-use changes. Therefore, clarifying the interactive effects of climate
change and human activity on the changing trend of vegetation is an important challenge
for scholars and decision makers to explore the stability of fragile ecosystems in arid ar-
eas [4,15]. In most areas of northwestern China, significant abrupt changes in vegetation
growth trends were observed since 1999 [11,16]. These changes primarily resulted from
the implementation of the ecological restoration project. A model-based prediction shows
that droughts caused by continued warming will occur more frequently in this century,
leading to the increased limitation on vegetation growth due to a lack of moisture in arid
areas [8,17,18]. It provides a potential platform for identifying the spatial–temporal changes
in vegetation growth trends and the interaction between vegetation dynamics and climate
change. Thus, long-term monitoring of the spatial–temporal evolution of system structure
and functions of dry land is an imperative research hotspot.

Previous studies primarily explored the responding mechanism of vegetation growth
trends to driving factors assuming a steady state of the vegetation trend change [19,20].
However, the vegetation trend change is a nonlinear and non-stationary process, which
will change with time [8,21]. Research has revealed that with an increase in CO2 concentra-
tion and continuous warming of global temperature during recent years, the large-scale
greening of vegetation has stagnated or even reversed to browning [8]. A lot of research
has established correlations between NDVI and major climate factors (precipitation, tem-
perature, and radiation) to investigate the vegetation changes on the global and regional
scales, especially in arid and semi-arid areas [22–25]. However, few studies have taken
into account the influences of wind speed and potential evapotranspiration on vegetation
trends. In fact, for drylands where ground surface evapotranspiration is greater than
precipitation, the introduction of this variable is conducive to the attribution analysis of
vegetation inter-annual changes.

Furthermore, the spatial heterogeneity of ground surface, the complexity of influencing
processes, and the diversity of influencing factors result in the differences and uncertainties
of vegetation responses in different areas to climate change [18,26,27]. Therefore, the attribu-
tion analysis methods based on linear assumptions may overlook its intrinsic trend changes
and driving factors. Due to the strong interactions between natural and human activities,
there is a nonlinear response relationship between vegetation and driving factors [21,28].
Linear attribution methods cannot quantify the relative importance of different climate
elements and human activities on the vegetation trend change. Thus, their influences could
be overestimated or underestimated [8,21,29]. At present, scholars mainly apply correla-
tion analysis, multiple regression, GeoDetector, and GWR methods in performing their
attribution analyses. Traditional regression models have the underlying assumption that
geographic variables are linear and homogeneous and neglect the characteristics of spatial–
temporal non-stationarity of environmental elements [30,31]. GeoDetector is a statistical
method that primarily explores spatial heterogeneity [27]. It can be used to characterize the
interactions of each factor and multiple factors and the features of strength, direction, and
linearity or non-linearity of such interactions [27]. GWR can reflect the non-stationary spa-
tial relationship through latitude and longitude. It is a method that measures the proximity
relationships of geographic locations with spatial distances based on the local-weighting
theory [32,33]. Therefore, it is necessary to disclose the nonlinear response relationships of
vegetation trends with climate change and human activities and their relative importance.
The geographical and temporal weighted regression model (GTWR) coupling both tempo-
ral and spatial factors is an extended geographical weighted regression model (GWR). With
the integration of spatial heterogeneity and temporal non-stationarity into the response
system of vegetation and climate change, GTWR can more effectively estimate the factor
parameters [30]. It can not only complete the processing of spatial influencing factors but
also more completely analyze the spatial–temporal variation mechanism of influencing
factors on vegetation trend change. Especially in the era of more coordinated and integrated
regional development, GTWR is more helpful for decision makers to perform differentiated
ecological protection and sustainable development management.
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Wuwei, located in the arid region of northwestern China, is the only oasis that sepa-
rates the Badain Jaran Desert and the Tengger Desert and is a critical zone carrying regional
human socioeconomic activities. Restricted by a harsh natural environment, the Wuwei area
suffers from severe ecological and environmental problems, such as land desertification,
soil erosion, vegetation browning, soil degradation, and reserve evolution. Furthermore,
the influences of socioeconomic activities, including urbanization expansion, population
explosion, and agricultural production activities in Wuwei City during recent years on
vegetation cannot be neglected [11,29,34]. Government policymakers and scholars started
to focus on ecological restoration issues. They drew on the wisdom of the masses and were
determined to change those adverse situations. Then, the grassland ecological restoration
and treatment projects have been continuously carried out, and the grassland grazing pro-
hibition and grass–livestock balance system have been fully implemented. In addition, a
series of wind erosion prevention, sand dune control, and afforestation measures have been
employed. Meanwhile, the layout of “protecting water sources in the south, securing oasis
in the middle, and addressing wind and sand in the north” will be optimized. However,
under the trend of more frequent droughts caused by continuous warming in the future,
the vegetation restoration status under a series of comprehensive treatment measures and
its nonlinear response relationship with climate change and human activities are yet to
be disclosed.

In this paper, Wuwei, the most ecologically fragile area in the northwestern arid region,
was selected as the research object to explore the nonlinear variation characteristics of the
spatial–temporal evolution of vegetation trends and its response relationship with climate
change and human driving factors. In this study, a comparative analysis has been further
performed on the spatial–temporal pattern evolution of vegetation trends in Wuwei during
the period of 1982–2015 and before and after the ecological restoration project implemented
in 2000. This research aims to understand the characteristics and driving factors of vegeta-
tion restoration in ecologically fragile areas and provide scientific evidence for ecological
restoration and protection under the background of climate change and increasing human
activities. Figure 1 shows the data processing andanalysis procedures in this study. The
main content of this research includes: (1) exploring the spatial–temporal nonlinear vari-
ation characteristics of vegetation trend in the Wuwei area during the three periods of
1982–2015, 1982–1999, and 2000–2015; (2) clarifying the nonlinear response relationship
between climate change and vegetation trend; and (3) quantifying the influences of human
activities on vegetation restoration based on 30 m high-resolution land-use data.
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Figure 1. Flow chart of this study.

2. Materials and Methods
2.1. Overview of the Research Area

The name Wuwei (36◦29′–39◦27′N, 101◦49′–104◦16′E) originates from the words “Mil-
itary might and accomplishments,” coined by the ambitious Emperor Wu of the Han
Dynasty to demonstrate the military power of his Han Empire. In ancient times, Wuwei
was also called “Liangzhou” and was a hub of the famous Silk Road in history. As the
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“eastern gate” of Hexi, Wuwei has been Hexi’s political, economic, and cultural center and
its “provincial capital” for centuries. Wuwei is a unique city of humanity and ecology. In
the south of Wuwei, there are the Qilian Mountains, and in the middle, there is the corridor
plain. The ice and snow meltwater from the Qilian Mountains flows into the Shiyang River
and others that traverse Wuwei, irrigating the oasis farmland alongside these rivers. In the
north, Wuwei borders the Tengger Desert, forming desert landscapes. Altitudes gradually
decrease from south to north, with elevations ranging from 1247 to 4853 m (Figure 2). The
average annual precipitation in Wuwei is 295.2 mm, with an average annual temperature
of 6.3 ◦C, sunshine duration of about 2200–30,320 h, and total annual radiation amount of
about 3234–3975 MJ/m2. The potential evapotranspiration in the north is relatively large.
Against the backdrop of population explosion, urbanization expansion, and accelerated
desertification, the mismatch between water supply and demand has been intensified, and
the ecological environment has been seriously degraded.
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2.2. Data Sources and Processing
2.2.1. NDVI Dataset

The GIMMS 3g NDVI dataset with a time resolution of 15 days comes from the NASA
Earth Exchange platform (http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/, accessed
on 1 January 2020). In order to remove the influences of atmospheric conditions, residual
clouds, and aerosol scattering on the NDVI data [35], in this study, the GIMMS 3g NDVI
data with a time interval of 15 days have been integrated into monthly NDVImax data
through the method of Maximum Value Composites (MVC). The monthly GIMMS 3g NDVI
dataset was further integrated into a growing season (from April to October, according to
the definition) NDVI dataset through the MVC method. Meanwhile, NDVI image elements

http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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with an annual mean value higher than 0.1 in the NDVImax data of the research area from
1982 to 2015 were extracted to represent vegetated areas for later analysis. The annual mean
value lower than 0.1 in the NDVImax data of the research area from 1982 to 2015 was defined
as a non-vegetation area. In order to be consistent with the spatial–temporal resolution of
the meteorological dataset, in this study, resampling was performed on the GIMMS NDVI
dataset with a spatial resolution of 500 m under the ArcGIS 10.3 environment.

2.2.2. Climate Dataset

The 1982–2015 time-series precipitation (PRE) and temperature (TEM) interpolation
datasets were provided by the Resource and Environmental Science Data Center (RESDC)
of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on 1 June 2020). These
datasets with a spatial resolution of 0.1◦ were obtained through interpolation with the
Australian ANUSPLIN software [36]. The influences of elevation and latitude significantly
correlated with precipitation and temperature in the meteorological elements. The eleva-
tion and latitude have been considered during the analysis and interpolation processes
of the ANUSPLIN software, which is based on the thin disk spline function principle.
Especially, it has a very good ability to describe the zonal distribution characteristics of
meteorological elements. Thus, compared with other interpolation methods, this method
can generate more accurate interpolation results. With the ANUSPLIN4.3 software, inter-
polation processes were applied to those meteorological data passing the quality control,
with point data converted into surface data. In this study, the cumulative precipitation
was used for calculating the growing-season precipitation, and daily temperatures were
used for calculating the average growing-season temperature. The wind speed (Wind) and
total solar radiation (RAD) datasets came from the China meteorological forcing dataset
(http://westdc.westgis.ac.cn, accessed on 1 June 2020). A spatial resolution of 0.1◦ and a
temporal resolution of 3 h were applied to these datasets. The total solar radiation dataset
was generated from the downward shortwave and downward longwave radiation datasets,
which were obtained by integrating the Global Land Data Assimilation System (GLDAS)
and Global Energy and Water Cycle Experiments-Surface Radiation Budget (GEWEX-SRB)
radiation dataset with the meteorological station data [37]. The daily dataset of poten-
tial evapotranspiration (PET) uses the Penman–Monteith formula recommended by the
World Food and Agriculture Organization (FAO). Based on the daily maximum temper-
ature, daily minimum temperature, solar radiation, daily mean relative humidity, and
average wind speed of each meteorological station to calculate PET. In this paper, the daily
data set of potential evapotranspiration was integrated into the growing season potential
evapotranspiration dataset from 1982 to 2015, and the spatial interpolation of potential
evapotranspiration data in the growing season in the Wuwei region was carried out by
inverse distance weighting (IDW) to obtain raster data with a spatial resolution of 500 m.
All the above climate data sets were resampled to a spatial resolution of 500 m to detect the
important climate-driving forces causing vegetation trend changes.

2.2.3. Other Auxiliary Data

The Digital Elevation Model (DEM) dataset with a spatial resolution of 30 m was
provided by the international science and technology data image-mirror website (http:
//www.gscloud.cn, accessed on 1 July 2020) of the Computer Network Information Center
of the Chinese Academy of Sciences. In this study, land-use and land-cover changes (LULC)
with a spatial resolution of 30 m in 1985 and 2015 were used to explore the changes in
land use. These land-use data were based on the Landsat-derived annual China land-cover
dataset obtained from the Google Earth Engine (GEE) platform [38].

2.3. Methods
2.3.1. Trend Analysis

In this study, the NDVI spatial–temporal evolution trend has been assessed through
the combination of Theil–Sen median trend analysis and Mann–Kendall test methods. The
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Theil–Sen median trend analysis method does not require data to follow a normal distribu-
tion and is robust to data errors [39]. Thus, this method has been widely used to explore
vegetation’s long time-series trend evolution processes as a robust non-parametric trend
statistical method [37,40]. The Mann–Kendall test was employed to judge the significance
of Sen’s slope [39]. This method does not require samples to follow a particular distribution,
nor is it disturbed by a few abnormal values. With the combination of ρ and |Z| values
obtained through the Theil–Sen method, the change trends of NDVI can be divided into
the following six classes: non-significant increase (slight increase) (ρ ≥ 0, |Z| ≤ 1.96);
significant increase under a confidence level of 0.05 (ρ ≥ 0, |Z| > 1.96); highly significant
increase under a confidence level of 0.01 (ρ ≥ 0, |Z| > 2.58); highly significant decrease
under a confidence level of 0.01 (ρ < 0, |Z| > 2.58); significant decrease under a confidence
level of 0.05 (ρ < 0, |Z| > 1.96); and non-significant decrease (slight decrease) (ρ < 0,
|Z| ≤ 1.96).

2.3.2. GTWR

In order to better resolve the spatial–temporal non-stationarity and heterogeneity
problems in exploring how climate change affects vegetation trends, a GTWR method that
introduces the time dimension has been applied in this paper. With this GTWR method,
not only the spatial heterogeneity and temporal non-stationarity have been introduced
in the analysis of the response relationship between vegetation and climate change, but
also the spatial–temporal non-stationarity characteristics of vegetation trend have been
taken into account in this study. In addition, a more effective multi-variable investigation
has been conducted on the effects of climate change on vegetation trends. The GTWR
method calculates the spatial–temporal weighting matrix by coupling temporal information
and spatial locations. Huang et al. (2010) have introduced more details on the method
implementation and parameters of GTWR [30]. In this study, 400 vector points in the
research area were randomly selected using the Create Random Points tool on the rcGIS
environment, with the meteorological elements and NDVI inter-annual component data
values from 1982 through 2015 of each point extracted. First, based on a correlation analysis,
the meteorological elements significantly correlated with NDVI were selected in this study.
Then, the variance inflation factor (VIF) of each meteorological variable selected was
calculated with the ordinary least squares regression model to judge the collinear feature
of each variable. A VIF higher than 7.5 indicates that there exist redundancy and multi-
collinearities among the explanatory variables, while a VIF lower than 7.5 indicates that
variables are independent of each other [30,35]. The meteorological elements (precipitation,
temperature, solar radiation, average wind speed, and PET) selected in this study all have
a VIF lower than 7.5. Thus, these variables will be incorporated into the GTWR model.

In this study, the following structure was used in the model algorithm:

NDVIi = β0(ui, vi, ti) + β1(ui, vi, ti)× PREi + β2(ui, vi, ti)× TEMi + β3(ui, vi, ti)× RADi
+β4(ui, vi, ti)×WINi + β5(ui, vi, ti)× PETi + εi

(1)

where NDVIi represents the growing-season NDVI value of the i image element in the
year ti; (ui, vi, ti) is the spatial–temporal coordinate of the I image element; β0(ui, vi, ti) is
the constant term of the i image element in the GTWR model; β1(ui, vi, ti), β2(ui, vi, ti),
β3(ui, vi, ti), β4(ui, vi, ti), and β5(ui, vi, ti) are the coefficients of precipitation, temperature,
solar radiation, wind speed, and potential evapotranspiration of the image element (ui, vi)
in the year (ti), respectively; and εi represents the error term. The following structure was
used to estimate each variable (k) and spatial–temporal location (i):

β(ui, vi, ti) =
[

XTW(ui, vi, ti)X
]1

XTW(ui, vi, ti)Y (2)

where W(ui, vi, ti) = diag(αi1, αi2, . . . , αin) is the spatial–temporal weight matrix. In this
study, the currently widely-used Gaussian distance decay function was combined with the
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spatial–temporal distance method proposed by Huang et al. (2010) [30] to measure the
spatial–temporal weights W.

The core of GTWR is the selection of weight function and bandwidth. The Gaussian
function was selected in this study as the spatial–temporal weight matrix function, and a
10-fold Cross Validation (CV) was performed to locate the optimal bandwidth. In this study,
the model performance was evaluated with the model goodness of fit (R2), root mean square
error (RMSE), and Akaichi Information Criteria (AICc). T-tests with significance levels of
0.05 (significant) and 0.01 (highly significant) were applied to examine the significance of
climate variables and vegetation response coefficients.

2.3.3. Land-Cover Transition

Different types of land use and land cover (LULC) usually have different levels of
ecological functions (Table 1). A land-use transition matrix was used in this study to
determine the amount and direction of the land-cover transition. Based on the LULC vector
data with a spatial resolution of 30 m, internal LULC transition in the region in 1985 and
2015 was measured. The transitional matrix, wherein the rows (columns) mean the LULC
categorical transition of land-use areas of 1985 (2015); the on-diagonal entries display a
persistence of categories. The loss column and the gain row indicate the gross loss and gross
gain by category in each land type during the period of 1985–2015, respectively. In order
to quantitatively and conveniently characterize the ecological and environmental changes
associated with land-use and land-cover changes, based on the research conducted by
Shao et al. (2010) and Li et al. (2017) [41,42], the land was classified as ecological land and
non-ecological land according to the ecosystem service functions of each land-cover type.
We defined forest, shrub, grassland, water (includes permanently or temporarily flooded
surfaces), snow/ice (surfaces permanently covered by snow throughout the summer), and
wetland as ecological land (EL), and barren (dune and rocky areas without vegetation
or fertile soil), impervious (includes urban, rural, and construction areas), and cropland
as non-ecological land (NEL) (Table 1). The other land types in 1985 were converted to
impervious land in 2015 and were defined as urbanization pixels. The conversion of other
land types in 1985 to ecological land types in 2015 was defined as an ecological restoration
pixel, and the conversion of other land types to farmland from 1985 to 2015 was defined as
an agricultural expansion pixel.

Table 1. Land use and land cover type and ecological land reclassify.

Number Land-Use/Land-Cover Type Ecological Land

1 Cropland No
2 Forest Yes
3 Shrub Yes
4 Grassland Yes
5 Water Yes
6 Snow/ice Yes
7 Wetland Yes
8 Barren No
9 Impervious No

3. Results
3.1. Temporal Variation Characteristics of Inter-Annual Vegetation Trends during the
Growing Season

In this study, a comparison analysis was performed on the vegetation growth trends
in Wuwei during the period of 1982–2015 and before and after the ecological restoration
project implemented in 2000 (Figure 3). The inter-annual variation of NDVI in Wuwei
during the period of 1982–2015 exhibited a significant increase trend at a rate of 0.007/yr
(p = 0.002). Vegetation growth trend during the period of 1982–1999 exhibited a signifi-
cant increase trend with a relatively low growth rate of 0.0014/yr (p = 0.002). After 2000,
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there was a relatively large fluctuation in the magnitude of NDVI and satisfying vegeta-
tion restoration, with NDVI presenting a significant increase under a rate of 0.0019/yr
(p = 0.033). In this study, the change in NDVI trend among different land-use types in
the Wuwei region showed that that the NDVI of forest and shrub was higher than that
of grassland and farmland, and the NDVI of farmland and shrub showed a significant
increasing trend (Figure 4). An analysis of the inter-annual variation of climate factors in
Wuwei during the period of 1982–2015 shows that temperature, solar radiation, and PET all
present a significant increasing trend (increased at an annual rate of 0.05 ◦C, 2.974 W/m2

and 0.012 mm, respectively) (Figure 5). During the last 34 years, the precipitation in Wuwei
has slightly decreased (decreased at an annual rate of −0.217 mm), and the average wind
speed there has slightly increased (increased at an annual rate of 0.004 m/s). It can be
concluded that on the inter-annual scale, temperature and solar radiation are the primary
climate factors that affect vegetation growth. Water stress increases with the decrease of
precipitation and increase of wind speed and PET. Furthermore, under the energy limitation
imposed by climate warming, vegetation presents a significant increasing trend.
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3.2. Spatial–Temporal Pattern Evolution of Growing Season Vegetation

In this study, a comparative analysis has been further performed on the spatial–
temporal pattern evolution of vegetation trends in Wuwei during the period of 1982–2015
and before and after the ecological restoration project implemented in 2000 (Figure 6).
The areas with vegetation growth and degradation trends in Wuwei during the period of
1982–2015 were cross-distributed, with the areas with vegetation degradation and growth
trends accounting for 23 and 77% of the total area of the research region, respectively
(Figure 6a). Among them, the areas with highly significant, significant, and slight degrada-
tion trends of NDVI during the period of 1982–2015 accounted for 1.4, 3.0, and 18.6% of the
total area of vegetation zone, respectively. These areas were mainly located in the south of
Minqin, Wuwei City, and most parts of Tianzhu Tibetan Autonomous County (Figure 2).
The areas with highly significant, significant, and slight increase trends of NDVI during
the last 34 years accounted for 28.1, 18.5, and 30.4% of the total area of vegetation zone,
respectively. From 1982 to 1999, the vegetation degradation trend in Wuwei was severe.
The areas with highly significant vegetation degradation during that period accounted for
14.4% of the total area of the vegetation zone (Figure 6b). These areas were primarily located
in Wuwei City and the high-altitude zones in the southwest. Before 1999, the areas with
vegetation growth trend in Wuwei accounted for 85.6% of the total area of the vegetation
zone (and the areas with highly significant, significant, and slight increase trends of NDVI
accounted for 57.9, 19.4, and 8.3% of the total area of the vegetation zone, respectively).
During the period of 2000–2015, the NDVI in Wuwei City presented an overall significant
increase trend, with magnitudes of vegetation growth relatively higher than those of other
periods. The areas with highly significant, significant, and slight increase trends of NDVI
accounted for 87.1, 11.1, and 2.3% of the total area of Wuwei City, respectively (Figure 6c). In
summary, it can be seen that significant vegetation restoration in Wuwei has been achieved
with the interaction of climate and human activities.
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3.3. Analysis of the Response of Vegetation in the Wuwei Area to Climate Change

In this study, the GTWR model has been used to analyze the response mechanism of
vegetation to climate change. The explanatory degree of GTWR in analyzing the effects of
climate change on vegetation is 0.86, p < 0.001, with a root mean square error of 0.07 and an
Akaike information criterion of 64.03. These indicators show that the response relationships
of NDVI with temperature, wind speed, precipitation, total solar radiation, and potential
evapotranspiration have a significant characteristic of spatial–temporal non-stationarity.

Based on the significance test results of response coefficients obtained through the
GTWR model (Figure 7), the contributions of climate elements on the increasing trends of
NDVI in Wuwei are ranked as follows: precipitation (71.2%), PET (43.9%), solar radiation
(34.8%), temperature (33.1%), and wind speed (31%). Among all the climate elements, wind
speed contributed the most (50%) to the NDVI decrease trends in Wuwei from 1982 to 2015,
followed by temperature (38.6%), solar radiation (32.9%), PET (30.1%) and precipitation
(2.5%). Except for the vegetation in the east of Minqin, which was negatively impacted by
precipitation, the vegetation in other areas all exhibited a significant positive correlation
with precipitation. The areas with highly significant and significant positive correlations
between vegetation and precipitation accounted for 50.9 and 20.3% of the total area of
the vegetation zone, respectively, while the areas with a significant negative response
relationship between precipitation and vegetation accounted for 2.5% of the total area of
that zone (Figure 7b). The areas with highly significant and significant negative response
relationships between temperature and vegetation accounted for 26.4 and 12.2% of the total
area of the vegetation zone, respectively. These areas were primarily located in grassland
and cropland areas in Wuwei City and Gulang. Meanwhile, the areas where there are
highly significant and significant positive response relationships between temperature and
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vegetation accounted for 15.3 and 17.8% of the total area of the vegetation zone, respectively
(Figure 7b). Moreover, these areas were primarily located in Minqin farmland, desert areas,
and forestland in the high-cold region of Tianzhu Tibetan Autonomous County. The
response relationship between total solar radiation and NDVI shows a similar pattern
to that of temperature distribution, but their spatial ranges vary. The areas with highly
significant and significant negative response relationships between total solar radiation and
NDVI accounted for 23.1 and 9.8% of the total area of the vegetation zone, respectively, with
the areas with highly significant and significant positive response relationships between
total solar radiation and vegetation accounting for 29.3 and 5.5% of the total area of that
zone, respectively (Figure 7c). The areas with highly significant and significant negative
response relationships between PET and NDVI accounted for 24.4 and 5.7% of the total area
of the vegetation zone, respectively. These areas were primarily located in the farmland
and desert areas in west Minqin and Wuwei City. The areas with highly significant and
significant positive response relationships between PET and vegetation accounted for 34.0
and 9.9% of the total area of the vegetation zone, respectively. Moreover, these areas were
primarily located in grassland and forestland in the high cold region of Tianzhu Tibetan
Autonomous County. Wind speed had a significant negative impact on the vegetation
in farmland and desert areas in Minqin, Wuwei City, and Wushao Mountain, with the
areas with highly significant and significant negative correlations between wind speed
and vegetation accounting for 28.8 and 21.2% of the total area of the vegetation zone,
respectively (Figure 7e). The areas with highly significant and significant positive response
relationships between wind speed and vegetation accounted for 22.0 and 9.0% of the
total area of the vegetation zone, respectively. These areas were primarily located in the
grassland and forestland areas in the south of the research area.

Remote Sens. 2023, 15, 2675 11 of 20 
 

 

response relationships between temperature and vegetation accounted for 26.4 and 12.2% 
of the total area of the vegetation zone, respectively. These areas were primarily located 
in grassland and cropland areas in Wuwei City and Gulang. Meanwhile, the areas where 
there are highly significant and significant positive response relationships between tem-
perature and vegetation accounted for 15.3 and 17.8% of the total area of the vegetation 
zone, respectively (Figure 7b). Moreover, these areas were primarily located in Minqin 
farmland, desert areas, and forestland in the high-cold region of Tianzhu Tibetan Auton-
omous County. The response relationship between total solar radiation and NDVI shows 
a similar pattern to that of temperature distribution, but their spatial ranges vary. The 
areas with highly significant and significant negative response relationships between total 
solar radiation and NDVI accounted for 23.1 and 9.8% of the total area of the vegetation 
zone, respectively, with the areas with highly significant and significant positive response 
relationships between total solar radiation and vegetation accounting for 29.3 and 5.5% of 
the total area of that zone, respectively (Figure 7c). The areas with highly significant and 
significant negative response relationships between PET and NDVI accounted for 24.4 
and 5.7% of the total area of the vegetation zone, respectively. These areas were primarily 
located in the farmland and desert areas in west Minqin and Wuwei City. The areas with 
highly significant and significant positive response relationships between PET and vege-
tation accounted for 34.0 and 9.9% of the total area of the vegetation zone, respectively. 
Moreover, these areas were primarily located in grassland and forestland in the high cold 
region of Tianzhu Tibetan Autonomous County. Wind speed had a significant negative 
impact on the vegetation in farmland and desert areas in Minqin, Wuwei City, and 
Wushao Mountain, with the areas with highly significant and significant negative corre-
lations between wind speed and vegetation accounting for 28.8 and 21.2% of the total area 
of the vegetation zone, respectively (Figure 7e). The areas with highly significant and sig-
nificant positive response relationships between wind speed and vegetation accounted for 
22.0 and 9.0% of the total area of the vegetation zone, respectively. These areas were pri-
marily located in the grassland and forestland areas in the south of the research area. 

 
Figure 7. Spatial–temporal distribution diagram of the response of vegetation in the Wuwei area to 
climate change. 
Figure 7. Spatial–temporal distribution diagram of the response of vegetation in the Wuwei area to
climate change.

3.4. Combined Analysis of NDVI Trends and LULC

In order to clarify whether the land-cover changes in Wuwei cause changes in vegeta-
tion trends and environment, the land-use and land-cover change conversion in Wuwei
was first analyzed in this research. The spatial pattern of land use and land cover in Wuwei
presents the dominance of grassland, farmland, and unused land in this area (Figure 8).
The conversions among land covers during the period of 1985–2015 had been relatively
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strong, with a conversion rate of 14.9% (Table 2). In other words, most landscapes had
not been disturbed (and these areas were primarily located in Minqin, accounting for
85.1% of the total area of the research zone). From the perspective of the net conversion
rate of each land type during the last 34 years, from 1985 through 2015, except for farm-
land, grassland, and forestland—which all presented a significant expansion trend—other
land-use types presented a decreasing trend to some extent. Among these land-use types,
wetland, snow/ice, water, and shrub exhibited the most significant decrease trend, with
a net conversion rate of 99.4, 94.7, and 92.3%, respectively, and impervious and barren
land had a relatively significant decrease trend, with net conversion rates of 29.8 and
8.4%, respectively (Table 2). The areas of farmland and grassland had increased by 20.1
and 20.6%, respectively, and their increases were mainly at the cost of the conversions of
ecological land and barren land. Barren land, grassland, and forestland contributed the
most to the increase in farmland, while the increase in grassland was primarily at the cost
of the decrease in the areas of barren land, cropland, and shrub. From the perspective of the
net increase area of each land-use type, the net increases in grassland, farmland, forestland,
and barren areas were 3299.8, 1560.5, 517.4, and 454.7 km2, respectively (Table 2). There
was no significant conversion in the areas of wetland, and the increases in the areas of
other land-use types had been minor. From the perspective of the net converted area of
each land-use type, the areas of unused land and grassland, which are the land-use types
accounting for the highest proportion of the total area of the research area, had decreased
by 2205.2 and 985.1 km2 by 2015, respectively, followed by shrub, cropland, water, and
snow/ice, which had decreased by 725.3, 683.4, 447.8, and 442.6 km2, respectively (Table 2).
Meanwhile, the areas of farmland converted to grassland had reached 654.3 km2, and the
areas of barren land converted to grassland had reached 1580 km2, further indicating the
remarkable effectiveness of the policy of returning farmland to grassland implemented in
Wuwei City.
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Table 2. Transition areas of the total LULC categories during the period of 1985–2015 (%).

2015 Unit:
km2

1985 Cropland Forest Shrub Grassland Water Snow
/Ice Barren Impervious Wetland Total

1985 Loss
Net
Change
(%)

Cropland 3679.8 14.1 0.0 654.3 1.7 0.0 8.9 4.4 0.0 4363.2 683.4 20.1
Forest 186.7 1067.1 17.1 185.0 0.4 0.0 3.1 0.4 0.0 1459.8 392.7 8.5
Shrub 129.0 229.7 53.5 358.6 0.5 0.0 7.1 0.5 0.0 778.7 725.3 −89.2
Grassland 467.6 273.5 13.7 10,263.1 8.1 0.7 218.3 3.4 0.0 11,248.3 985.1 20.6
Water 80.7 0.1 0.0 272.1 19.9 1.0 87.1 1.5 0.0 462.5 442.6 −92.3
Snow/ice 76.8 0.0 0.0 240.4 1.8 12.8 126.9 1.9 0.0 460.6 447.8 −94.7
Barren 608.7 0.0 0.0 1580.0 3.1 10.1 18,611.2 3.2 0.0 20,816.4 2205.2 −8.4
Impervious 11.0 0.0 0.0 9.4 0.0 0.0 3.3 2.9 0.0 26.7 23.7 −29.8
Wetland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.4 −99.4
Total 2015 5240.3 1584.4 84.2 13,562.9 35.4 24.6 19,065.9 18.7 0.0 33,710.3
Gain 1560.5 517.4 30.8 3299.8 15.5 11.8 454.7 15.8 0.0

In this study, the conversion status of ecological land and non-ecological land deter-
mined by the direction of land-use transition was used to distinguish the positive and
negative influences of human activities on the changes in NDVI trends. The areas of
non-ecological land internally converted accounted for 1.6% of the total area. These areas
were primarily located in the farmland areas in Minqin County and Wuwei City. The areas
of ecological land converted to non-ecological land accounted for 3.5% of the total area
(Figure 9). These areas were primarily located in the farmland and barren land in Wuwei.
Meanwhile, the areas of non-ecological land converted to ecological land accounted for
5.7% of the total area (Figure 9). These areas were primarily located in the grassland areas
in the Shiyang River zone of Minqin and the Gulang section in Wuwei. Furthermore, the
areas of internally converted ecological land accounted for 32.9% of the total area. These
areas were primarily located in the whole intersection zone of Shiyang River’s tributaries.
Combined with statistical analysis and spatial overlay analysis of NDVI trends and human
activities induced by land-cover change, we quantified the contribution of urbanization,
ecological restoration, and agricultural expansion to NDVI trend change. The contributions
of ecological restoration and agricultural expansion to increasing trends of NDVI during
the period of 1982–2015 were 4.0 and 3.2%, respectively (Figure 10). Urbanization has
contributed essentially nothing to NDVI’s increased trend (Figure 10).
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Figure 10. The contributions of urbanization, ecological restoration, and agricultural expansion on
NDVI’s increased trends during the period of 1982–2015.

4. Discussion
4.1. Performance of GTWR Method

The evolution process of the geographic environment is a heterogeneous process
varying with time. The time dimension, as an intrinsic dimension of the geographic pro-
cess, also influences its succession and response relationships. Considering that the GWR
model does not take into account the influences of time dimension on geographic spa-
tial environmental variables [33,35], Huang et al. (2010) proposed the GTWR model to
characterize the spatiotemporal succession process of atmospheric pollutants, introduc-
ing the multi-dimensional variations and differences of temporal and spatial factors on
the spatial–temporal scales [30]. The spatial–temporal evolution processes of vegetation
and the response relationships of climate-driving factors were viewed in this study as a
spatial–temporal variation system, with a GTWR model explanatory degree of 0.86. In
addition, it has been analyzed and revealed that the response mechanism of vegetation
to climate factors has the characteristics of significant spatial–temporal non-stationarity
and agglomerations. Many scholars have used the GTWR model in various fields, such
as land use, meteorology, house price assessment, resource environment, and vegetation
trend succession [21,30,35]. They all found that compared with the OLS and GWR models,
the GTWR model could better characterize the features of spatial–temporal non-linearity
and non-stationarity of geographic and environmental variables [30,35,42]. This further
verified that the GTWR model, which deals with the non-stationarity of time and space
at the same time based on the spatial–temporal distance and weight matrix, can solve the
spatial–temporal heterogeneity problem very well [43].
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4.2. The Influence of Climate Change on the Spatial–Temporal Evolution of Vegetation

The climate is the major driving factor of vegetation change. Climate elements such
as air temperature, precipitation, solar radiation, and wind speed can cause long-term or
short-term changes in vegetation ecosystems. In its fifth report, the IPCC pointed out that
global warming will continue, and regional or even global ecosystems could be irreversibly
harmed by future climate change [5,44,45]. Climate change characteristics were analyzed
in this study with meteorological data during the last 34 years. The analysis revealed
that the air temperature in Wuwei continues to rise, which is consistent with the results
of other scholars’ research carried out in different areas in China [46,47]. Meanwhile,
PET and wind speed presented a slight increase trend. All these findings indicate that
future climatic anomalies will be a key topic that we need to continuously pay attention
to [48]. On the inter-annual scale, the NDVI trend in Wuwei had increased at a rate of
0.0007 yr−1 from 1982 through 2015. Especially after the ecological restoration project was
implemented in 2000, vegetation restoration continued at a rate which is 1.4 times the
rate before 2000 (Figure 3). During the last 34 years, the inter-annual vegetation trend in
Wuwei has presented a significant increase pattern, primarily caused by the rapid increase
in temperature since the 1980s. Climate warming has not only extended the growth cycle
of vegetation but also accelerated the decomposition of soil organic substances and the
release of nutrient elements, thus favoring accelerated growth of vegetation [42]. On the
other hand, human activities improving agricultural management and implementation
levels, such as the vegetation restoration project, have effectively increased the regional
vegetation cover in this area.

Precipitation (71.2%) has contributed to the vegetation restoration trend in Wuwei
the most. For the desert and grassland ecosystems in the long-term arid areas in north
Wuwei, vegetation is extremely insensitive to precipitation changes. Less precipitation
and high evapotranspiration have resulted in vegetation degradation [49]. Vegetation is
susceptible to phenology changes instead [11,21]. Forest vegetation in the high-cold region
with relatively high precipitation can supplement water by absorbing underground water
with roots, thus driving the greening of vegetation [49]. Among all climate elements, wind
speed and temperature have contributed to the vegetation degradation trend in Wuwei the
most. The landscapes in Minqin (barren) and Gulang oasis (desert grassland) are dominated
by sandy areas with sparse vegetation, chronic drought, low rainfall, and high potential
evapotranspiration (Figure 2). The increase in wind speed has accelerated the ground-
surface evapotranspiration and the transpiration rates of vegetation. Meanwhile, nutrients
of poor soil have been further released and lost under the action of wind [42], resulting in a
significant negative effect of wind speed and potential evapotranspiration on vegetation
growth in deserts and farmland (Figures 6a and 7c,d). For vegetation in high-cold areas,
temperature, instead of precipitation, is the dominant factor that promotes vegetation
photosynthesis (Figure 7a,b). This is mainly because, in high-cold areas with relatively cold
and wet environmental conditions, the reduction of atmospheric evapotranspiration can
decrease the sensibility of vegetation to water stress [25]. Temperature rise can usually
lead to early snowmelt and trigger early spring phenology, thus increasing vegetation
greening [50]. We found that there was a significant negative effect of air temperature
on the grassland vegetation in the middle of the research area. The main reason is that
excessive rises in temperature can decrease vegetation leaf conductivity and enhance the
dark respiration effect that inhibits the growth of grassland vegetation [24,51]. It should
also be noted that there was a non-significant positive correlation between precipitation
in the oasis areas and NDVI (Figure 7a). Because there is a cross-distribution of rain-
fed and irrigated farmland in the middle of the Minqin oasis zone, farmland vegetation
presents a big difference in its sensitivities to temperature and precipitation [11,52,53]. The
primary reason is that human irrigation has provided most of the water for vegetation
growth in the oasis areas, leading to an insensitive vegetation response to precipitation [54].
The temperature significantly affects vegetation in the oasis areas, and their relationship
exhibits relatively significant spatial heterogeneity (Figure 7b). The primary reason is that
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temperature rise is detrimental to the growth of rain-fed plants but is conducive to the
growth of irrigated crops [53].

4.3. The Influence of Land-Use Change Pattern on Vegetation Restoration

The topography of Wuwei is complex and fragmented. Soil erosion is severe there,
and the impacts of human activities on vegetation are extremely drastic. Land-use and
land-cover change, as the most direct manifestation type of the interactions between human
activities and the natural environment [55], can directly interact with surrounding land-
use types under the effects of human activities and impose profound influences on those
land-use types [56]. Compared with the current widely used coarse-resolution data, the
land-use data with a resolution of 30 m used in this study are more helpful for clarifying
the directions and internal patterns of land-use changes.

An analysis of NDVI spatial–temporal trend changes was performed based on re-
gional and image-element scales. It revealed that since the project of returning farmland to
forestland and grassland was implemented in Wuwei, the vegetation cover has significantly
increased, and the ecological environment has been further improved. This represents
the positive feedback of human activities on the natural environment and indicates the
prominent effects of ecological restoration. Different from the development of the social
economy at the cost of the ecological environment, land-cover-change protection measures
have been implemented in some areas to directly promote the increases in vegetation
greening, with environmental protection emphasized and ecological restoration projects
and agricultural intensification implemented. Some other scholars have pointed out that
large-scale ecological restoration projects (such as the Three-North Shelter Forest Program,
returning farmland to grassland, etc.) are the primary non-climatic factors causing vegeta-
tion restoration [7,57,58]. Some studies have pointed out that ecological restoration projects
such as forestry construction have no significant impacts on the vegetation cover in arid
and semi-arid areas [59,60]. The spatial–temporal non-stationarity phenomenon detected
by GTWR indicates that vegetation is also influenced by human activities in different years
and with varying degrees. The contributions of ecological restoration and agricultural
expansion on NDVI’s increased trends during the period of 1982–2015 were 4.0 and 3.2%,
respectively (Figure 10). Cultivated vegetation in oasis areas exhibited a significant in-
creasing trend, which could result from the greater contributions of human factors such as
fertilization, irrigation, and land-use management to the vegetation trends [61]. Meanwhile,
the aeolian process has caused a considerable loss of soil nutrients, decreasing total soil
organic carbon and total nitrogen content [42]. Thus, wind speed significantly negatively
affects the farmland vegetation in Wuwei. Therefore, the interaction of natural and human
factors influences vegetation in oasis areas (Figure 7e).

5. Conclusions

In this study, GTWR, a spatial–temporal non-stationary relationship model of NDVI
trends and climate change, was constructed to explore the driving mechanism of vegetation
spatial–temporal evolution patterns. The results of the GTWR model showed that the
correlations between the vegetation spatial–temporal evolution process and climate driving
factors presented significant spatial–temporal non-stationarity and agglomeration. The
inter-annual vegetation change in Wuwei during the period of 1982–2015 exhibited a
significant increasing trend, with the inter-annual NDVI increase trend during the period
of 2000–2015 being 1.4 times the trend during the period of 1982–1999. This significant
vegetation restoration is primarily caused by climate warming. There was a significant
spatial–temporal difference between the evolution trends of vegetation before and after
the ecological restoration project implemented in 2000. After 2000, the vegetation trend
presented a significant restoration pattern. On the contrary, vegetation degradation was
severe before 2000. Among those climate elements, precipitation (71.2%) and PET (43.9%)
contributed the most to the vegetation restoration trend in Wuwei from 1982 to 2015,
followed by solar radiation, temperature, and wind speed. In addition, wind speed (50%)
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and temperature (38.6%) are the climate elements that contributed the most to the vegetation
degradation trend in Wuwei between 1982 and 2015. It should be noted that the stress
effect of wind speed on the vegetation of desert and grassland ecosystems should not
be underestimated. Meanwhile, compared with the significantly-expanded farmland,
grassland, and forestland during the period of 1985–2015, wetlands, snow/ice, water,
and shrub had shrunk by a relatively large proportion. The area of cropland, grassland,
and forestland increased by 20.1, 20.6, and 8.5%, respectively. The area of ecological land
converted to non-ecological land accounted for 3.5%, mainly in cropland and barren area
of Wuwei. The area of non-ecological land converted to ecological land accounted for 5.7%.
This indicates that agricultural intensification and vegetation restoration projects have a
significant positive effect on vegetation trends.
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