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Abstract: In recent years, remote sensing techniques such as satellite and drone-based imaging have
been used to monitor Pine Wilt Disease (PWD), a widespread forest disease that causes the death
of pine species. Researchers have explored the use of remote sensing imagery and deep learning
algorithms to improve the accuracy of PWD detection at the single-tree level. This study introduces
a novel framework for PWD detection that combines high-resolution RGB drone imagery with
free-access Sentinel-2 satellite multi-spectral imagery. The proposed approach includes an PWD-
infected tree detection model named YOLOv5-PWD and an effective data augmentation method.
To evaluate the proposed framework, we collected data and created a dataset in Xianning City,
China, consisting of object detection samples of infected trees at middle and late stages of PWD.
Experimental results indicate that the YOLOv5-PWD detection model achieved 1.2% higher mAP
compared to the original YOLOv5 model and a further improvement of 1.9% mAP was observed
after applying our dataset augmentation method, which demonstrates the effectiveness and potential
of the proposed framework for PWD detection.

Keywords: pine wilt disease (PWD); YOLOv5-PWD; deep learning; remote sensing; single-tree level
detection; object detection; Sentinel-2

1. Introduction

Pine Wilt Disease (PWD) is a worldwide forest disease caused by the Pine Wood
Nematode (PWN), which poses a significant threat to ecological security, biosecurity, and
economic development due to its high infectiousness, pathogenicity, and rapid course of
disease [1,2]. Since its discovery in Japan in 1905, PWD has caused significant economic
losses and reduced ecological service values in Asia and Europe [3,4]. The monitoring of
diseased trees infected with PWD is critical for the prevention and control of this disease. By
detecting PWD early, forest managers can take steps to prevent the disease from spreading
and protect the health of a forest.

Currently, there are three main methods for monitoring PWD-infected trees: field
investigation [5–8], satellite remote sensing [3,9–11], and drone-based remote sensing (also
known as “unmanned aerial vehicles” or “UAV”) [12–18]. Field investigations are often
costly and inefficient due to the challenging terrain of many pine forests, since most pine
forests are located in areas with high mountains, steep roads and dense forests [19]. Remote
sensing offers an alternative by detecting changes in the color of pine needles, which quickly
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turn yellow or red after infection with PWD [20]. Satellite-based remote sensing uses image
data from satellites such as Landsat and Sentinel-2 to monitor PWD over large areas, but
it is limited by spatial resolution, atmospheric interference, and revisit period [9,11,21].
Drone-based remote sensing offers high flexibility, short application period, high temporal
and spatial resolution, and ease of operation [22,23]. It can accurately locate individual
infected trees and save resources compared to field investigations. Therefore, the use of
drones for remote sensing in the detection of PWD-infected tree has thus proven to be an
effective method for both detecting individual infected plants and monitoring the spread
of this disease [24].

The detection of PWD using drone-based remote sensing and machine learning (ML) is
garnering increasing attention. Some scholars extracted color and texture features from the
ground objects in images, designed a multi-feature conditional random field (CRF)-based
method for UAV image classification to classify trees and identify diseased and dead pine
trees in visible light remote sensing images, effectively achieving PWD monitoring [25].
Some scholars utilized an image segmentation algorithm with ultra-green feature factor and
the maximum inter-class variance method for PWD monitoring, they conducted a specific
analysis of the disease severity of the diseased pine in UAV remote sensing images by
effectively extracting geographic information of PWD-infected pines in the image [1]. There
are also some scholars who employed both artificial neural network (ANN) and support
vector machine (SVM) methods to successfully differentiate between PWD-infected trees
and other cover types shown in UAV images [4]. These scholars extracted the geographical
information features of ground objects in UAV remote sensing images, enabling ML-based
classification methods to accurately identify PWD-infected pine trees in visible light remote
sensing images. Thus, these ML-based methods established a foundation for identifying
and controlling PWD within forest environments.

In recent years, numerous scholars have introduced deep-learning-based object detec-
tion models that utilize remote sensing images for Pine Wilt Disease (PWD) monitoring.
The automated feature extraction and accurate detection capabilities make these models the
mainstream choice in forest monitoring, disease identification, and individual tree detec-
tion [15,24,26]. These models can be categorized into two-stage (proposal-based) algorithms,
such as R-CNN, Fast R-CNN, and Faster R-CNN [27–29], and one-stage (proposal-free)
algorithms, such as YOLO and SSD [30,31]. The former algorithm generates target object
region proposals and performs classification regression in two stages, while the latter
locates and classifies target objects directly [32]. Some scholars modified the target box
position regression loss function of YOLOv3, replacing the mean-square error bounding
box regression loss function with the Complete-IoU loss function. They further constructed
a YOLOv3-CIoU PWD diseased trees detection framework based on RGB data from UAV
images, significantly enhancing the detection accuracy of YOLOv3 for PWD diseased
trees [33]. Other scholars introduced the inverted residual structure and depth-wise separa-
ble convolution to enhance the YOLOv4 model. By automatically identifying discolored
wood caused by PWD on UAV remote sensing images, they achieved even higher accuracy
results [34].

Most of the aforementioned methods employed solely RGB data from UAV imagery,
lacking other auxiliary spectral information such as near-infrared bands. Some scholars
also use multispectral UAV sensors to obtain high-resolution multispectral UAV data for
PWD monitoring related research. For example, some scholars acquired multispectral
aerial photographs containing RGB, green, red, NIR, and red edge spectral bands, and
used a multichannel convolutional neural network (CNN)-based object detection approach
to detect PWD disease trees effectively [15]. Other scholars respectively obtained RGB
UAV images and multispectral UAV images including blue, green, red, red edge, and near
infrared (NIR) bands, and utilized Faster R-CNN and YOLOv4 deep learning models to
achieve PWD-infected pine tree recognition [7]. However, most UAV sensors with dedi-
cated multispectral cameras are expensive, leading to higher data acquisition costs. Free
satellite imagery, such as Sentinel-2, can provide medium resolution (10 m) multispectral
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data, enhancing the spectral information of RGB UAV imagery. Thus, we hypothesize
that combining low-cost UAV RGB images with the spectral information of free satellite
multispectral images can facilitate PWD-infected tree detection while further improving
the model’s accuracy. In addition, the detection accuracy and reliability of deep learning
techniques are ultimately influenced by the number and quality of samples in the dataset,
which currently remains limited in number [33,35].

Our study aims to investigate the potential of combining free-access medium-resolution
multi-spectral Sentinel-2 satellite images and high-resolution drone RGB images for de-
tecting diseased trees affected by pine wilt disease (PWD). To test our hypothesis, we
collected Sentinel-2 and high-resolution drone images of a PWD-affected forested area in
China, created a dataset containing diseased plants at middle-stage and late-stage of PWD.
We proposed an improved PWD-infected tree detection method Yolov5-PWD based on
a deep learning algorithm. In our approach, we integrated the Sentinel-2 data with the
high-resolution drone images during the preprocessing stage of the UAV object detection
sample data, rather than using traditional pixel-level fusion methods. This allowed us to
achieve a low-cost but high-quality sample synthesis, which improved the accuracy of the
object detector.

The main contributions of this study are as follows:

1. To train an object detection model capable of detecting PWD-infected trees in both
middle and late stages of the disease, we constructed a dataset of such trees. This
dataset involved categorizing the trees into middle-stage and late-stage categories
based on their distinct characteristics at different stages. We then cut and labeled the
high-resolution image data from the drone, resulting in a dataset of 1853 images and
51,124 infected trees.

2. In order to increase the accuracy of identifying trees affected by PWD and achieve effi-
cient and accurate detection of individual PWD-infected tree, we propose an improved
YOLOv5-PWD model specifically designed for PWD-infected tree identification.

3. To overcome the challenge of limited training samples and further improve the
detection accuracy of the model, we propose a cost-effective and efficient sample
synthesis method that leverages Sentinel-2 satellite data and UAV images. This
approach enables an increase in the size of the dataset and improves detection accuracy
without needing to collect more data using drones.

2. Materials and Methods
2.1. Data Collection and Dataset Construction
2.1.1. Study Area

This study was conducted in two areas (Figure 1) located in Xianning City, Hubei
Province, China. Xianning City is characterized by its subtropical continental monsoon
climate, with moderate temperatures, abundant precipitation, ample sunshine, and clear
seasons, including a prolonged frost-free period. The annual average temperature in the
city is 16.8 ◦C, with an average annual precipitation of 1523.3 mm, and 1754.5 h of sunshine
per year. The frost-free period in Xianning City lasts for an average of 245–258 days. The
forest coverage rate in the city is 53.01%, with major tree species including Cunninghamia
lanceolata, Phyllostachys pubescens, and Pinus massoniana. The widespread occurrence of
Pine Wilt Disease (PWD) in Xianning City can be attributed to its favorable climate and
rich forest resources, which provide a conducive habitat for the vector insect Monochamus
alternatus.
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Figure 1. Overview of the study areas in this study. Left and top right are the locations of the study
area in Xianning City, Hubei Province, China. (A,B) are UAV Orthophoto maps of two study areas.

2.1.2. Imagery Source

In this study, high-resolution UAV imagery was collected within the study areas,
to construct a training dataset for deep learning models. The Sentinel-2 imagery from
the study area was also acquired at the same month as the UAV imagery and prepared
for sample synthesis. The UAV images were processed using ContextCapture software
to generate high-resolution UAV orthophoto maps for use in the analysis. These high-
resolution orthophoto maps acquired by the UAV were partitioned into image patches of
size 1024 × 1024 pixels to create a sample dataset for the deep learning model. The UAV
remote sensing images consist of three bands of red, green, and blue and were collected
in September 2020. The resolution of the UAV images in Area A was 3.975 cm, while the
resolution in Area B was 7.754 cm. The Sentinel-2 imagery, consisting of four spectral bands
of red, green, blue and near-infrared, was acquired and processed using Google Earth
Engine in September 2020. The resolution of the Sentinel-2 imagery was 10 m.

2.1.3. Disease Tree Category System and Labeling Solution

In this study, the classification of Pine Wilt Disease (PWD) infected trees into two cate-
gories, the middle-stage and the late-stage, was carried out based on the characteristic color
changes of infected trees in the respective stages, as revealed by previous studies [36–38].
A manual annotation strategy (Figure 2) was implemented to produce the dataset, which
consisted of three steps: Single Manual Labeling, Object Detection Model Training and
Classification and Labeling Update.
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Figure 2. The process of dataset labeling and checking.

In the first step, a single category of PWD-infected tree was manually annotated based
on the criterion of “abnormal color”. The results of manual labeling were then fed into the
YOLOv5-PWD Model (see Section 2.2.1) for training and prediction, producing a result
indicating the confidence level. In the final step, annotators based on the confidence level
reclassified the PWD-infected object into two categories: middle-stage and late-stage.

The manual annotation and checking process was performed by three personnel
to ensure accuracy and consistency. In case of disagreement between Personnel 1 (P1)
and Personnel 2 (P2), Personnel 3 (P3) was responsible for making the final decision.
This 3-person method was critical to the success of both the Single Manual Labeling and
Classification and Labeling Update steps.

2.1.4. Object-Level Labeling

High-resolution UAV aerial photography RGB images were used in this study to create
a sample dataset for deep learning models. LabelImg (https://github.com/heartexlabs/
labelImg, accessed on 1 April 2023) software was utilized to label the cropped images of
the study area. The labeled rectangles contain the PWD-infected tree and their respective
categories, including the middle-stage and the late-stage. Figure 3 presents a portion
of the calibration results. A total of 1853 annotated images containing 51,124 infected
trees were obtained, and the labeled images were randomly divided into training, vali-
dation, and test sets, with 889 images in the training set, 370 images in the validation set,
and 594 images in the test set.

https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
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(a) Middle-stage infected trees

(b) Late-stage infected trees

Figure 3. Examples of UAV images of middle-stage infected trees and late-stage infected trees. The
boxes in the images indicate the PWD-affected trees. (a) Middle-stage infected trees are generally
yellow-green, yellow and orange. (b) Late-stage infected trees are generally orange-red and red.

2.2. Methodology

In this paper, we used a deep learning-based object detection framework to detect
the PWD-affected trees. The proposed deep learning-based object detection framework
employed a modified YOLOv5-PWD model, which was based on the original YOLOv5 (You
Only Look Once v5) object detection algorithm and incorporated the Efficient Intersection
over Union (EIoU) loss function [39] instead of the original target box position regression
loss function. Furthermore, a high-quality sample synthesis method was proposed to
address the issue of an uneven number of categories and a small number of samples by
integrating Sentinel-2 satellite multi-spectral data with UAV imagery data.

2.2.1. Yolov5-Pwd Detection Model

In this research, we developed the YOLOv5-PWD model by building on the YOLOv5m
algorithm [40], which is the fifth iteration of the YOLO series [30,41]. Compared to proposal-
based object detection models [27–29], the YOLO series algorithms are ideal for quickly
identifying trees infected by PWD, as they offer fast processing times and cost-effectiveness.

The network structure of the YOLOv5-PWD detection model is shown in Figure 4.
YOLOv5-PWD detection model is composed of four parts: Input, Backbone, Neck and
Head. The Backbone is a network used to extract the features of the image from the Input,
and its function is to extract the information in the image for use by the later network. It
introduces the CSP modules (Cross Stage Partial Network) [42] with residual structures into
Darknet53, which can enhance the gradient value in the backpropagation between layers
and effectively prevents the gradient disappearing while the network deepens. The Neck is
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to further extract and fuse the image feature information output by the Backbone. It adopts
the structure of FPN [43] combined with PAN [44]. The FPN structure uses up-sampling
to improve the network’s ability to detect small targets, and the PAN structure makes the
underlying positioning information better transmitted to the top layer. The combination of
these two structures strengthens the feature fusion ability of the network. In addition, the
SPPF (Spatial Pyramid Pooling—Fast) module [45] in the Neck is to serial inputs through
multiple MaxPool layers of 5 × 5 size, and then performs Concat merging, so it can increase
the receptive field of the feature network, effectively separate the feature information, and
restore the output to be consistent with the input. Finally, the Head component of the
network is responsible for predicting the target and applying the anchor box on the target
feature map to generate the final output vector containing the classification probability and
target box. The Head outputs three scales of target predictions, corresponding to three
different target sizes: large, medium, and small.

Conv

CSP1_3

Conv

Conv

CSP1_6

Conv

CSP1_9

Conv

CSP1_3 SPPF

Conv

Upsample

Concat

CSP2_3

Conv

Upsample

Concat

CSP2_3

Conv

Concat

CSP2_3

Conv

Concat

CSP2_3

Detect

Detect

Detect

1024×1024×3

128×128×256

64×64×512

32×32×1024

Conv = Conv2d BN SiLU CSP1_X = Conv Bottleneck 1 ConcatX *

Conv

Conv

CSP2_X = Conv Bottleneck 2 ConcatX *

Conv

Conv

Bottleneck 1 = Conv Conv 

= Conv ConvBottleneck 2

SPPF = Conv MaxPool2d MaxPool2d MaxPool2d Concat Conv

Input Backbone Neck Head

Figure 4. The network architecture of the YOLOv5-PWD model (X * Y represents repeating module Y
for X times).

Different models use loss functions to guide their training process by measuring the
difference between predicted and actual values, with smaller loss values indicating better
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performance. In the YOLOv5-PWD model, we introduce EIoU Loss [39] instead of the
Complete-IoU (CIoU) Loss [46] used by the original Yolov5 to calculate the error between
the predicted box and the real box. The formula for calculating EIoU loss is as follows:

LEIoU = LIoU + Ldis + Lwh

= 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(1)

where, ρ(b, bgt) represents the Euclidean distance between two center points. c represents
the diagonal distance of the smallest closed convex surface that can contain both the
prediction box and the real box. ρ(w, wgt) represents the difference between the widths of
the real box and the predicted box. Cw represents the width of the smallest closed convex
surface that can contain both the prediction box and the real box. ρ(h, hgt) represents the
difference between the heights of the real box and the predicted box. Ch represents the
height of the smallest closed convex surface that can contain both the prediction box and
the real box.

The EIoU Loss contains three parts: the overlap loss (LIoU), the center distance loss
(Ldis), and the width and height loss (Lwh). The first two parts of the EIoU Loss are derived
from the CIoU Loss. However, the third part in CIoU Loss considers the difference in
aspect ratio between the predicted box and the ground truth box, instead of the difference
in width and height. This can sometimes hinder the model from effectively optimizing the
similarity when the aspect ratio of the predicted box and the ground truth box are linearly
proportional in the regression process. The EIoU Loss addresses the limitation of the CIoU
Loss by replacing the aspect ratio influence factor in the third part with the width and
height loss, which calculates the difference in length and width between the ground truth
box and the predicted box, resulting in a direct minimization of the difference in width and
height and leading to improved accuracy and faster convergence.

2.2.2. A Method for Synthesizing Samples Using Sentinel-2 Imagery to Augment UAV
Image Data

Deep network models are often prone to overfitting due to the limited size of the
dataset. While increasing the dataset size is a possible solution, it is not always feasible
and can be expensive. To address this issue, we propose a sample synthesis algorithm to
augment the UAV image dataset by utilizing the multispectral information from satellite
images. This method aims to improve detection accuracy, reduce costs, and prevent model
overfitting. The training sets were augmented using this method, while the validation and
test sets remained unchanged.

Figure 5 illustrates the procedure of our method. We first extracted single PWD-
infected tree targets from UAV images that captured PWD-infected trees. Next, we collected
UAV images without PWD-infected trees and synthesized the single PWD-infected tree
targets onto these images to create new images containing PWD-infected trees. However,
the general synthesis method we used is a simple and direct method that did not consider
the degree of fusion between the synthetic target and the background. This led to some
PWD-infected trees appearing in non-vegetated areas such as buildings and water bodies,
which could negatively impact the accuracy of model detection. Nevertheless, when the
background is a forested area or an area with high vegetation coverage, the synthesized
image tends to be more realistic, leading to better model training outcomes.
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Figure 5. The technical process of synthesizing samples by combining satellite and UAV images.

To address this issue, we developed a more effective synthesis approach by leveraging
the rich spectral information from multi-band satellite images and calculating the vegetation
index to determine the vegetation coverage of potential synthesis locations. Specifically, we
utilized Sentinel-2 satellite imagery of the study area and calculated the NDVI (Normalized
Difference Vegetation Index) value. Then, we assessed the NDVI value at the proposed
synthesis location. If the NDVI value was greater than or equal to 0.5, we synthesized the
single PWD-infected tree target onto the UAV imagery at that position. However, if the
NDVI value was less than 0.5, we did not perform the synthesis and instead reselected the
single PWD-infected tree targets and the synthesis location. By using this approach, we
were able to significantly improve the accuracy of the model detection.
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In our sample synthesis approach, we adopted two synthesis strategies for synthesiz-
ing single PWD-infected tree targets in UAV images. The first strategy involves directly
synthesizing the single PWD-infected tree target in the image, resulting in a slight inconsis-
tency between the synthesized image and the real one (as shown in Figure 6b). The second
strategy involves adding weights to the background image and PWD-infected tree targets
separately (as illustrated in the bottom part of Figure 5). This approach ensures that the
prominent parts of the target frame are preserved, while the edges of the target frame are
weakened, and this makes the PWD-infected tree targets blend more seamlessly with the
background. As a result, the synthesized image is more realistic (as depicted in Figure 6c).

(a) (b) (c)

Figure 6. An example of synthetic images with different synthesis strategies. (a) Without infected
trees; (b) Synthesis by Direct Synthesis; (c) Synthesis by Weighted synthesis.

The following are the pixel-wise calculation formulas for the second synthesis strategy
that involves adding weights:

Tnew = αTold + (1 − α)Tbackground

α = 1 −

√(
wi − W

2

)2
+
(

hi − H
2

)2

√(
W
2

)2
+
(

H
2

)2

(2)

where Tnew represents the pixel value of point i in the weighted infection tree target frame
image; Told represents the pixel value of point i in the unweighted original infection tree
target frame image; Tbackground represents the pixel value of point i in the background image;
α is the weight value to be increased; W represents the width of the target frame image
of the infected tree; H represents the height of the target frame image of the infected tree;
(wi, hi) represents the coordinate at point i when the top left vertex of the target frame
image of the infected tree is (0, 0). These are shown in Figure 7a, where r represents half of
the diagonal length of the target frame image of the infected tree, which is the distance from
the center point of the target frame image to the four vertices; di represents the distance
from point i to the center point in the target frame image of the infected tree. When the
point i is closer to the center point, the value of di is smaller and the value of α is larger, the
feature information of the target frame image of the infected tree retained at the point i is
more, and the feature information of the background image retained at the point i is less.
When point i is at the edge of the target frame image of the infected tree, the value of di is
larger, the value of α is smaller and the value of (1 − α) is larger, the feature information of
the background image retained at the point i is more, and the feature information of the
target frame image of the infected tree retained at the point i is less.
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Figure 7. Diagram of adding weights. (a) Schematic diagram of the relevant points in Formule (2).
(b) The target frame image after adding weights.

2.3. Experiment Settings
2.3.1. Design of Experiments

In this paper, we conduct external and internal experiments to validate our model
and method. For external experiments, we use the PWD-infected tree dataset we created
(mentioned in Section 2.1) to train, verify, and test several commonly used object detection
models and our YOLOv5-PWD model. We then compare the detection accuracy and speed
of these models to demonstrate the superior detection performance of our YOLOv5-PWD
model in recognizing PWD-infected trees.

For internal experiments, we train both the YOLOv5 model and the YOLOv5-PWD
model using the original training set (889 images), the training set without NDVI synthesis
(General synthesis), and the NDVI training sets that use two different synthesis strategies
(Direct synthesis and Weighted synthesis). We then compare the detection accuracy of
the models trained on different training sets using the same test set to demonstrate the
effectiveness of the proposed sample synthesis method.

2.3.2. Evaluation and Metrics

To evaluate the performance of our PWD-infected tree detection model, we use four
indicators: the P-R curve, average precision, mean average precision (mAP), and Frames
Per Second (FPS). The first three indicators are used to evaluate the accuracy of model
detection, while FPS is used to assess the speed of the object detection model, specifically,
the number of pictures that the model can process per second. A higher FPS indicates faster
model detection speed.

In object detection, Precision measures the proportion of the detected targets that are
real, while Recall measures the proportion of all real targets that are detected. The P-R curve
(Precision-Recall curve) plots Precision on the y-axis and Recall on the x-axis, illustrating
the relationship between the two metrics [32]. We aim to maximize both Precision and
Recall, resulting in a rightward convex PR curve.

Average Precision (AP) refers to the average precision value for all Recall values
between 0 and 1, which represents the area under the P-R curve. A higher AP score
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indicates better detection performance. The mean average precision (mAP) is the average
AP score across all categories [47].

2.3.3. Experimental Settings

We performed the experiments on Wuhan University’s Supercomputing Center using
PyTorch deep learning framework and CUDAToolkit 10.2. We adapted YOLOv5 and
YOLOv5-PWD from their official code repository (https://github.com/ultralytics/yolov5,
accessed on 1 April 2023). We implemented Faster R-CNN, DetectoRS Cascade RCNN,
RetinaNet, and Cascade RCNN using MMDetection framework [48]. We trained all models
for 72 epochs using Adam optimizer with a learning rate of 0.01 for YOLOv5 and YOLOv5-
PWD, and 0.0025 for others. We used an NMS (non-maximum suppression) threshold
of 0.6.

3. Results
3.1. Results of External Experiments

Table 1 displays the results of external experiments. In each column, the bold number
indicates the best detection result, and the other tables are the same. The YOLOv5-PWD
detection model achieved the highest detection accuracy, followed by YOLOv5. Meanwhile,
YOLOv5 and RetinaNet outperformed the others in terms of FPS, with YOLOv5-PWD
following closely. Hence, the YOLOv5-PWD detection model is best suited for epidemic
prevention, as it enables quick and precise detection.

Table 1. Comparison of detection performance of different models.

Model Middle-Stage AP Late-Stage AP mAP@0.5 FPS

Faster R-CNN 43.8% 74.0% 58.9% 7.35
DetectoRS Cascade RCNN 44.5% 74.1% 59.3% 5.41

RetinaNet 37.8% 72.4% 55.1% 12.20
Cascade RCNN 43.5% 74.2% 58.8% 10.99

YOLOv5 57.4% 84.4% 70.9% 12.20
YOLOv5-PWD 59.4% 84.8% 72.1% 11.49

Table 1 shows that the detection accuracy of several models for late-stage infected
trees is significantly better than that of middle-stage infected trees. Additionally, there
is a substantial difference in AP values between the two types of infected trees in the
initial four models, with a difference of more than 29%. However, the YOLOv5 and
YOLOv5-PWD models demonstrated better performance in detecting middle-stage infected
trees, with differences of 27% and 25.4% in AP values, respectively, for the two types of
infected trees. This indicates that the YOLOv5-PWD model can achieve better detection of
middle-stage infected trees while maintaining high-precision detection of late-stage infected
trees. Moreover, the YOLOv5-PWD model outperformed other models in detecting PWD
infection in trees.

3.2. Results of Internal Experiments

The results of the internal experiments are shown in Table 2 and the P-R curves of the
YOLOv5 and YOLOv5-PWD models are shown in the Figure 8. The table demonstrates
that the model’s performance has improved with the three augmentation strategies applied
to the training sets. We trained the YOLOv5-PWD model with different training sets and
found that the weighted synthesis with NDVI augmentation achieved the best results.
The model’s mAP reached 74%, which was 1.9% higher than that of the original training
set. The mAP of the general synthesis without NDVI augmentation was 0.6% higher than
that of the original training set. The mAPs of the direct synthesis and weighted synthesis
with NDVI augmentation were 0.8% and 1.3% higher than that of the general synthesis
without NDVI augmentation, respectively. When using satellite imagery NDVI for sample
synthesis, the weighted synthesis outperformed the direct synthesis by 0.5%. In summary,

https://github.com/ultralytics/yolov5
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the weighted synthesis with NDVI augmentation had the best effect on the model, followed
by the direct synthesis with NDVI augmentation, then by the general synthesis without
NDVI augmentation, and finally by the original dataset. This result was also consistent
for the original YOLOv5 model. Therefore, we conclude that our proposed UAV image
data augmentation sample synthesis method based on satellite imagery can improve the
detection accuracy of the model.

Table 2. Detection results of YOLOv5 and YOLOv5-PWD models on dataset with different data
augmentation policies.

Middle-Stage AP (%) Late-Stage AP (%) mAP@0.5 (%)

Training Set Number of
Images YOLOv5 YOLOv5-

PWD YOLOv5 YOLOv5-
PWD YOLOv5 YOLOv5-

PWD

Original 889 57.4 59.4 84.4 84.8 70.9 72.1

General synthesis 5480 57.9 59.6 84.6 85.8 71.2 72.7

Direct synthesis 5471 59.1 60.4 85.6 86.5 72.3 73.5

Weighted synthesis 5470 59.7 60.8 86.6 87.2 73.1 74.0
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Figure 8. The P-R curves of the YOLOv5 and YOLOv5-PWD models on the test set. (a) The detection
results of middle-stage infection trees; (b) The detection results of late-stage infection trees; (c) The
detection results of two classes infection trees.

In addition, the YOLOv5-PWD model always achieved higher detection accuracy than
the YOLOv5 model when trained with the same dataset. Compared with the YOLOv5
model trained with the original dataset, the YOLOv5-PWD model trained with the same
dataset showed a 1.2% improvement in mAP for PWD-infected tree detection. The YOLOv5-
PWD detection model trained with the weighted synthesis with NDVI augmentation further
increased the mAP of PWD-infected tree detection by 1.9%. Our YOLOv5-PWD model can
better detect PWD-infected tree, and our UAV image data augmentation sample synthesis
method based on satellite imagery can further improve its performance.

4. Discussion

In this paper, we present a PWD-infected tree sample dataset. This dataset consists
of 1853 images and 51,124 infected trees. We divided the infected trees into middle-stage
and late-stage categories, with 28,400 and 22,724 targets, respectively. In order to observe
the distribution of samples of different categories in the dataset, we additionally randomly
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cropped 15,000 targets as background, which together with the middle-stage infection tree
targets and late-stage infection tree targets constitute a sample feature dataset. We use
the t-Distributed Stochastic Neighbor Embedding algorithm (t-SNE) [49] to reduce the
dimensionality of the sample features of this dataset, and finally obtain a visualized data
distribution result (as shown in Figure 9). As Figure 9 shows, there is a clear distinction
between the background targets and the infected tree targets in our sample data set, which
can make the model better classify the infected trees and the non-infected trees. However,
it also reveals that the distinction between categories of middle-stage infected trees and
late-stage infected trees is not obvious. Therefore, effectively distinguishing between
middle-stage infected trees and late-stage infected trees has become one of the challenges
of the model for detecting PWD-infected trees.

Figure 9. Visualization of sample data distribution of our dataset in two-dimensional space by t-SNE.

Experiments on our constructed dataset show that the YOLOv5-PWD disease tree
detection model we built can efficiently and accurately identify PWD-infected trees. It
has achieved certain results in the classification and identification of middle-stage and
late-stage infected trees, but it needs to be improved in more refined identification of early-
and middle-stage infected trees. Compared with several other commonly used object
detection models, our proposed YOLOv5-PWD model shows better detection accuracy
and acceptable speed in the detection of single PWD-infected trees, achieving the purpose
of rapid and accurate detection of PWD. In addition, as shown in Table 1, our model
shows better detection accuracy in identifying middle-stage and late-stage infected trees,
respectively, and it has a more obvious advantage in distinguishing between them. How-
ever, it can also be seen from Table 1 that although our model outperforms other models
in detecting PWD middle-stage infected trees, all of these models have lower accuracy
in detecting middle-stage PWD-infected trees than late-stage PWD-infected trees. The
reason for this may be that the features of the PWD middle-stage infected trees are more
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complex, compared with the PWD late-stage infected trees. Therefore, further improving
the recognition accuracy of the model for early and middle stage PWD-infected trees is one
of our future challenges.

The sample synthesis method we propose combines satellite images and high-resolution
UAV images. It can increase the number of samples in the dataset while ensuring the quality
of the synthesized samples, saving costs and improving model detection accuracy. We used
this sample synthesis method to increase the number of samples in the training dataset
by over six times, so that the deep learning model can be more fully trained, and the
detection accuracy of the model has also been improved. During the synthesis process, if
we directly pasted the infected tree targets onto the image, the synthesized image would
be too inconsistent and distorted (as shown in Figure 6b), which was not conducive to
training the model. Therefore, we increased the weight of both the infected tree targets and
the background image, which can retain the obvious features of the center and weaken
the indistinct features of the edge, making the final composite image more realistic (as
shown in Figure 6c). It can also be seen from Table 2 that more realistic images really help
to improve the effect of model training and detection.

5. Conclusions

In this paper, we took the forested area known to be affected by PWD in Xianning
City, China as the study area, and we collected the UAV images and Sentinel-2 satellite
imagery of the study area as the experimental data for our research. Firstly, we classify the
PWD-infected tree of high-resolution UAV RGB images into middle-stage infected trees
and late-stage infected trees, and construct a PWD-infected tree sample dataset, which
consists of 889, 370, and 594 images in training sets, validation sets and test sets, respectively.
Secondly, we improve the YOLOv5 deep learning object detection model and build the
YOLOv5-PWD detection model. The YOLOv5-PWD model has obvious advantages over
other object detection models in terms of detection effect, achieving an AP value of 59.4%
for detecting the middle-stage class, an AP value of 84.8% for detecting the late-stage
class, an mAP of 72.1%, and an FPS of 11.49, thus enabling our model to quickly and
accurately identify single PWD-infected trees. Finally, to increase the amount of training
data, improve the recognition efficiency of the infected tree object detection model, and
reduce the cost of data acquisition, we propose a sample synthesis method that combines
large-scale free-access Sentinel-2 satellite imagery and high-resolution UAV imagery. After
sample synthesis, the number of images in the training set increased by more than six times,
and our model’s detection effect was improved. The model achieved an AP value of 60.8%
for detecting the middle-stage infected trees and an AP value of 87.2% for detecting the
late-stage infected trees, and an mAP of 74% for the overall model detection, achieving a
relatively high detection accuracy.

For future work, we plan to extend our research in the following directions: (1) We will
clarify the classification system of PWD-infected trees, construct a larger dataset containing
early-, mid-, and late-stage infected trees, evaluate its accuracy and quality using authori-
tative methods, and further explore models and methods to improve the identification of
early and mid-stage infected trees. (2) We will explore methods to fuse multi-source data
such as satellite and drone data to provide the model with more comprehensive training
and improve its ability in detecting PWD-infected trees. (3) During the model training
process, we will consider more auxiliary data such as terrain, meteorological data, and
humidity, and combine these factors with remote sensing image data to explore methods
for improving detection accuracy.
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