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Abstract: Existing deep learning algorithms for synthetic aperture radar (SAR) image recognition
are performed with offline data. These methods must use all data to retrain the entire model when
new data are added. However, facing the real application environment with growing data, retraining
consumes much time and memory space. Class-Incremental Learning (CIL) addresses this problem
that deep learning faces in streaming data. The goal of CIL is to enable the model to continuously
learn new classes without using all data to retrain the model while maintaining the ability to recognize
previous classes. Most of the CIL methods adopt a replay strategy to realize it. However, the number
of retained samples is too small to carry enough information. The replay strategy is still trapped by
forgetting previous knowledge. For this reason, we propose a CIL method for SAR images based on
self-sustainment guidance representation. The method uses the vision transformer (ViT) structure as
the basic framework. We add a dynamic query navigation module to enhance the model’s ability to
learn the new classes. This module stores special information about classes and uses it to guide the
direction of feature extraction in subsequent model learning. In addition, the method also comprises
a structural extension module to defend the forgetting of old classes when the model learns new
knowledge. It is constructed to maintain the representation of the model in previous classes. The
model will learn under the coordinated guidance of old and new information. Experiments on the
Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our method
performs well with remarkable advantages in CIL tasks. This method has a better accuracy rate and
performance dropping rate than state-of-the-art methods under the same setting and maintains the
ability of incremental learning with fewer replay samples. Additionally, experiments on a popular
image dataset (CIFAR100) also demonstrate the scalability of our approach.

Keywords: class-incremental learning; SAR images recognition; vision transformer

1. Introduction

Synthetic Aperture Radar (SAR) [1] uses echo coherence processing to obtain high-
resolution images. SAR images have been widely used in the fields of military target
detection and civilian remote sensing. The research of automatic target recognition tech-
nology [2,3] based on two-dimensional SAR images with high resolution has important
military and civilian values. With the development of Convolution Neural Networks
(CNN), the recognition of SAR images using CNN [4,5] has been studied intensively.
Gao et al. [6] propose a multi-feature fusion network and the weighted distance classifier
to extract classification features and classify them. The neural network performs excellently
in learning offline data. However, the neural network is less effective with streaming
data for SAR images. When updating the model with new data, the data representation
and decision boundary are changed. The model will rapidly forget what it has learned
previously with the change of parameters, this is called catastrophic forgetting [7]. The
most primitive method to deal with the forgetting problem is to use all data to retrain the
whole model whenever a new task comes. However, retraining will waste a lot of time, and
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the model will collapse when the data increases to unaffordable status. Furthermore, in
some realistic situations, the samples from previous classes are often difficult to obtain at
once. It is impossible for the model to retain all data.

Class-Incremental Learning (CIL) [8], also called Continue Learning (CL) [9], Life-Long
Learning (LLL) [10], solves the problem of learning from streaming data and gives the
possibility for the model to learn new tasks continually. The major challenge of CIL is that
performance on previous tasks cannot significantly decrease with new tasks added. The
aim is to find a better trade-off between the plasticity and stability of the model [11], where
plasticity refers to the ability to integrate new information from new tasks and stability
is to retain previous knowledge while learning it. Instead of retraining the entire model,
CIL introduces various methods to make the model learn continually, such as the replay
strategy [12–14], regularization-based methods [15,16] and parameter isolation method [17].
Previous works widely adopt the replay strategy: storing small samples of old classes and
reusing them when the model learns new classes. For example, Rebuffi et al. [12] proposed
a Herding-based preferential samples selection method (iCaRL). Wu et al. [18] optimized
the classification bias in the extracted samples (BiC). However, this kind of method only
reshows a few samples from old classes. Since the number of retained samples is less
than those from new classes, the distribution of features in the old and new classes is
unbalanced. The model prefers to learn new classes. As a result, it is still challenging to
alleviate forgetting only under the replay strategy. Convinced by this fact, we highlight
two major barriers to be addressed for CIL: (i) Besides repaying samples of old classes, how
can we keep the knowledge alive in the future? (ii) Under the limited structure and storage
space, how can we store more information to recreate a similar situation in the past?

Complementary Learning Systems (CLS) theory [19] researches the memory style of
mammals. When recalling past scenes, mammals will construct a new insight under the
guidance of the current scenario. For example, people’s attitudes toward others change
with experience. This memory pattern is gradually being used in incremental learning to
reduce the forgetting of models. In Natural Language Processing (NLP), prompt-based
learning (prompting) [20] is a new transfer learning technique developed from CLS theory.
Prompting techniques design inputs with templated or learnable prompt tokens. These
prompt tokens contain additional task information, allowing the language model to obtain
more information from the input. Incremental methods from CLS theory and prompting
techniques handle the CIL problems to a certain extent. For instance, in incremental
learning, Wang, et al. [21] propose a trainable prompt pool module to store encoded
knowledge (L2P). However, L2P is a method of freezing the feature extraction layer and
only training the classifier [22–24]. When tasks are significantly different, the frozen feature
extraction layer will extract similar features. Figure 1 shows that these similar features do
not represent the characteristics of tasks in the feature space and negatively affect the result
of recognition. These methods are just used for akin tasks.

Model

Frozen Model

Features Space

BTR-60

T-62

a sample of T-62

a sample of BTR-60

Figure 1. Demonstrates the negative impact of freezing feature extraction layer.
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Motivated by the above discussions, we propose a Class-Incremental Learning method
for SAR images based on self-sustainment guidance representation to maintain plasticity
and stability simultaneously. In relation to plasticity, we use little storage space to store
the remarkable features of different classes, and this information guides the direction of
feature extraction when the model is learning. For example, it is known that some features
are essential for classification, such as a pig’s nose. When samples of the pig are given,
the model focuses on the nose for classification under the guidance of the special features
stored before. For stability, we use extra structure to construct a bridge between the past
and the future to imitate how mammals remember. The new samples go through the extra
structure which is trained by previous knowledge, and its output may be the features of
new classes under the old situation. The features combine with current knowledge of new
classes from basic structure to assist the model’s learning.

Specifically, we built a base framework with a vision transformer (ViT) [25] for feature
extraction and classification recognition. We designed a dynamic query navigation module
to maintain plasticity. The module retains the special information of classes and adds
this information to the input. The direction of the feature extraction layer is changed
dynamically to the current class with the guidance of special information. In addition,
we also propose a structural extension module to hold the stability. The extra structure is
designed to keep the model’s knowledge representation of old classes. Through the fusion
of information and structural expansion of some encoding layers in the transformer encoder,
the model learns under the guidance of both new and old knowledge. We introduce
knowledge distillation to transfer the structural information from the extra model to the
new model.

In summary, the contributions of this letter are as follows:

(1) We propose a learnable dynamic query navigation module to enhance the feature
extraction ability of the model. The module learns and retains the special information
of the class more conducive to achieving target recognition. Inputting this special
information as auxiliary information can guide the focus of feature extraction of the
model. The features acquired are more beneficial for classification recognition. The
module can also apply to non-incremental learning models.

(2) We propose a structural extension module to address the catastrophic forgetting
problem of the model. Considering the knowledge expressions related to the old
classes, the module multi-dimensionally integrates the representation of knowledge
in new and old classes. It achieves situational memory of past information rather than
a simple recapitulation. The module achieves better results in preventing forgetting
than the conventional replay method.

(3) We conducted comprehensive experiments from multiple perspectives to demonstrate
the effectiveness of our method. Experiments on the MSTAR SAR dataset show
that our method is significantly better than existing incremental learning methods.
Experiments on the CIFAR100 dataset show that our method can also be used in a
more general scenario.

2. Related Works
2.1. Class-Incremental Learning Methods

The goal of Class-Incremental Learning is to maintain the performance of the model
in previous classes when the model learns new classes. Some works [16,26,27] deal with
the forgetting problem without previous data. However, popular methods are based on
the replay strategy with limited data. These works are mainly divided into two parts: the
representation methods and classification learning methods.

2.1.1. Representation Methods

Current methods are based on three categories. The distillation-based methods [12–14,28–30]
adopt knowledge distillation [31] to retain the knowledge of previous classes. iCaRL [12]
introduces a strategy of sampling based on herding and adds distillation loss to the outputs.
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Castro et al. [13] improve the iCaRL by which the feature extraction layer and classification
can learn together. Zhu et al. [28] use a main-branch distillation scheme to maintain the
distinction of the new model on previous features and a prototype selection mechanism
to select samples similar to the old class for distillation. Gao et al. [29] introduce a
new distillation method called relation knowledge distillation to transfer the structural
relation of new data from the old model to the current model. The distillation methods
depend on the relationship between the samples selected and the whole previous samples.
Xu et al. [32] use knowledge distillation to classify the hyperspectral image.

Regularization-based methods [15,33–35] predict the importance of all parameters in the
neural network. During the later tasks, the variation in essential parameters is penalized
by designing the loss function. Kirkpatrick et al. [15] use the Laplace approximation to
obtain the maximum posterior probability. However, with the increase in tasks, mistakes
between the estimated values and true values accumulate. As a result, the model will
definitely forget what it learned before. Zenke et al. [35] break the way WEC proposed,
and they estimate the importance of parameters during the training. Aljundi et al. [33] use
an unsupervised and online matter. Aljundi et al. [34] extend the settings on none-task.

Structure-based methods [17,36–40] learn the new tasks under the fixed parameters of
the previous model. Mallya et al. [17] keep the important parameters and cut the redundant
parameters for future tasks. Rajasegaran et al. [37] introduce a method that progressively
chooses the best network to be the sub-net of the new class. Liu et al. [38] restrain the
distance between samples from the same classes in feature space to alleviate forgetting.
Besides these, some prevalent methods adopt the topology of classes. Tao et al. [39] use
a neural gas network to construct the topology of classes, and it reduces forgetting by
limiting the changing of topology on old classes. Tao et al. [36] improve TOPIC by giving
room to change the topology of old classes. Wang et al. [40] construct the topology for each
sample. However, these methods have many parameters, which adds burdens to learning
the model, especially in the last incremental tasks.

Except for directly repaying the past samples to retrain the model, our method stores
the special information of classes and uses the information to extend the input for guiding
the direction of the feature extraction. Besides this, we construct a new structure to store
the old knowledge, which is smaller than the whole model. The new structure is penalized
by the knowledge distillation loss to store structure information of the old model.

2.1.2. Classification Learning Methods

Some methods [22–24] freeze the feature extraction layer to prevent changes in param-
eters, and they only train the classifier to fit the new tasks. However, the frozen feature
extraction layer limits the ability of the model to learn new knowledge since the output of
feature extraction prefers to show the old classes. Zhou et al. [22] measure the relationships
between classes in the feature space and use the relationships between classes to guide
the synthesis of new classifiers. Wu et al. [23] propose a two-phase training strategy that
fine-tunes the additional network branches on the new data. Wang et al. [24] retain the old
model and freeze its parameters, extending it with a trainable new feature extractor.

Unlike keeping the model, our method freezes the feature extraction layer to learn the
new tasks for maintaining the plasticity of the model.

2.2. Incremental Learning Based on SAR Images Recognition

These methods [41–44] based on SAR images explore the incremental methods for
reducing the forgetting of models. Tao et al. [41] design a loss function that consists
of a reconstruction part and a classification part. The construction loss reconstructs the
weight of the features, and the classification loss restrains the distribution of different
classes. Zheng et al. [42] introduce class-balance loss to deal with the imbalance of new and
old classes, and it uses a covariance pooling network to improve the ability to recognize
features. Wang et al. [43] propose a method to assign higher weights to more important
information when the parameters are updated. Wang et al. [44] use contextual information
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from the past to the present to adjust the classification weight. In fact, studies on SAR
images place more consideration on the characteristics of the samples, such as the grayscale
value, scattering type, projection type, etc.

2.3. Transformer Technique

The transformer structure [45] was first proposed for NLP, such as translation and
question answering. Dosovitskiy et al. [25] introduce ViT into the Computer Version
tasks. At present, the transformer is widely used in classification, segmentation, and object
detection. The biggest innovation of transformer is that it directly rejects the architecture of
Recurrent Neural Network (RNN) and CNN, and fully utilizes the attention mechanism to
have powerful semantic feature extraction ability. Our work uses the vision transformer as
the main structure.

3. Method

In this section, we first describe the concept of Class-Incremental Learning (CIL).
Afterward, we show the general structure and details of the method.

3.1. Problem Statement

Incremental learning is the process by which the model learns incrementally on a
series of tasks {T0, T1, . . . , TT}. These tasks include data sets {D0, D1, . . . , DT} and label
sets {Y0, Y1, . . . , YT}. In incremental learning, T0 is called base task, {T1, . . . , TT} are called
incremental tasks. Each incremental task Ti, i = {1, . . . , T} has the same number of new
classes, and the classes do not intersect, i.e., {NYi = NYj , Yi ∩ Yj = ∅|i, j ∈ {1, 2, 3 . . . T}}.
The goal of incremental learning is that the model learns new datasets Dt on the current
task t while maintaining the ability to recognize previous datasets {D0 ∪ . . . ∪ Dt−1}.

3.2. Model Architecture

The whole structure of our model consists of three parts: a basic framework based
on a vision transformer for feature extraction and classification recognition, a dynamic
query navigation module for storing the special information of classes, and a structural
extension module for maintaining the knowledge representation of the old classes. Figure 2
depicts the complete structure of the model. Algorithm 1 explains the process of the overall
structure of our method.

When the model is learning task t, the training samples Dt of new classes are combined
with selected samples St−1 saved in the sample library:

TDt = {Dt, St−1} (1)
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Figure 2. Demonstrates a class-incremental learning method based on self-sustainment guidance
representation on a standard ViT backbone.

the features, and the classification loss restrains the distribution of different classes. FGCL
[42] introduces class-balance loss to deal with the imbalance of new and old classes, and
it uses a covariance pooling network to improve the ability to recognize features. PRIW
[43] proposes a method to assign higher weights on more important information when
the parameters are updated. HEIEN [44] uses contextual information from the past to the
present to adjust the classification weight. In fact, studies on SAR images consider more on
the characteristic of the samples, such as the grayscale value, scattering type, projection
type, etc.

2.3. Transformer technic

Transformer structure [45] was first proposed for NLP, such as translation and ques-
tion answering. ViT [25] introduces it into the CV tasks. At present, the transformer is
widely used in classification, segmentation, and object detection. The biggest innovation of
Transformer is that it directly rejects the architecture of RNN and CNN, and fully utilizes
the attention mechanism to have powerful semantic feature extraction ability. Our work
uses the vision transformer as the main structure.

3. Problem Statement

Incremental Learning is the process by which the model learns incrementally on
a series of tasks {T0, T1, ..., TT}. These tasks include data sets{D0, D1, ..., DT}and label
sets{Y0, Y1, ..., YT}. In incremental learning, T0 is called base task, {T1, ..., TT} are called
incremental tasks. Each incremental taskTii = {1, ..., T}has the same number of new classes
and the classes do not intersect, i.e.{NYi = NYj , Yi ∩Yj = ∅|i, j ∈ {1, 2, 3...T}}. The goal of
incremental learning is that the model learns new dataset Dt on the current task t while
maintaining the ability to recognize previous datasets {D0 ∪ ...∪ Dt−1}.

4. Method
4.1. Model Architecture

The whole structure of our model consists of three parts: a basic framework based on
a vision transformer for feature extraction and classification recognition, a dynamic query
navigation module for storing the special information of classes, and a structural extension
module for maintaining the knowledge representation of the old classes. Figure 2 depicts
the complete structure of the model. And the algorithm 1 explains the process of the overall
structure of our method.

Figure 2. Demonstrates a Class-Incremental Learning method based on self-sustainment guidance
representation on a standard ViT backbone.
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Algorithm 1 The Overall Structure

Input: image x ; linear projection φlinear; the dynamic query navigation module Mnavi(x);
the structural extension module Mexten(x)

Hyper-parameters: Epoch number E

Output: Prediction output
ˆ
y

1: for t ≤ E do
2: Transfer x to 1-dimensional tokens: Xp ← φlinear(x)
3: Transfer x to 1-dimensional navigations: Vk ← Mnavi(x)
4: Combine the two variations: XV = Xp + Vk
5: Extract features from the fixed model: Z f ix = φ f ix(XV)

6: Extract features from the structural extension module: ZL = Mexten(Z f ix)

7: Calculate the average at the output of navigations: Z = 1
M ∑M

k=1 Zk
8: Input classifier to obtain prediction results
9: t + 1

10: end for

11: return Result
ˆ
y

Given an input of two-dimensional images x ∈ RH×W×C in TDt, where H ×W is
the dimension of the images, C is the number of channels. In the first stage, the images
go through two modules to obtain the input of the transformer encoder layer. On the
one hand, through the linear projection layer of ViT, x is split and mapped as a series of
1-dimensional tokens Xp = {x1, . . . , xNe} ∈ RNe×D, where Ne is the number of tokens, and
D is the fixed dimension of the input of VIT. On the other hand, through the dynamic
query navigation module, x is transferred to a handful of one-dimensional navigations
Vk = {v1, . . . , vM} ∈ RM×D, where M is the number of navigations and D means that the
navigation has the same dimension as the token. The results of the above two variations on
the image x are combined as XV = {x1, . . . , xNe , v1, . . . , vM} and fed into the transformer
encoder for feature extraction.

In the second stage, the transformer encoder layer acting as the feature extraction layer
in ViT extracts the features from XV. It is generally considered that the lower layers of
the model can extract the basic characteristics of the target, which can be used for almost
all categories with a strong generalization. Moreover, the higher layers extract the unique
characteristics of the target which only be used for the single class. Therefore, as the
transformer encoder consists of L encoder block layers, we divide the transformer encoder
into two parts: the front L

2 layers form a fixed module for extracting general features, and
the back L

2 layers form a structural extension module with the recollection skeleton.
The self-attention mechanism integrates information from all one-dimensional inputs.

Every position of output contains information from other positions. Therefore, we use the
output of navigations on the transformer encoder. The output is averaged and fed into a
softmax classifier to obtain the recognition result of the model.

3.3. Dynamic Query Navigation Module

When people are identifying animals, they pay attention to the remarkable features of
different animals, such as the red crown of the rooster, the pointed ear and striped pattern
of a tabby, or the round ear and single-color pattern of the bear. However, some redundant
features might negatively affect the result. For example, when identifying a rooster, both
the red crown and the flattened feathers are characteristics of it. If we pay attention to all
the characteristics, the incorrect answer is probably a bird with a red crown. Apparently,
the marked features are what we need to pay more attention to when identifying.

The ideal model shares knowledge for similar classes while keeping knowledge
independent for different classes. Like the striped pattern and the round ear can describe a
tiger, these features also belong to a tabby and a bear. As a result, The shared information
assists the learning of tasks similar to the past and alleviates the stress of storage.
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Therefore, inspired by reference [21], we propose the learnable navigation set
V = {v1, v2, . . . , vN}, vi ∈ R1×D to store the remarkable information of different classes,
where N is the number of navigations. The set is shared with all tasks. We use the
information to guide the direction of feature extraction by expanding the input of the
transformer encoder with the navigation. For this reason, the navigation and the input of
the transformer encoder should have the same dimension D.

Furthermore, we propose a learnable key set K = {k1, k2, . . . , kN}, ki ∈ R1×Dk to
choose the remarkable information which is the sample needed, where N is the number of
key vectors, Dk is the length of ki. The key set is the bridge between the navigation and the
category of the sample. On the one hand, each key and navigation are paired for finding
navigations by keys. That means the number of keys and the number of navigations is the
same, denoted as {(k1, v1), (k2, v2), . . . , (kN , vN)}. On the other hand, in order to obtain the
probable category of the sample, we introduce a backbone vision transformer model to
pre-classify it. The backbone model uses the basic structure from the reference [25], and the
parameters were pre-trained on the Google private dataset (JFT-300M). By computing the
similarities between keys and the query features fx ∈ R1×Dk from the backbone model, we
can choose the special information the sample needs. As a result, the key and the query
features should have the same dimension Dk.

As shown in Figure 3, the whole dynamic query navigation module consists of a
navigation set, a key set and a backbone vision transformer model. Algorithm 2 explains
the training and testing process of this module.

Dynamic Query Navigation
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.Similarity
Q

Query

Key 
Set

Navigation 
Set

B
ackb

one
V

ision T
ran

sform
er

Pair

 
xf

Task t 
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Figure 3. The details of the dynamic query navigation module. It learns and retains the special
information of classes more conducive to achieving target recognition.

Algorithm 2 The process of the dynamic query navigation module

Input: image x ; backbone ViT model φback
Output: Chosen navigations Vk

1: Pre-classify the image by backbone ViT model: fx = φback
2: Calculate the similarity Cori between key and fx by Equation (2)
3: Choose indexes dk of the first M maximum similarities
4: Choose the correspond navigations Vk from index dk
5: return Vk

When training the model, keys and navigations are trained to obtain the information
of the current samples. When testing, the current sample is put into the backbone model
to obtain the query features fx of their potential class. We then calculate the similarity
between query features qx and all keys in the key set:

Cori = Cor( fx, ki) =‖ fx‖2· ‖ mean (ki)‖2, i = 1, 2, . . . , N (2)
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where ‖ ·‖2 is the L2 parametrization.
The indexes of the key of the first M maximum similarities are taken and according to

the correspondence between keys and navigation, the first M navigations Vk are queried.
Vk is the remarkable information of classes we wish to obtain for identification.

3.4. Structural Extension

The CLS theory in neuroscience suggests that mammals have two learning systems:
the neocortex and the hippocampus. The hippocampus rapidly replays recently learned
memories, integrating them as interconnections of neocortical neurons and becoming a
more solid memory. Based on this, we construct an extra structure called the recollection
skeleton as the neocortex to store the solid memory of the past. The feature extraction layer
acts as the hippocampus for learning new knowledge. In addition, the research also shows
that the hippocampus does not directly recall past events when replaying memories, but
constructs a new insight called situational memory, according to a realistic scenario. For
machine learning, we consider the output of the new data on the old model as the memory
associated with the old class, equivalent to the situational memory of the hippocampus.
Since we have constructed the recollection skeleton to store parameters of the old model,
the new data is put through it to recall past knowledge.

Therefore, we propose a structural extension module to imitate the learning style of the
mammalian. The module consists of an extended model and a recollection skeleton structure.

As we explained in Section 3.2, the lower layers of the model extract the basic char-
acteristics and the higher layers extract the unique ones. Thus, the special information of
classes is extracted from the higher layers of the transformer encoder module in ViT. For
most of the classes, the features extracted at the lower levels are similar. The parameters of
lower layers might not change dramatically when new data are added. Therefore, we froze
the front L

2 layers of the transformer encoder to extract the basic characteristics, and we use
the back L

2 layers to construct the extended model.
The recollection skeleton acts as a bridge between the past and the current. It is used to

store past knowledge. When new data is put through it, the old information in the structure
converts to situational memory. In order to guide the updating of the extended model with
this situational memory, we propose a new embedding method. In this method, we first
design the recollection skeleton to have the same structure as the extended model, and
both of them consist of L

2 encoder blocks. We then set our sights on the layers to realize
information interaction. As shown in Figure 4, every encoder block layer in the recollection
skeleton embeds into the corresponding layer in the extended model. Algorithm 3 explains
the process of this module.
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Figure 4. The details of the structural extension module. It keeps the model’s knowledge representa-
tion of old classes.
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Algorithm 3 The process of the structural extension module

Input: the output of the fixed model Z f ix

Output: the output of the transformer encoder layer ZL

1: for L
2 + 2 ≤ layer ≤ L do

2: Calculate the output of layer in the extended model: ei = φi
exten(Zi−1)

3: Calculate the output of layer in the recollection skeleton: ri = φi
reco(Zi−1)

4: Element-level summation by Equation (3)
5: layer + 1
6: end for
7: return ZL

The input of the structural extension module is the output of the fixed model. For the
layer i of the extended model, its input vector Zi is the fusion of output of layer i− 1 both
in the extended model and the recollection skeleton, denoted as:

Zi = ri−1 ⊕ ei−1, ∀i =
L
2
+ 2, . . . , L (3)

where ei−1 is the outputs of the layer i− 1 in the extended model, ri−1 is the outputs of the
layer i− 1 in the recollection skeleton, ⊕ is the element-level summation of two vectors.

Because navigations that are introduced in Section 3.3 are learnable, we take the output
of the last layer corresponding to the position of navigations Vk = {v1, . . . , vM} as the result
of the transformer encoder. This result is then averaged to obtain the feature vector Z of
the model:

Z =
1
M ∑M

k=1 Zk (4)

At last, Z is fed to the subsequent classifier module for classification.
Before the model learns a new task, the recollection skeleton is frozen to store the

parameters of the old model. When new data of the new tasks are added, the recollection
skeleton structure guides the model to learn under the memories of the past. After the new
tasks are added, the recollection skeleton is updated by this new data, and previous data is
stored in the sample library.

It is worth noting that our model does not require the memory of the old class on the
recollection skeleton to remain the same, but instead produces a memory that better fits the
current stage as the new class changes. This prevents the overfitting of the model to the old
class and the model can extract features that better express the properties of the new class.
The structural module makes a better trade-off between plasticity and stability.

3.5. Optimizer

To achieve self-sustainment guidance representation, the optimization objectives of
the model are as follows.

We use the cross-entropy loss Lclass as the basic classification function. It determines the
classification accuracy of the model and updates the model’s parameters and navigations.
The cross-entropy loss denoted as:

Lclass = Lce(
ˆ
y , y)) = −[y log(

ˆ
y ) + (1− y) log(1−

ˆ
y )] (5)

where y is the ground truth.
For the dynamic query navigation module, we proposed query loss function Lquery. It

denotes the difference between the keys selected by the dynamic query navigation module
and the query features. It is used to update the keys. The query loss is denoted as:

Lquery = ∑
dx

Cor( fx, kdx ) (6)
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where Cor is the cosine similarity calculation, given by Equation (2).
For the structural extension module, we use the recollection skeleton to guide the

learning of the extended model. Only using the information interaction of the structure does
not positively affect the stability of the model. Therefore, we add the knowledge distillation
loss to enhance the stability. The recollection skeleton acts as the teacher model to guide
the extended model learning under the past information. The knowledge distillation loss is
denoted as:

Lkd = Lce(qri , qei )) = −[qei log(qri ) + (1− qei ) log(1− qri )] (7)

qzi =
exp( zi

T )

∑j exp(
zj
T )

(8)

where qri is the output of the recollection skeleton, qei is the output of the extended model,
zi means the predicted result of the model, and T is the temperature coefficient.

In conclusion, the loss of the base task Lbase is defined as:

Lbase = λ1Lclass + λ2Lquery (9)

where λ1, λ2 are weights.
the loss of the incremental task Lincre is defined as:

Lincre = γ1Lclass + γ2Lquery + γ3Lkd (10)

where γ1 , γ2 , γ3 are weights. According to the reference [31], we can obtain γ1 + γ3 = 1.

4. Experiments and Results
4.1. Dataset and Experimental Design

Dataset. To verify the performance of our method, we evaluate the performance on
two datasets. The first dataset MSTAR is the SAR image. We demonstrate the feasibility on
SAR images of our method. This dataset is provided by U.S. Defense Advanced Research
Projects Agency and Air Force Research Office which provides identification of ground
vehicle targets. A total of 10 types of ground targets were included in the standard working
acquisition conditions, namely 2S1 (cannon), BRDM2 (truck), BTR60 (armored transport
vehicle), D7 (bulldozer), SN_132 (tank), SN_9563 (tank), SN_C71 (armored car), T62 (tank),
ZIL131 (truck) and ZSU23/4 (cannon). Some of the images are shown in Figure 5. The
orientation range of these targets is 0∼360◦, and the orientation interval is about 1◦ or 2◦.
The resolution of the radar used to acquire the SAR images is 0.3 m × 0.3 m, and the
target SAR image is 128× 128 pixels. The training set data were collected at 17◦ imaging
side view and the test set data were collected at 15◦ side view. The details of the sample
data (target type, number of samples, target sequence number, acquisition side view, etc.)
for the standard working acquisition condition are shown in Table 1. Furthermore, we
observe that the targets of SAR images in MSTAR are all in the middle of the image, and the
noise of edge pixels will instead interfere with target classification. We cut the SAR image
of 128 × 128 pixels into 32× 32 pixels without affecting the target condition, as shown
in Figure 6.

The second dataset CIFAR100 [46] is a marker subset of the tiny image dataset com-
monly used in the field of object recognition. We test our method on the CIFAR100 to assess
the extensiveness of our methods and to demonstrate that it can be used in different scenar-
ios. The CIFAR100 dataset has 100 classes, such as aquatic animals, household electrical
devices and large man-made outdoor things. Each class has 600 RGB images with a size of
32× 32, and these images are divided into 500 training images and 100 testing images.
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2S1

BTR_60

T62

Figure 5. Some images of the MSTAR dataset and their optical comparison chart.

 128 128 32 32
Figure 6. Sample cropping diagram of the MSTAR dataset.

Table 1. The details of the MSTAR dataset.

Target Type Training Set (17◦) Testing Set (15◦)

2S1 274 299
BRDM_2 274 298

BTR60 195 256
D7 274 299

SN_132 232 196
SN_9563 233 195
SN_C71 233 196

T62 273 299
ZIL131 274 299

ZSU23/4 274 299
Total 2536 2636
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Protocol. We use the common incremental learning settings. The model will first learn
half of the classes in the dataset. Then, the new classes are added incrementally in steps.
For the MSTAR dataset, followed by reference [44], three classes of targets are learned first.
The remaining seven classes are added incrementally with the incremental setting of 1, 2
and 3 classes accordingly. For the CIFAR100 dataset, followed by reference [30], 50 classes
of targets are learned first. The remaining 50 classes are added incrementally with the
incremental step of 5 steps of 10 classes, 10 steps of 5 classes and 25 steps of 2 classes.

Training details. These two datasets have the same training set. After each session,
we randomly select 20 samples for each class and store them in the sample library for
memory playback at the next incremental training. For the base task, we use the epochs of
30, the learning rate of 0.001, the weight decay of 0.9, the steps of 20, the momentum of 0.9
and the batch size of 32. For the loss functions, we set λ1 = λ2 = 1. For the incremental
task, we use the epochs of 15, the learning rate of 0.001, the weight decay of 0.9, the steps of
10, the momentum of 0.9 and the batch size of 32. For the loss functions, we set

γ1 = 0.2, γ2 = 1, γ3 = 0.8

In the dynamic query module, we set N = 10, M = 5.
Metrics. We use the metrics commonly used in incremental learning, average accuracy

(Ai) and performance dropping rate (PD), to evaluate the incremental learning effect of
the method. Following [39], we denote the average accuracy Ai as the Top-1 accuracy
after the last session. Higher average accuracy represents better classification accuracy.
Following [47], we use the performance dropping rate to assess the forgetting rate of
incremental models for old classes:

PD = A0 − AT (11)

where A0 represents the classification accuracy of the classes at the first session and AT
represents the classification accuracy at the end of the last session.

4.2. Performance Analysis

In this section, we compare our method with several other incremental learning
methods. For the MSTAR dataset, we first show the t-SNE visualization of the test class
representation in the feature space when the model is learning the MSTAR dataset. Secondly,
the average accuracy and the performance dropping rate of our method are compared with
iCaRL [12], EEIL [48] and CBesIL [49]. For the CIFAR100 dataset, we conducted the same
experiment with the MSTAR dataset. However, since almost all the incremental learning
methods use RGB images, we compare a large number of image incremental learning
methods, such as LwF [16], iCaRL [12], LUCIR [30], PODNet [14], BiC [18], MBP [38] and
FOSTER [24]. Because there are too many categories in the CIFAR100 dataset, we do not
show the t-SNE visualization of feature space.

Table 2 summarizes the results of our approach to testing on the MSTAR dataset. We
adopt three incremental settings and show the average accuracy and the performance
dropping rate in each setting. The results show that our method performs best compared
to the other methods. Firstly, the basic accuracy of our method achieves 98.49%, which is
nearly 12% more than iCaRL. Secondly, our method performs better than other methods
in all incremental settings. Especially with the incremental setting of T = 3 (S = 3), our
methods achieve an average accuracy of 79.98%, which is an increase of 6.64% over EEIL.
Thirdly, for the performance dropping rate, our approach also achieves better results. With
the incremental setting of T = 3 (S = 3), the performance dropping rate of our method is
18.81%, which is 7.5% lower than CBesIL. The effectiveness of our proposed method on
SAR data can be demonstrated from all aspects.

Table 3 summarizes the results of our benchmark tests on the CIFAR100 dataset.
The result shows that our method achieves the best results under different incremental
segmentation cases. With the incremental learning setting of T = 25 (S = 2), our method
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achieves an accuracy of 71.33%, which is about 8% higher than the current better method
FOSTER. Notably, the accuracy of our method hardly decreases as the number of tasks
increases. At the same time, the accuracy of BIC decreases by 5.33%. This effectively proves
that our approach demonstrates good results for future sustainable use. Furthermore, it
can be seen that the performance dropping rate of our method is only 9.98% with the
incremental learning setting of T = 10(S = 5), which is 4.5% lower than FOSTER. This
demonstrates that our method can deal with the catastrophic forgetting problem and can
be applied in the field of image recognition.

Table 2. Results on MSTAR (more than 3 runs on average). T is the number of incremental tasks and
S is the number of classes of each incremental session. We count each method’s average accuracy rate
A and performance dropping rate PD.

Methods A0(%) ↑
T = 7 (S = 1) T = 4 (S = 2) T = 3 (S = 3)

AT(%) ↑ PD(%) ↓ AT(%) ↑ PD(%) ↓ AT(%) ↑ PD(%) ↓
iCaRL [12] 87.47 63.24 24.23 65.02 22.45 67.52 19.95
EEIL [48] 98.67 71.20 27.47 72.87 25.80 73.34 25.33

CBesIL [49] 98.06 72.15 25.91 70.21 27.85 71.75 26.31
OURS 98.49 74.65 24.14 77.15 21.64 79.98 18.81

Table 3. Results on CIFAR100 (more than 3 runs on average). T is the number of incremental tasks
and S is the number of classes of each incremental session. We count each method’s average accuracy
rate A and performance dropping rate PD.

Methods
T = 25 (S = 2) T = 10 (S = 5) T = 5 (S = 10)

AT(%) ↑ PD(%) ↓ AT(%) ↑ PD(%) ↓ AT(%) ↑ PD(%) ↓
LwF [16] 45.07 ± 0.35 41.14 47.51 ± 0.77 43.66 49.78 ± 0.35 47.40

iCaRL [12] 49.15 ± 0.53 34.92 52.96 ± 0.95 31.60 57.03 ± 0.42 19.92
LUCIR [30] 56.68 ± 0.19 27.90 59.93 ± 2.40 27.74 63.46 ± 0.08 24.180

PODNet [14] 61.00 ± 1.62 20.39 63.76 ± 0.81 19.16 66.98 ± 0.65 15.98
BiC [18] 63.41 ± 0.27 19.59 66.24 ± 0.43 17.86 69.97 ± 0.46 13.02

MBP [38] 62.61 ± 0.41 17.95 64.29 ± 0.41 13.16 66.93 ± 0.41 11.596
FOSTER [24] 63.83 ± 0.82 15.86 67.95 ± 0.95 10.23 - -

OURS 71.33 ± 0.28 10.67 72.02 ± 0.66 9.98 71.17 ± 0.52 10.83

The variations of the average accuracy with the classes increase in the two datasets
are shown in Figure 7. This demonstrates that the method outperforms other methods
most of the time. Our method maintains a high accuracy rate both on the MSTAR and
CIFAR100 datasets. It proves that our method can be used in SAR recognition and more
generalized scenarios. Moreover, with the new classes added, the accuracy of all methods
is decreasing. The performance dropping rate seems more essential to judge the merits of a
method. By the value of the difference between the starting point and the ending point on
the vertical coordinate, all of the variation pictures show that our method can effectively
alleviate forgetfulness.

Additionally, Figure 8 shows the t-SNE visualization on the MSTAR dataset under the
incremental settings of T = 7 (S = 1). This shows that our method is able to distinguish the
different categories in the feature space as the number of categories increases. The data of
different categories are better differentiated. In addition to task 1, the old categories in the
following tasks can be distinguished well, with only a small number of retrained samples
involved in the training. From these pictures, it can be observed that the 20 samples near
the center of the category can roughly determine the distribution of the characteristics of
the class.
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Figure 7. The variations of the average accuracy under different incremental settings. (a,c,e) show
the results on the MSTAR compared with iCaRL, EEIL and CBesIL. (b,d,f) show the results on the
CIFAR100 compared with LwF, iCaRL, LUCIR, PODNet, BiC, MBP and FOSTER. (a) T = 7 (S = 1)
of MSTAR; (b) T = 10 (S = 5) of CIFAR100; (c) T = 4 (S = 2) of MSTAR; (d) T = 5 (S = 10) of
CIFAR100; (e) T = 3 (S = 3) of MSTAR; (f) T = 25 (S = 2) of CIFAR100.
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(a) (b)

(c) (d) (e)

Figure 8. The t-SNE visualization of the test class representation in the feature space under the
incremental setting of T = 7 (S = 1). Different colors represent different classes and the spot is the
sample. (a–e) Incremental process of the eight classes formed from the initial four classes. (a) Task 1;
(b) Task 2; (c) Task 3; (d) Task 4; (e) Task 5.

4.3. Ablation Study

Four ablation studies were conducted to evaluate the role of each module in our
approach. The ablation studies first tested the effect of the dynamic query navigation
module and the structural extension module on the model. Then, the effect of knowledge
distillation loss on the results was tested. In addition, to investigate the specific values of the
hyperparameters, we also explored the impact of the weights of the knowledge distillation
loss function. The effect of retaining different numbers of samples on classification accuracy
and memory.

Table 4 summarizes the impact of the dynamic query navigation module, the structural
extension module and the knowledge distillation loss on MSTAR with an incremental
learning setting of T = 3 (S = 3). Without the dynamic query navigation module, the
average accuracy of the model is just 67.79%, which is a 6.86% decrease. The possible
reason for the decrease in accuracy is the reduced accuracy of the model in recognizing new
categories. When learning new categories, the significant features that help in recognition
cannot be found precisely. Moreover, the lower learning accuracy can lead to difficulties in
subsequent tasks in accurately identifying the categories that appear in the present task. In
addition, without the structural extension module, the average accuracy of the model is
65.43%, which is a decrease of 9.22% . In this case, the reason for the reduced accuracy of
the model is the reduced ability to recall the old classes. Since a large number of categories
are old, the overall accuracy of the model is even lower. For the knowledge distillation loss
Lkd, the accuracy of the model on the MSTAR dataset was 67.01% in the absence of it. This
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is 7.64% less accurate than adding the distillation losses. These ablation studies show that
the various modules of our method and the distillation loss function have a positive impact
on the results.

Table 4. The effectiveness of each component in our method on MSTAR. We count the average
accuracy at the end of the last session AT with an incremental learning setting of T = 3 (S = 3).

Methods
AT(%) ↑

The Dynamic Query Navigation The Structural Extension Lkd

� � � 74.65

� � 65.43

� � 67.79

� � 67.01

Table 5 summarizes the impact of our approach under the dynamic query navigation
module and structural extension module. The first line shows that the average accuracy
rate is 71.17% when both two modules are present. The second row indicates that without
the structural extension module and using only the dynamic query navigation module,
the average accuracy is 64.90%, which is a decrease of 6.22% compared to the first line.
The third line indicates that without the dynamic query navigation module and only the
structural extension module added, the average accuracy is 65.85%, which is a decrease of
5.27% compared to the first line.

Table 5. The effectiveness of each component in our method on CIFAR100. We count the average
accuracy at the end of the last session AT on the CIFAR100 dataset with an incremental learning
setting of T = 5 (S = 10).

Methods
AT(%) ↑

The Dynamic Query Navigation The Structural Extension

� � 71.17

� 64.90

� 65.85

Figure 9 shows the effect of different weights of γ1 and γ3 on the results under the
condition that γ1 + γ3 = 1 is satisfied. In this experiment, we set the solid weights,
λ1 = λ2 = γ2 = 1, and we conduct the experiment on the MSTAR dataset with the
incremental setting of T = 3 (S = 3). According to the literature [31], the larger γ3 has a
better effect on the results. Thus, we start the experiment with both equal and make γ3
increase gradually. We can see from the results that the overall trend of normal distribution.
From the results, we can see that there is an overall trend of normal distribution. The
possible reason for this distribution is that when the loss weight of knowledge distillation
is small, the model is less capable of remembering old classes. When the loss weight
of distillation is larger, the model is less capable of learning new classes. Moreover, for
incremental learning, the recall ability of the model is more important. This is because
future tasks still need to recall information about the current task. Based on the information
in the table, we choose the case of γ1 = 0.3, γ3 = 0.7 with the average accuracy is 70.21%, a
moment that allows the model to achieve a better trade-off between stability and balance.

Figure 10 shows the effect of the number of samples stored per class in memory.
We conducted the experiment on the MSTAR dataset with the incremental setting of
T = 3 (S = 3). In general, as the number of stored samples increases, the memory of past
data is better and the average accuracy is higher. Therefore, we designed the experiments
with the increment of stored samples. It can be observed that there is a large improvement in
accuracy as the stored samples are increased from 10 to 20 per class. However, the increase
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in accuracy from 20 to 40 per class does not have much effect on the accuracy. Considering
the memory limitation, we chose to store 20 samples per class as the experimental setup.
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Figure 9. The effect of γ1 and γ3 on the results. The horizontal coordinates indicate B and the vertical
coordinates indicate the accuracy. It can be seen that the best results are γ1 = 0.3, γ3 = 0.7.
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Figure 10. The effect of the number of samples stored per class. The short line in the graph represents
the error. It can be observed that the accuracy increases with the number of stored samples. However,
considering both accuracy and memory, 20 samples are chosen to be stored per class.

5. Conclusions

In this work, we propose a Class-Incremental Learning method for SAR images based
on the self-sustainment guidance representation method to enhance the plasticity and
stability of the model in incremental learning. We use the vision transformer as the basic
structure for feature extraction and classification. Furthermore, we design a dynamic query
navigation module to maintain the model’s learning capability for new classes. This module
retrains the special information of classes and uses this information to expand the input
for guiding the direction of feature extraction in the transformer encoder. Additionally,
we design a structural extension module to enhance the model’s ability to recognize
previous classes. This module introduces the recollection skeleton as a recall medium for
remembering old knowledge when new data are added. At last, experiments on the MSTAR
dataset and CIFAR100 dataset demonstrate that our method achieves extraordinary results
on SAR datasets and can be extended to use on general image data. In the subsequent
research, we will aim to make the following improvements to the method: (1) Considering
the difficulty of obtaining past data in practical application scenarios, we will conduct
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experiments without playback data. (2) Considering the characteristics of SAR images, we
will make improvements specific to SAR images and the subsequent research will be more
specific to SAR images.
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