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Abstract: Developing a machine-learning-based radiative transfer emulator in a weather forecasting
model is valuable because it can significantly improve the computational speed of forecasting
severe weather events. To replace the radiative transfer parameterization in the weather forecasting
model, the universal applicability of the radiation emulator is essential, indicating a transition
from the research to the operational level. This study investigates the degradation of the forecast
accuracy of the radiation emulator for the Korea peninsula when it is tested at different horizontal
resolutions (100–0.25 km) concerning the accuracy attained at the training resolution (5 km) for
universal applications. In real-case simulations (100–5 km), the forecast errors of radiative fluxes and
precipitation were reduced at coarse resolutions. Ideal-case simulations (5–0.25 km) showed larger
errors in heating rates and fluxes at fine resolutions, implying the difficulty in predicting heating rates
and fluxes at cloud-resolving scales. However, all simulations maintained an appropriate accuracy
range compared with observations in real-case simulations or the infrequent use of radiative transfer
parameterization in ideal-case simulations. These findings demonstrate the feasibility of a universal
radiation emulator associated with different resolutions/models and emphasize the importance of
emulating high-resolution modeling in the future.

Keywords: Weather Research and Forecasting (WRF) model; RRTMG; radiation; neural network
(NN); emulator; Korea

1. Introduction

Because the parameterization of the radiative transfer process accounts for the largest
computation burden in atmospheric prediction models (over 80% [1,2]), machine-learning
emulators imitating radiative transfer processes with a faster computational speed have
been actively developed. Initial studies were confined to imitating the radiative transfer
model (RTM) under clear sky simulation or ideal conditions that can be difficult to apply
universally [3–9]. For RTM emulation studies, advanced machine-learning techniques,
in addition to the common neural network (NN) based on the feed-forward multi-layer
perceptron (such as the random forest ([10]), convolutional neural network (CNN [4]),
recurrent neural network (RNN [9]), and U-net++ model [6]), have been actively used.
Emulation studies have attempted to replace radiative transfer parameterizations in at-
mospheric weather/climate forecasting models [1,2,10–21]. These emulator studies have
reported sufficient speed improvements of 10 to 100 times compared with theoretical
radiation schemes based on discrete bands [22–26].

Although the speed improvement by the RTM emulator was confined to the radiation
process only, the radiation emulator in the numerical weather prediction (NWP) model can
further speed up the entire numerical prediction system, benefiting many applications in
which urgent weather forecasting (e.g., typhoon, flood, and heavy snowfall forecasting)
is essential. In addition, because the radiation emulator is linked to many dynamic and
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physical variables in the NWP model or general circulation model (GCM), the emulator can
produce tremendous outputs (e.g., weather charts at various levels) indirectly linked with
radiative transfer processes at a faster speed. Therefore, the radiation emulator in numerical
prediction models (online test) is incomparably valuable for broad applications compared
to the RTM emulator (offline test) not linked to numerical models. Ref. [11] first developed
a NN emulator functioning 50–80 times faster than longwave (LW) parameterization in the
Community Atmospheric Model (CAM) with T42 resolution (~300 km). The emulation for
shortwave (SW) parameterization, which was 20-fold faster, was further included under the
same CAM [12]. Ref. [10] for different machine-learning methods and [13] for compound
parameterization were conducted under the same CAM framework. NN emulators for
both LW and SW can improve the computational speed of radiative transfer calculations by
approximately 30 times and the total computation time by a maximum of 25% under the
Climate Forecast System (CFS) model with T126 resolution (~100 km) [14]. Ref. [16] devel-
oped an NN emulator with multiple hidden layers that can accelerate the computational
speed of the radiation process by a maximum of 10 times under a super-parameterized
energy exascale earth system model (SP-E3SM) with a 1◦ horizontal resolution (~100 km).
Ref. [15] further reported a speedup of approximately 40 times for the radiation process
and a total reduction in computation time by a maximum of 18% under the Global Forecast
System (GFS) model with T574 resolution (~25 km). Recently, Ref. [17] demonstrated the
universal performance of a radiation emulator developed for the CFS model at the global
scale [14] by applying it to the GFS model. Although the current GFS model has a 13 km
resolution compared to the 100 km resolution of CFS, they kept the resolution at 100 km as
in the GFS experiment. In contrast to global models, radiation emulators for the Korean
local model with a 5 km resolution, called the Korea Local Analysis and Prediction System
(KLAPS [27]), were developed, showing a significant speedup in the radiation process by
60-fold and 87% reduction in total computation time [2,18–20]. Ref. [1] developed a unique
radiation emulator with speed improvements for the radiation process by 20–100 times and
82–86% reduction in total model time for a cloud-resolving model (CRM) with a 0.25 km
resolution. However, their result was limited to an ideal case of a 6 h forecast in the daytime.
Because previous studies on radiation emulators were conducted in different modeling
frameworks based on different horizontal resolutions (from GCM to CRM), the absolute
errors found in the literature are difficult to compare. Because atmospheric profiles at a
coarse horizontal resolution are less extreme, they can be trained over a smaller range than
cloud-resolving, thereby facilitating the development of a radiation simulation. The same
effects diminish the detail through the smoothing effect of fine resolution. However, the
as-developed model might not ensure better performance in terms of universal applicabil-
ity. Therefore, the impact of horizontal resolutions on the forecast accuracy of radiation
emulators needs to be comprehensively investigated. To evaluate the accuracy of an emu-
lator, various aspects need to be validated, such as comparison with a control simulation
that uses the original radiative transfer parameterization [10–17] and evaluations with the
infrequent use of radiative transfer parameterization and observations [1,2,18–20]. Because
observations for an ideal-case simulation are absent, the infrequent use of radiative transfer
parameterization can be a benchmark for evaluating the forecast accuracy of a radiation
emulator at the same computational speed.

The horizontal resolution effect in the NWP model is a topic that many atmospheric
scientists are interested in. For example, precipitation in the NWP model is implicitly
determined by cumulus parameterization at coarse horizontal resolutions (e.g., above
100 km), whereas it is explicitly calculated using cloud microphysics parameterization at
convection-permitting scales, typically at resolutions of several kilometers. Owing to the
spatial smoothing effect, precipitation forecasting at coarse resolution appears to be more
accurate compared with that at fine resolution [28,29]; however, precipitation forecasting at
fine resolution is still important. In contrast, the forecast accuracy at coarse resolution for
surface temperature is lower than that at fine resolution [30,31] because the smoothing effect
at coarse resolution hinders the realistic prediction of temperature variability. The contrast
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associated with horizontal resolutions can lead to a conjecture that the climate models with
100–300 km resolutions [10–17] will exhibit a different behavior compared with those of
the convection-permitting NWP model with a 5 km resolution [2,18–20] or CRM with a
0.25 km resolution [1]. This may eventually affect the performance of the radiative transfer
emulator. Although they are not linked with numerical forecasting models, emulation
studies for RTM have used datasets based on horizontal resolutions of 80 km [4,9], 30 km [8],
13 km [6], and various data sources [5,7]. However, these studies used different numerical
models and machine-learning methods, and it is difficult to conclude which studies showed
improved results. Furthermore, all previous radiation emulators were evaluated at the same
resolution as the trained horizontal resolution. Because the horizontal resolution of datasets
and targeting models can be changed according to institutional policy or user interest in the
trained version, the universal robustness of the developed radiation emulators at different
horizontal scales should be satisfied for applying them to modeling systems with various
horizontal resolutions.

The universal applicability of radiation emulators, partially demonstrated by [17,20],
is associated with the changes in numerical models (CFS to GFS) and microphysics param-
eterizations along with different models (real-case to ideal-case simulations). However,
the effect of horizontal resolution on the robustness of the radiation emulators remains
unknown. Therefore, this study aims to investigate the universal performance of a ra-
diation emulator with a 5 km resolution developed by [19] when applied to different
horizontal resolutions for climate and cloud-resolving simulations (100 km to 0.25 km). As
in [20], the trained results from three-dimensional real-case simulations were applied to
two-dimensional idealized squall line simulation. This ideal-case simulation is particularly
important in predicting the evolution of clouds and precipitation because many cloud
microphysics schemes are developed in the ideal framework [32–35]. It is a good testbed for
evaluating the radiative transfer emulator because radiative transfer processes are closely
related to cloud processes. These quantitative analyses can provide insights into the extent
to which the emulator can be used across horizontal resolutions for a potential use in
the operational NWP model, along with suggesting a future development direction for
radiation emulators capable of operating at fine resolutions.

2. Data and Methods
2.1. NN Emulator

This study used the NN radiation scheme developed by [19] for the KLAPS model
over the Korean peninsula. For a detailed flowchart of NN development, see Figure S1
of the supporting information in [1]. The emulator imitated the RRTMG-K radiative
transfer parameterization [24], which is an updated version of the rapid RTM for GCMs
(RRTMG [23]) with LW of 14 bands and 256 g-points and SW of 16 bands and 224 g-
points. In [19], 288 million input-output pairs were used as training sets based on random
sampling for 2009–2019 with 1 h intervals. Training sets comprised 96 categories for
12 months, land/ocean, clear/cloud, and LW/SW. The input variables used were vertical
profiles of pressure, temperature, water vapor, ozone, and cloud fraction, in addition to skin
temperature and surface emissivity (LW), as well as insolation and surface albedo (SW).
The output variables used were all-sky heating rate profiles, upward fluxes at the top and
bottom of the atmosphere, and downward flux at the bottom. Hereafter, the LW/SW fluxes
in this study refer to the average of the three fluxes at the top and bottom. The individual
fluxes as output variables at the top or bottom were also considered for statistical analyses.

The NN approximated the nonlinear relationship between input and output based
on 90 neurons and a single hidden layer. This neuron network size was also previously
used in the literature for developing an efficient radiation emulator with appropriate accu-
racy [2,18–20]. The use of more neurons and hidden layers can increase the computational
speed of the radiative transfer calculation by the emulator, although it can further improve
the accuracy of the emulator. Ref. [19] noted that single and two hidden layers were the
most appropriate at the 60-fold speedup condition for the ideal-case and real-case simula-
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tions, respectively, in reducing the forecast accuracy of LW/SW fluxes by 19.1% (ideal-case)
and 4.8% (real case). This study selected the single hidden layer. Appropriate batch size
and learning rate can optimize NN training based on parallel learning. This study used a
batch size of 500 and a learning rate of 0.05 from [19]. Ref. [19] showed that the forecast
errors of LW/SW fluxes were reduced by 8.2–11.6% through offline sensitivity experiments
on batch sizes and learning rates. Although the learning rate at a given batch size can
be further optimized by more expensive experiments (such as those performed by [21]),
such an approach was not followed in our present study because the forecast accuracy
of LW/SW fluxes in online testing appeared to be saturated regardless of the learning
rates. Furthermore, although the use of batch size smaller than 500 (i.e., mini-batch size)
may improve the NN training, its practicality is limited because training time is increased
while less parallel learning is achieved. This study also used the tangent hyperbolic (Tanh)
activation function. Because the activation function is applied between input variables and
the hidden layer in the emulator code, it is more important than the batch size and the
learning rate that only affect the training process. Sensitivity experiments on 15 activation
functions by [19] showed that the forecast errors of LW/SW fluxes improved by 12.2–13.4%
using the Tanh.

For better generation, NN training was further optimized using stochastic weight
averaging (SWA [36]). Because the SWA mimics an ensemble approach by using a stochastic
averaging for weight coefficients while keeping the same dimension for final weight
coefficients (i.e., same numerical complexity), it effectively reduces the generalization
error while maintaining the computational speed of the emulator. As a result of the
NN training, weight and bias coefficients (input to the hidden layer and hidden layer
to output) were obtained; these were then linked to the KLAPS model. Note that the
weight/bias coefficients were somewhat smoothed by applying the SWA. The radiation
emulator showed an approximately 60-fold speedup compared to RRTMG-K and an 84–87%
reduction in total computation time [2,19].

2.2. Numerical Experiments

The KLAPS model used in this study was based primarily on the Advanced Research
of the Weather Research and Forecasting (WRF-ARW) model [37]. The physics suites other
than radiative transfer parameterization were the WRF double moment 7-Class (WDM7)
microphysics [35], unified Noah land surface model [37], Simplified Arakawa–Schubert
cumulus modified by the Korea Institute of Atmospheric Prediction Systems [38], Shin
and Hong boundary layer [39], and revised MM5 Monin–Obukhov surface layer [40]. In
coarse resolutions, the effect of the cumulus scheme is dominant in determining cloud and
precipitation, whereas the microphysics scheme is important in the convection-permitting
simulation (e.g., 5 km). The cumulus scheme is not directly connected with the radiative
transfer parameterization, whereas the microphysics scheme explicitly interacts with ra-
diative transfer processes. The European Center for Medium-Range Weather Forecasts
Reanalysis v5 (ERA5 [41]) data with 0.25◦ horizontal and 37 pressure-level resolutions were
used for initial profiles and boundary conditions in the real-case simulation. The real-case
simulation was integrated for 7 days with a 20 s time step over 5 km horizontal grids
(234 × 282) based on the Lambert conformal conic projection and 40 vertical levels. The
real-case simulations were initialized from the 1st, 8th, 15th, and 22nd days of each month
in 2020, comprising 48 weekly cases. For these cases, the LW and SW fluxes at 3 h intervals
were used to evaluate the forecast accuracy of the radiation emulator by comparing it with
the control simulation (3 h intervals) based on radiative transfer parameterization (i.e.,
RRTMG-K). The forecast accuracy of the emulator and control results was also evaluated
by comparing them with surface observations in South Korea. The 2 m air temperature
(T2m) data from 713 stations were measured. Additionally, precipitation data with a 5 km
resolution were derived by merging rain gauges and ground-based radar measurements
(Figure 1). The precipitation data were generated by further considering radar estima-
tions for areas where rain gauge observation was unavailable at a certain 5 km grid. The
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datasets were obtained from the Numerical Modeling Center at the Korea Meteorological
Administration. Because the uncertainty of precipitation from radar measurements is large
for regions without rain gauge observations (e.g., the ocean and North Korea), this study
only considered the land region of South Korea. The observed and model precipitation
values were spatially interpolated onto a regular 0.05◦ × 0.05◦ grid. Furthermore, this study
considered a two-dimensional squall line experiment using the WRF model for an extreme
weather event simulation [37]. However, this case study corresponds to a highly unstable
situation compared to the one-year average of the real-case simulations. For example, the
forecast errors of the LW/SW fluxes were 121% and 185% larger in the ideal-case simulation
than in the real case [20]. This ideal simulation was forced by the default initial sounding in
the WRF model and was based on 201 horizontal grids and 40 vertical levels. Furthermore,
it was integrated for 24 h with a 3 s time step. The radiation emulator developed in the real-
case training was applied to the ideal-case simulation to test the robustness associated with
the representation error, similar to that in [20], for microphysics parameterizations. Here,
the radiation emulator developed for July and land was selected among 12 months and
land-ocean categories in [19], considering the maximum solar zenith angle and predefined
surface condition for the ideal simulation. The radiation emulator system comprised four
components for LW (day and night) and SW (day only), as well as clear and cloud areas.
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observations, along with background topography (gray colors).

To analyze the effects of resolution on universal performance of the radiation emu-
lator, simulations were performed considering different spatial grids of 234 × 282 (5 km),
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118 × 142 (10 km), 48 × 57 (25 km), 25 × 29 (50 km), 16 × 20 (75 km), and 13 × 15 (100 km),
while maintaining similar spatial coverage on the Korean peninsula. The trained results
with 5 km resolution were applied to 10–100 km resolutions as an independent validation.
The 5 km simulation was also evaluated for the independent period (2020) and the training
period (2009–2019) used in the previous study [19]. Note that the prognostic uncertainty in
the NWP model can be significantly accumulated in the long-term integration. In previous
studies [2,18–21], the surrounding four points around the lateral boundary were excluded
from both training and testing because physically unrealistic data can appear around the
lateral boundary. However, because the 100 km simulation was performed in a small
domain, excluding the data around the lateral boundary between 5 km and 100 km was
unfair regarding spatial coverage. This study modified the width of the relaxation zone
from four grid points to one grid point, and thus, the data around the lateral boundary
were also included in this study. For ideal-case simulation, 5, 3, 2, 1, 0.5, and 0.25 km
resolutions were used while maintaining 201 horizontal grids.

2.3. Previous Studies on Different Resolutions

There is a trade-off between accuracy and speedup in the emulator study; thus, the
accuracy of the emulator should be compared under the same (or similar) computational
speed conditions. Because of this, using many neurons and hidden layers in the NN is a
constraint, leading to a slowdown that is against the ultimate goal of the radiation emulator
in GCMs and NWPs. Even if a study shows better accuracy using an advanced machine-
learning method, an additional slowdown from the method should be contemplated.
Differences in horizontal resolution further complicate the problem. Table 1 compares the
offline evaluations (i.e., for independent validation sets) for all-sky LW/SW heating rates
found in the literature and this study. The offline evaluates a radiative transfer error induced
by the NN approximation. Although the radiative transfer process is not affected by the
horizontal resolution, the spatial smoothing effect of input/output variables (i.e., infrequent
extreme events at coarse resolutions) can affect the accuracy of the radiation emulator.

Table 1. Comparison of offline evaluations (i.e., for independent validation sets) for all-sky LW
heating rate (LWHR) and SW heating rate (SWHR) profiles in the literature and this study. The root
mean square errors (RMSEs) for LWHR and SWHR were given. All results were based on the fully
connected feed-forward neural network, except Ukkonen (2022) [9] used the recurrent neural network
and Zhong et al. (2023) [42] using bidirectional long short-term memory (Bi-LSTM).

References Resolution
[km]

Speedup
[Fold]

LWHR
[K day−1]

SWHR
[K day−1]

Krasnopolsky et al. (2010) [14] 300 100 0.34 0.19
Krasnopolsky et al. (2010) [14] 100 30 0.49 0.20
Krasnopolsky et al. (2012) [15] 25 40 0.52 0.26

Roh and Song (2020) [1] 0.25 30 1.12 0.55
Roh and Song (2020) [1] 0.25 60 1.54 1.13
Roh and Song (2020) [1] 0.25 100 1.60 1.15
Song and Roh (2021) [2] 5 60 0.59 0.22

Ukkonen (2022) [9] 80 4 - 0.16
Song et al. (2022) [19] 5 60 0.46 0.18

Zhong et al. (2023) [42] 5 15.71 2.035 1.172
Zhong et al. (2023), Bi-LSTM [42] 5 2.16 0.337 0.277

As shown in Table 1, Ref. [1] showed that a radiation emulator with approximately
60-fold speedup exhibited root mean square errors (RMSEs) of 1.54 K day−1 for LW heating
rate and 1.13 K day−1 for LW and SW heating rates under the 0.25 km resolution; however,
these errors strongly depend on the NN structure [1]. For 288 million data in real-case
simulations (independent of training sets), the NN radiation scheme developed under 5 km
resolution with a 60-fold speedup [2] showed the RMSEs of 0.59 K day−1 for LW heating
rate, 0.22 K day−1 for SW heating rate, 4.41 W m−2 for LW flux, and 20.72 W m−2 for SW
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flux. These RMSEs were further reduced to 0.46 K day−1, 0.18 K day−1, 3.59 W m−2, and
19.13 W m−2, respectively, using SWA during NN training ([19]). The error for the SW
heating rate in [19] was comparable to that using the RNN (0.16 K day−1) in [9], despite the
huge difference in speedups for the radiative transfer process (111-fold vs. 4-fold). Note
that the 60-fold speedup for both LW and SW processes can be divided into approximately
30 and 111 times for LW and SW, respectively [2]. Recently, Ref. [42] showed 15.71-fold
and 2.16-fold speedups using FC (Fully connected) that is the same model used in this
study and Bi-LSTM, with RMSEs of SW heating rates of 1.172 K day−1 and 0.277 K day−1,
RMSEs of LW heating rates of 2.035 K day−1 and 0.337 K day−1, respectively. Despite
implementation with more complex NN structures such as Bi-LSTM, which is used as
the bridge between WRF and ML model for inference, it represented that it needed more
optimization for speedup and accuracy. In a similar study, Ref. [4] built the instance model
that implements CNN by wrapping the radiation model with python. However, even
though the technologies used were outstanding, the primary goal (speedup) of emulator
development was lost. That is why many works of literature tried a simple NN model for
emulator development. In GCM studies, the RMSEs for the LW and SW heating rates in the
offline tests were 0.34 K day−1 and 0.19 K day−1 in 300 km resolution (CAM), 0.49 K day−1

and 0.20 K day−1 in 100 km resolution (CFS), and 0.52 K day−1 and 0.26 K day−1 in
25 km resolution (GFS), respectively [14]. The radiation emulators for CFS and GFS were
30–40 times faster than RRTMG, similar to RRTMG-K targeted in [1,2,18–21]. Because the
GCM studies were performed in the same group using the same NN technique and input–
output structure, we suspect that the heating rate errors by the emulator reduced when
the horizontal resolution became coarse, even considering the difference in simulation
cases. The results obtained by Krasnopolsky and coworkers using 0.4 million data points
(both LW and SW) were based on individual NN training for each GCM model. However,
Refs. [2,19] used numerous training sets (288 million data) for a small area (i.e., Korea).
Because the representation error can be reduced by using more datasets covering natural
variability, despite the 5 km resolution, the RMSEs of the LW and SW heating rates in [19]
were smaller than those in [14,15].

Numerical errors caused by a radiation emulator can be rapidly amplified during long-
term integration into GCMs or NWPs (called online prognostic testing). For an ideal-case
simulation under 0.25 km resolution, the RMSEs of LW/SW fluxes were amplified by 135%
and 72%, respectively, during 6 h forecasts (7200-time steps) compared with the offline
testing results [1]. For a real-case simulation with 5 km resolution, the RMSEs for LW/SW
fluxes during 1-day forecasts (4320-time steps) increased by 84% and 136%, respectively [2].
For 7-day forecasts (30,240-time steps), the RMSEs for LW/SW fluxes increased further by
148% and 215%, respectively [19]. From these results, the numerical errors of the radiation
emulator can be amplified more in the case of seasonal or inter-annual predictions based
on the GCM. However, because the GCM forecasts are evaluated at monthly or yearly
scales in contrast to the hourly scale for the NWP forecasts, error amplification by the
long-term integration of the emulations was not evident in GCM studies [10–17]. For
example, although [17] attempted a universal application of the radiation emulator by
applying the training results based on the 100 km CFS into the 100 km GFS, the evaluations
were not conducted at the hourly scale (e.g., RMSE), except for global mean bias showing
systematic stability. Under 5 km resolution, the RMSEs of LW/SW heating rates and fluxes
for the radiation emulator of [19] were magnified by 8.6–41.3% when different microphysics
schemes were used with the trained version [20]. In particular, the one-year mean bias
for LW and SW fluxes (−0.08 W m−2 and 0.57 W m−2) in [20] was smaller than those
(−0.26 W m−2 and 0.59 W m−2) in [17], despite different resolutions (5 km vs. 100 km).
From these previous studies, we can conclude that the radiation emulator developed by [19]
is the best among the developed radiation emulators in terms of universal robustness. This
emulator also showed stable results when evaluated with surface temperature, precipitation
observations [19], and changes in 14 microphysics schemes [20].
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3. Results and Discussion
3.1. Real-Case Simulations

The forecast accuracy of the radiation emulator in the NWP model can be evaluated
by comparing it with control simulations based on the original radiative transfer param-
eterization or observation data. To evaluate the accuracy of the LW/SW fluxes using a
radiation emulator, we used the framework used by [19,20]. This framework considered
48 weekly cases (approximately one year) with a 3 h interval for 234 × 282 grids (5 km);
thus, the statistics were obtained from 177,375,744 data points. Because different domain
sizes, such as 118 × 142 (10 km), 48 × 57 (25 km), 25 × 29 (50 km), 16 × 20 (75 km), and
13 × 15 (100 km), were considered for resolution experiments, the number of data points
were inversely proportional to horizontal resolution. The emulator results at different
resolutions were compared with each control simulation. T2m and 3-hourly accumulated
precipitation simulated using the radiation emulator and RRTMG-K were also compared
with surface observation data for the 48 weekly cases.

Figure 2 illustrates the spatial distributions of RMSEs for all-sky LW/SW fluxes
when the radiation emulator developed at a 5 km resolution was applied to 10–100 km
resolutions. The WRF simulation results based on the Lambert conformal conic projection
were interpolated to the latitude-longitude projection with a regular grid interval to draw
the plots. First, the RMSEs of the LW flux showed a clear contrast between the land
and ocean because the skin temperature and surface emissivity, as inputs for the LW
radiation process, were separated for land and ocean. Note that the surface emissivity
(LW) and albedo (SW) over the ocean are constant. Furthermore, mountainous areas can
represent a strong variability in skin temperature toward colder temperatures than the
surrounding low-latitude areas. Because the KLAPS model uses a terrain-following vertical
coordinate, vertical profiles (e.g., pressure, temperature, and moisture) around the surface
are affected by topographic altitudes. Therefore, the LW flux shows the largest error above
11 W m−2 in the Gaema Plateau area in North Korea, having the highest topographic
altitude (Figure 2a). For the RMSEs of the SW flux, the land–ocean contrast was unclear;
it increases slightly toward the southern region (Figure 2g). The more abundant cloud
conditions and slightly larger insolation in the southern region explain the error pattern
of SW flux. In contrast, in the Chinese desert areas located in the northwest, the lowest
RMSEs for SW flux were found because of the low-cloud condition. As the horizontal
resolutions become coarse horizontal resolutions to 10, 25, 50, 75, and 100 km, the RMSEs
in both LW and SW decreased sharply. Because the radiation emulator used in this study
was trained at 5 km resolution, the results at different resolutions should produce outputs
with greater uncertainty regarding representation error. Nonetheless, the smoothing effects
on the spatial input and output variables contributed to producing more accurate results in
terms of universal application. Additionally, it provided lower representation errors in the
observation at different resolutions. The lower representation error could be due to large
training sets for the small Korean domain. The number of training sets used by [2,19] was
720 times larger than those used by [14,15,17]. Because the GCM domain covers the entire
globe, using more training sets is essential to ensure universality and accuracy, as [19] used.
Therefore, we can conclude that the 5 km simulation results of [2,18–21] were developed
under more difficult conditions to secure the universality of radiation emulators compared
with those at the 25 km resolution [15] and coarse resolutions larger than 100 km [10–17].
Similarly, we expect that developing a radiation emulator at resolutions less than 5 km,
such as at the 0.25 km resolution [1], would be more difficult. Although this study did not
consider real-case simulations at resolutions less than 5 km because of the limitation of
computational resources, this issue is addressed in the ideal-case simulation framework.
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Figures 3 and 4 show a case example (03UTC 7 September 2020) of outgoing longwave
radiation (OLR) and outgoing shortwave radiation (OSR) distributions between RRTMG-K
control and emulator results. It corresponds to the 156 h forecast initialized from 15UTC
31 August 2020. This case exhibited a widely spread cloud pattern due to the influence of
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typhoon HAISEN. The lower OLR and higher OSR values indicate deep convective clouds
and thick clouds, respectively. In contrast, higher OLR and lower OSR values are found in
clear regions. The emulator results represented OLR and OSR distributions similar to those
of the control simulations, although slight differences were observed because the accurate
forecast of clouds is difficult. When the horizontal resolutions decreased from 5 km to
100 km, the simulated OLR and OSR patterns also varied significantly. However, judging
from the similarity between control and emulator results, this change did not appear to
have severely impacted the universal applicability of the radiation emulator.
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For a more quantitative evaluation, the temporal variations in RMSEs for LW/SW fluxes,
T2m, and 3-hourly accumulated precipitation were analyzed (Figure 5). The results obtained
were for 48 weekly cases and the entire spatial domain. The RMSEs of the LW flux increased
steadily with forecast time while showing diurnal variations (Figure 5a). Because the variability
in surface temperature is larger during the daytime, the RMSEs of the LW flux showed an
amplified error during the day. The RMSEs of the SW flux were characterized by a strong
diurnal variation associated with the evident diurnal cycle of insolation while showing a
gradual increase in error with forecast time (Figure 5b). In both LW and SW fluxes, the RMSEs
at coarse resolutions were lower than those at fine resolutions. For resolutions larger than



Remote Sens. 2023, 15, 2637 12 of 21

50 km, the RMSE patterns in the LW flux were saturated (Figure 5a); similar trends were
observed for the time series of RMSEs (Figure 5d–f). The total RMSEs for the three LW and
SW fluxes are listed in Table 2. The RMSEs of the LW and SW fluxes for 5, 10, 25, 50, 75,
and 100 km were 9.59, 9.16, 8.16, 7.79, 7.78, and 7.99 W m−2 and 63.17, 60.34, 52.78, 49.03,
46.89, and 47.40 W m−2, respectively. Accordingly, the 5 km results were more uncertain by
20% (LW) and 33% (SW) compared with the 100 km results. If the results would have been
re-trained at each resolution, not aiming at the universal application of the 5 km radiation
emulator, the difference between the 5 km and 100 km results would have been reduced.
These results show that the 5 km simulations in [2,18–21] were harsher conditions than coarse
resolutions larger than 100 km [10–17]. Compared with the observation data, the evaluation
results revealed the contrast between T2m and precipitation (Figure 5c,d). The RMSEs of T2m
increased with increasing resolution (2.2619 K to 2.9405 K in Table 2), whereas an opposite trend
was observed for the 3-hourly precipitation (1.5515 mm to 1.1479 mm in Table 2). The control
simulations based on the original radiation parameterization also exhibited similar RMSEs
for T2m (2.2643 K to 2.9895 K) and 3-hourly precipitation (1.1433 mm to 1.5641 mm) (Table 2),
as well as similar temporal evolutions (Figure 5e,f), compared to the emulator results. No
significant performance degradation of the emulator results was observed compared to the
control simulation results. When the horizontal resolution is coarse, the spatial variability of
the simulated surface temperature can be less than that of the actual observations. Thus, overly
coarse resolutions can degrade the forecast accuracy of the surface temperature. [30,31] reported
similar results, showing lower accuracy for the surface temperature at coarse resolutions.
Because the precipitation forecast is highly uncertain, the smoothing effect at coarse resolutions
can be more important in determining the forecast error. Precipitation forecasting skill in
numerical models was somewhat improved on coarse horizontal scales [28,29]. However,
precipitation forecasts at fine resolutions are still important.

Table 2. Total root mean square error (RMSE) statistics and mean bias (in parenthesis) for real-case
simulations by using a radiation emulator. The LW and SW fluxes [W m−2], along with three upward
(↑) and downward (↓) fluxes at the top and bottom, were compared with the control model simulations,
whereas 2-m temperature (T2m) [K] and 3-hourly precipitation [mm] were compared with surface
observations. The observational evaluations for control simulations were also given in the bottom panel.

5 km 10 km 25 km 50 km 75 km 100 km

LW flux 9.5888
(−0.0896)

9.1575
(−0.1974)

8.1587
(−0.3312)

7.7853
(−0.4591)

7.7776
(−0.5351)

7.9902
(−0.5777)

-top ↑ 11.2884
(−0.1130)

10.6651
(−0.4161)

9.2559
(−0.8553)

8.8752
(−1.3604)

9.2227
(−1.7208)

9.8026
(−1.9578)

-bottom ↑ 3.8179
(−0.0127)

3.7173
(0.0041)

3.4111
(0.0326)

3.3648
(0.1044)

3.2523
(0.1382)

3.3526
(0.1812)

-bottom ↓ 13.6601
(−0.1430)

13.0901
(−0.1801)

11.8089
(−0.1709)

11.1159
(−0.1214)

10.8579
(−0.0227)

10.8154
(0.0436)

SW flux 63.1709
(0.5536)

60.3422
(0.6708)

52.7777
(0.8328)

49.0250
(1.1012)

46.8944
(1.2480)

47.3956
(1.4263)

-top ↑ 79.3886
(−0.2232)

75.9043
(−0.8143)

62.3987
(−1.6583)

61.6078
(−2.9714)

58.9609
(−3.3387)

59.6203
(−3.9874)

-bottom ↑ 13.6354
(0.1701)

12.9018
(0.2718)

11.3199
(0.4041)

10.4635
(0.6312)

10.0865
(0.7353)

10.0846
(0.8843)

-bottom ↓ 96.4886
(1.7138)

92.2204
(2.5550)

80.6146
(3.7526)

75.0035
(5.6438)

71.6357
(6.3475)

72.4819
(7.3819)

T2m
2.2619

(−0.7778)
2.4536

(−0.9370)
2.6596

(−0.9582)
2.7026

(−0.7280)
2.8249

(−0.6236)
2.9405

(−0.5037)

Precipitation 1.5515
(−0.0703)

1.5170
(−0.0846)

1.3788
(−0.1426)

1.2800
(−0.2136)

1.1747
(−0.2965)

1.1479
(−0.3393)

T2m
(Control)

2.2643
(−0.7791)

2.4607
(−0.9428)

2.6808
(−0.9733)

2.7401
(−0.7726)

2.8672
(−0.6775)

2.9895
(−0.5656)

Precipitation
(Control)

1.5641
(−0.0629)

1.5123
(−0.0890)

1.3775
(−0.1444)

1.2760
(−0.2187)

1.1776
(−0.2981)

1.1433
(−0.3435)
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Figure 5. Time series of RMSEs for (a) LW and (b) SW fluxes compared to the control runs with differ-
ent horizontal resolutions in real-case simulations. The observational evaluations of 2 m temperature
(T2m) and 3-hourly precipitation were given for both (c,d) emulator (e,f) and control simulations.

Notably, the mean bias was much smaller than the RMSE (Table 2), especially for
the LW/SW fluxes. The systematic biases for LW/SW fluxes and precipitation increased
as the horizontal resolution increased, contrary to the RMSEs. Furthermore, because the
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role of cumulus parameterization in determining precipitation and surface temperature is
more important at coarse resolutions than at fine resolutions, we examined the behavior of
radiation emulator results with a turned-off cumulus scheme. By disabling the cumulus
scheme, the RMSEs for the LW/SW fluxes and T2m (listed in Table 2) were changed by a
maximum of 0.9% (at 100 km resolution), while the general trends remained unchanged.
The RMSEs of the 3-hourly precipitation forecasts at 100 km resolution were changed
the most (by 6.7%), resulting in 0.2472 mm. Nevertheless, these results did not affect
the conclusion of this study regarding the universal application of a radiation emulator
at different resolutions. Therefore, the radiation emulator developed at 5 km resolution
can be universally applied for horizontal resolutions larger than 5 km while maintaining
accuracy and stability. However, the opposite situation (coarse to fine resolutions) cannot
be guaranteed because the potential error from the radiation emulator can lead to unstable
results in numerical models [13,17,18,20]. This drawback led to the next analysis based on
ideal-case simulations.

3.2. Ideal-Case Simulations

Considering a tremendous computation resource for long-term simulations at fine
resolutions of less than 5 km, the universal application of a radiation emulator at 5–0.25 km
resolutions was evaluated in a two-dimensional idealized squall line simulation as an
extreme precipitating case. Similar ideal simulations were conducted by [1,19,20]. Ref. [20]
examined the universal application of a radiation emulator with changes in 14 additional
microphysics schemes at 5 km resolution. As a follow-up, our study examined the effects
of horizontal resolution on a universal radiation emulator. The radiation emulator used in
this study was considered for real-case simulation (July and land). This study considered
a 24 h integral period with a 3 s time step; hence, the emulator was applied four times
more than in the study by [1] for a 6 h forecast and 6.66 times more than in the study
by [19,20] using a 20 s time step. The 3 s time step was essential for the control simulation
at 0.25 km (larger time steps led to a blow-up of the control simulation). Comparing the
representation error of the real-case simulation to that of the ideal-case, the RMSEs of the
radiation emulator in [20] were greater by 24–48% than the infrequent use of radiative
transfer parameterization by 60-fold in [19]. Because an ideal simulation is an extreme case,
the error caused by the emulator can be rapidly amplified. Consequently, the RMSEs of the
radiation emulator in Table 3 appear moderately large. These RMSEs were calculated for
201 horizontal grids and 1440 temporal data points at 10 min intervals. The heating rate
and flux in this study represent the average of 39 vertical layers and 3 flux components (top
and bottom), respectively. To minimize the error associated with universal representation,
Ref. [20] attempted compound parameterization (CP [12]) returning to the original RRTMG-
K parameterization when the predicted heating rate errors exceeded a predefined threshold.
For the CP, an additional NN was trained using the same input variables in the emulator
and the mean difference of vertical heating rates between the RRTMG-K and the emulator
(i.e., one output variable), as well as the same 90 neurons and single hidden layer with
the emulator. Although frequent CP can ensure the accuracy and stability of the radiation
emulator, it can lead to a substantial slowdown toward the RRTMG-K parameterization,
diminishing the fundamental value of the radiation emulator. Thus, considering the trade-
off between accuracy and speed, using an appropriate threshold for activating the CP
procedure is essential. Ref. [20] used thresholds of 1.0341 and 0.4820 K day−1 for the LW
and SW heating rates, respectively, to target an approximately 3-fold slowdown of the
emulator with a 60-fold speedup. If the predicted heating rate errors were less than those
thresholds, the emulator mode with a 60-fold speedup was maintained. When the same
concept was applied in this study, the emulator + CP results were 3.23–4.21 times slower
than those obtained using the emulator alone. This result implies that the emulator + CP
was 14–19 times faster than the original radiative transfer parameterization. By adding CP,
the total RMSEs at 5 km resolution were reduced by 27.3%, 26.7%, 16.8%, and 16.8% for
the LW heating rate, SW heating rate, LW flux, and SW flux, respectively. The resulting
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RMSEs of heating rates (2.61 K day−1 and 1.21 K day−1) were comparable to 2.57 K day−1

and 1.20 K day−1 based on the infrequent use of radiative transfer parameterization by
30 times [19]. In particular, systematic bias was reduced by the use of CP (Table 3). These
results indicate that using a radiation emulator with CP can maintain stable accuracy while
overcoming the representation error induced by the difference between the real and ideal
cases and different horizontal resolutions.

Table 3. Total root mean square error (RMSE) and mean bias (in parenthesis) statistics for ideal-case
simulations. The LW and SW heating rates [K day−1] and the LW and SW fluxes [W m−2] were
compared with the control simulations. The numbers before and after arrows (→ ) indicate the
emulator only and the emulator with compound parameterization.

LW Heating Rate SW Heating Rate LW Flux SW Flux

5 km 3.59→ 2.61
(−0.05→−0.11)

1.65→ 1.21
(0.30→ 0.02)

25.12→ 20.89
(0.36→ 0.12)

193.19→ 160.76
(12.97→ 1.84)

3 km 4.42→ 2.96
(0.14→−0.07)

2.48→ 1.64
(0.64→ 0.02)

36.01→ 20.35
(10.18→−1.83)

260.52→ 154.19
(47.00→−1.81)

2 km 4.29→ 2.98
(0.13→−0.17)

2.32→ 1.33
(0.52→ 0.01)

26.67→ 21.92
(0.74→ 1.10)

225.13→ 147.67
(15.56→−2.12)

1 km 5.19→ 3.87
(−0.25→−0.41)

3.37→ 1.75
(1.33→−0.13)

39.41→ 20.29
(17.71→−0.91)

291.27→ 104.46
(99.03→ 11.92)

0.5 km 5.90→ 4.49
(−0.21→−0.40)

3.30→ 1.75
(1.39→−0.06)

49.14→ 19.73
(26.86→ 3.11)

269.50→ 101.52
(89.70→ 2.24)

0.25 km 5.29→ 3.44
(−0.35→ 0.01)

2.99→ 1.43
(1.10→ 0.00)

45.06→ 19.73
(24.96→−3.47)

245.47→ 174.04
(61.15→ 5.32)

Figure 6 shows the temporal and spatial variations of OLR (upward LW flux at the top
of the atmosphere) for 5, 3, 2, 1, 0.5, and 0.25 km resolutions. Each simulation had the same
horizontal grids but different coverage areas from 1000 km to 50 km. The difference in area
coverage induced different evolutionary patterns among the control simulations. A low
OLR indicates vigorous deep convention, whereas a high OLR represents a clear condition.
While the 5 km control simulation is characterized by widely spread clear areas (expressed
by high OLR values) before hour 12 (Figure 6a), the clear sky portion is rapidly reduced
when the horizontal resolution decreases from 5 to 0.25 km. Because the radiative transfer
error is larger in cloud profiles, the 0.25 km simulation corresponds to a more highly
nonlinear situation than the 5 km simulation. The sharp effect at a fine resolution with more
extreme events (in contrast to the smoothing effect at a coarse resolution) provides a more
uncertain situation at 0.25 km resolution. Therefore, the occurrence frequencies of lower
OLRs, regarded as deep convective clouds, are higher at fine resolutions in both real and
ideal cases (Figure 7). In contrast to the long-term (one year) results for the real case showing
a stable smoothing effect with resolution (Figure 7a), the ideal simulations based on one
case show great variability in probability density functions (Figure 7b). Because of the sharp
effect and the high cloud conditions at fine resolutions, the occurrence frequencies of OLRs
less than 180 W m−2 were higher at fine resolutions, whereas those around 270 W m−2,
regarded as a clear condition, were relatively reduced. Characteristically, the 0.25 km
simulation showed a rare occurrence with OLRs of less than 180 W m−2. In contrast, it
showed frequent occurrences of OLRs between 180 and 220 W m−2, compared with those
at other fine resolutions (2 km, 1 km, and 0.5 km). As shown in blue in Figure 6f, the
0.25 km simulation produced medium OLRs of 180–220 W m−2 after 12-h. This results
from nonlinear characteristics in the cloud-resolving simulation.
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case and (b) ideal-case simulations at different horizontal resolutions.



Remote Sens. 2023, 15, 2637 17 of 21

With these control simulation characteristics, the radiation emulators (with CP) success-
fully reproduced features similar to those of the control simulations until 24 h (Figure 6g–i).
The ideal simulation was sensitive to small initial perturbations and rapidly changed dur-
ing integration. The clear area in the initial stage at coarse resolutions and the subsequent
widely spread clouds were realistically expressed in the emulator results, despite the results
being trained from real-case simulations. The difference between control and emulator
results was larger at fine resolutions. For example, OLRs higher than 200 W m−2 after
20 h in the control simulation at 0.25 km were not found in the 0.25 km emulator result.
Figure 8 illustrates the vertical RMSEs of the heating rates and the temporal RMSEs of the
fluxes. The RMSEs were calculated for the temporal–horizontal grids and horizontal grids,
respectively. The 1 km and 0.5 km simulations showed a larger error in the middle-level
heating rates (Figure 8a,b). A large error also characterized the 0.5 km simulation in the LW
heating rate around the surface (Figure 8a). For the LW flux, no characteristic features were
observed at a specific resolution (Figure 8c). The RMSE of the SW flux was the largest in the
0.25 km simulation, especially around 15–16 h. In contrast, the RMSEs for 1 km and 0.5 km
simulations were characteristically lower than those for coarse resolutions (Figure 8d).
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Figure 8. Vertical RMSEs of (a) LW and (b) SW heating rates, as well as temporal RMSEs of (c) LW
and (d) SW fluxes, compared to the control runs with different horizontal resolutions in ideal-case
simulations. The results were derived from 1 min interval data over the entire domain.



Remote Sens. 2023, 15, 2637 18 of 21

Because the ideal simulation is a highly nonlinear process, a consistent tendency with
resolutions, such as in the real case, was not found. Increasing errors at fine resolutions
using an emulator were evident. Compared with the 5 km simulation, for the 0.25–3 km
resolutions, the errors of the LW heating rate, SW heating rate, LW flux, and SW flux
increased by 19–128%, 41–104%, 6–96%, and 17–57%, respectively (Table 3). The increase
in these errors as a function of horizontal resolutions was higher than that induced by
microphysics parameterization changes, which were at 5 km resolution in [20]. When using
CP, the RMSE increases with resolution changes were reduced to 13–72% and 9–45% in LW
and SW heating rates, respectively, compared with those at the 5 km resolution. For LW and
SW fluxes, the RMSE increases were improved by a maximum of 5% and 8%, respectively,
at coarse resolutions. Although the RMSEs were higher at fine resolutions than at coarse
resolutions, this study is not the blow-up issue of the entire model, such as the unphysical
OLR in [17]. Therefore, we can conclude that the radiation emulator developed at 5 km
resolution can be universally applied for cloud-resolving resolutions less than 5 km while
maintaining accuracy at the expense of computational speed by using CP (i.e., 60-fold to
14–19-fold speedup). Furthermore, when the overall statistics were reanalyzed with the
same spatial domain of ±0.25 km, the conclusion of this study did not change significantly
(Table 4). Because cloud areas were dominant over ±0.25 km (Figure 6), the RMSEs at
coarse resolutions were mostly increased, while the use of CP was not.

Table 4. Same as Table 3, but for statistics over the same ±25 km domain.

LW Heating Rate SW Heating Rate LW Flux SW Flux

5 km 4.39→ 2.44
(0.02→−0.09)

2.19→ 1.28
(0.66→ 0.01)

23.62→ 15.08
(−1.50→−0.27)

244.51→ 88.27
(30.11→−2.80)

3 km 4.77→ 2.91
(0.12→−0.11)

2.29→ 1.09
(0.77→ 0.02)

36.38→ 15.87
(11.77→−2.35)

262.38→ 93.95
(55.03→−1.65)

2 km 5.15→ 2.99
(0.22→−0.16)

2.52→ 1.03
(0.63→ 0.004)

23.67→ 18.07
(−0.99→ 0.59)

225.38→ 81.35
(18.20→ 1.35)

1 km 5.33→ 4.00
(−0.22→−0.44)

3.33→ 1.66
(1.33→−0.21)

34.40→ 18.30
(11.99→−5.64)

301.92→ 66.41
(95.43→ 20.50)

0.5 km 6.00→ 4.52
(−0.20→−0.37)

3.38→ 2.18
(1.38→−0.04)

49.87→ 19.64
(26.43→ 2.40)

292.46→ 109.32
(86.37→ 1.39)

0.25 km 5.29→ 3.44
(−0.35→ 0.006)

2.99→ 1.43
(1.10→ 0.002)

45.06→ 19.73
(24.96→−3.47)

245.47→ 174.04
(61.15→ 5.32)

4. Conclusions

In this study, we considered different horizontal resolutions under two simulation
frameworks: KLAPS over the Korean peninsula (real case) and two-dimensional squall
line simulation (ideal case) to examine the impact of horizontal resolution on the universal
applicability of the radiation emulator in NWP models. The real-case simulation was
performed for approximately one year with a 7-day forecast time, whereas the ideal-
case simulation was an extreme squall line case with a 1-day forecast time. Horizontal
resolutions were 5, 10, 25, 50, 75, and 100 km (convection-permitting scale to climate
simulation scale) for the real-case simulation and 5, 3, 2, 1, 0.5, and 0.25 km (convection-
permitting scale to cloud-resolving scale) for the ideal-case simulations. All emulator
simulations were based on the NN radiation scheme developed under the real case at 5 km
simulations by [19]. This emulator was 60-fold faster than the RRTMG-K radiative transfer
parameterization. In our study, all simulations were tested in an independent period (i.e.,
2020), while the emulator was trained for 2009–2019. The real-case simulation focused
only on the impact of horizontal resolutions on the universal applicability of the 5 km
radiation emulator. In contrast, the ideal-case simulation further considered the universal
robustness arising from the difference between the real and ideal cases. Despite the different
horizontal resolutions with the trained 5 km resolution, the forecast error of the LW/SW
fluxes was significantly reduced from fine to coarse resolutions (9.59 to 7.79 W m−2 and
63.17 to 46.89 W m−2). In addition, the RMSEs of T2m and precipitation, compared with the
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observations, increased and decreased from fine to coarse resolutions (2.2619 K to 2.9405 K
and 1.5515 mm to 1.1479 mm, respectively). Because control simulations also showed
the same error characteristic for T2m, these results suggested that the radiation emulator
developed at a 5 km resolution universally applies to horizontal resolutions larger than
5 km while maintaining accuracy and stability. For the ideal-case simulation, the temporal
and spatial evolutions of the OLRs were examined for different horizontal resolutions (5, 3,
2, 1, 0.5, and 0.25 km). Each control simulation showed a large difference in the temporal
and spatial cloud patterns due to the smoothing effect at coarse resolutions and different
cloud conditions. Using a radiation emulator successfully reproduces features similar to
the control simulations. For 0.25–3 km resolutions, the forecast errors of the LW heating
rate, SW heating rate, LW flux, and SW flux increased by 19–128%, 41–104%, 11–123%, and
17–57%, respectively, compared with those for the 5 km simulation. To minimize these
errors, the CP that was 3.23–4.21 times slower than the emulator was further used (the
emulator + CP was 14–19 times faster than the original radiative transfer parameterization).
By adding CP, the total RMSEs at 5 km resolution were reduced by 27.3%, 26.7%, 22.3%,
and 16.8% for the LW heating rate, SW heating rate, LW flux, and SW flux, respectively. The
resulting RMSEs of LW heating rate, SW heating rate, LW flux, and SW flux at 5–0.25 km
resolutions were 2.61 to 4.49 K day−1, 1.21 to 1.75 K day−1, 15.60 to 17.65 W m−2, and
101.52 to 174.04 W m−2, respectively. Here, the resulting RMSEs of heating rates at 5 km
resolution (2.61 and 1.21 K day−1) were comparable to 2.57 and 1.20 K day−1 based on the
infrequent use of original radiative transfer parameterization by 30 times [19].

This study provides a comprehensive overview of radiation emulator studies using
numerical prediction models at different resolutions. This study found that the evaluated
error of the emulator with coarse-resolution modeling was reduced compared to the control
run. Therefore, previous emulator studies on convection-permitting and cloud-resolving
scales were regarded as more valuable than those on low-resolution based on climate models.
In addition, these results provide important information on the universal applicability of
radiation emulators associated with the use of different horizontal resolutions and modeling
platforms. Although the universal robustness of the radiation emulator has been examined
for changes in numerical models and microphysics parameterization [17,20], no experiments
at a different resolution from the trained resolution have been conducted. The efforts in this
study are variable, as this study is the first to show the universal applicability of radiation
emulators at different resolutions. Therefore, this study can form the basis for the complete
replacement of radiative transfer parameterization by a machine-learning emulator with a
significant speedup. This study can also accelerate the computational speed of regional climate
simulations or high-resolution modeling regarding a faster radiation scheme. The findings in
this study also suggest an evident direction for developing the universal radiation emulator in
the future that should be developed at the highest possible resolution. When applied to high-
resolution models, the emulator trained at low resolution had great uncertainty because the
occurrence frequency of extreme events was underestimated in the low-resolution modeling.
For universal application, the training sets can be increased to encompass global regions (as
against this study which was confined to the Korean peninsula).
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