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Abstract: The rapid development of neural networks has come at the cost of increased computational
complexity. Neural networks are both computationally intensive and memory intensive; as such, the
minimal energy and computing power of satellites pose a challenge for automatic target recognition
(ATR). Knowledge distillation (KD) can distill knowledge from a cumbersome teacher network to a
lightweight student network, transferring the essential information learned by the teacher network.
Thus, the concept of KD can be used to improve the accuracy of student networks. Even when learning
from a teacher network, there is still redundancy in the student network. Traditional networks fix the
structure before training, such that training does not improve the situation. This paper proposes a
distillation sparsity training (DST) algorithm based on KD and network pruning to address the above
limitations. We first improve the accuracy of the student network through KD, and then through
network pruning, allowing the student network to learn which connections are essential. DST allows
the teacher network to teach the pruned student network directly. The proposed algorithm was tested
on the CIFAR-100, MSTAR, and FUSAR-Ship data sets, with a 50% sparsity setting. First, a new loss
function for the teacher-pruned student was proposed, and the pruned student network showed a
performance close to that of the teacher network. Second, a new sparsity model (uniformity half-
pruning UHP) was designed to solve the problem that unstructured pruning does not facilitate the
implementation of general-purpose hardware acceleration and storage. Compared with traditional
unstructured pruning, UHP can double the speed of neural networks.

Keywords: neural networks; distillation sparsity training; uniformity half-pruning; general-purpose
hardware acceleration

1. Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art results in a
range of computer vision tasks, such as image classification [1,2], depth estimation [3,4],
and object detection [5,6]. In the field of deep learning, the use of larger neural network
models typically leads to higher accuracy in a variety of tasks [7–10]. Although the current
CNNs have achieved remarkable results in the field of computer vision, these models
depend on many parameters. Modern state-of-the-art models can comprise hundreds of
billions of parameters, requiring trillions of computational operations per input sample.
This limits their deployment in resource-limited devices and drives the need for model
compression techniques. Model compression technology has also developed rapidly with
the demand for intelligent terminals. In recent years, model compression has attracted
significant research interest and many pertinent approaches have been proposed, such as
KD, network pruning, and quantization [11,12].

KD aims to transfer knowledge from an influential teacher network to a smaller, faster
student network, in order to expand its performance capability [13]. An obvious way to
share the generalization capability of a complex model with a small model is to use the
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probability of the complex model to generate a target as a “soft label” for training the
small model. This soft target has high entropy, providing more information than the “hard
label” used during training [14]. Early distillation methods aimed to transfer the last layer
of the teacher [3]. However, the lack of oversight by intermediate layers hinders how
the information of intermediate layers flows through the student network, reducing the
learning potential of the student.

Although KD techniques can be used to transfer features from a complex network of
teachers to a smaller network, the initial perception is that a robust teacher network with
a high accuracy rate may provide better distillation results. However, when the student
network does not have sufficient capacity to learn, further measures can be taken; for
example, the student network can be pruned, as a network regularization technique [15,16].
Such approaches can provide more transferable knowledge for student networks with
limited capacity. Network pruning [17] is a model compression technique that effectively
removes the weights or neurons of a network, while maintaining its accuracy. After the
initial training phase of the network, connections with all weights below a threshold are
removed. This pruning transforms the dense network layers into sparse layers. The first
phase involves learning the network’s topology; that is, learning which connections are
meaningful and removing the unimportant ones. Then, the sparse network is retrained,
such that the remaining links can compensate for the deleted contacts. The pruning and
retraining phases can be carried out iteratively, to further reduce the complexity of the
network. In effect, this training process learns the network connectivity in addition to the
weights, similarly to the case in the mammalian brain [18], where synapses are created in
the first few months of a child’s development, followed by gradual pruning of little-used
connections, falling to typical adult values.

Network pruning is achieved by zeroing specific parameters, to enable the model
to achieve sparsity [19,20]. However, it is difficult for the existing pruning algorithms to
guarantee both model accuracy and inference performance (speed). Fine-grained sparsity
maintains accuracy but is not conducive to memory access and cannot take advantage of
general-purpose hardware to accelerate the computation. Therefore, it does not outperform
traditional dense models using processor architectures such as GPUs [21]. Coarse-grained
sparsity makes better use of processor resources but does not guarantee model accuracy
by shearing off convolutional kernels. Overall, fine-grained sparsity ensures accuracy but
does not guarantee model speed or efficient storage, while coarse-grained sparsity provides
model speed and efficient storage but does not guarantee accuracy. We combine the best of
both and design a specific UHP method, to be applied to the proposed algorithm based on
general-purpose hardware acceleration conditions.

In this paper, we combine the advantages of KD and model sparsity to design a DST al-
gorithm for accelerating CNNs in embedded systems. KD improves the performance of the
student networks, while network sparsity enables efficient model storage and acceleration.
The contributions of this paper include the following:

1. We design a unified training framework based on KD and network sparsity for model
compression techniques.

2. Combined with general-purpose hardware, a uniform compression format is designed,
to implement this pruning matrix for efficient storage and memory indexing.

3. The sparse model can be used for any general-purpose hardware acceleration. We tested
the DST algorithm on an embedded system, and the acceleration result was significant.

4. The proposed algorithm was tested on the CIFAR-100, MSTAR, and FUSAR-Ship data
sets. Its performance was significant on both SAR and optical data sets.

The remainder of this paper is organized as follows: Section 2 briefly reviews the
related literature and summarizes the applications of KD and network pruning for model
compression. Section 3 describes the motivation for the research presented in this paper
and the limitations of existing algorithms. Section 4 describes the proposed DST algorithm
in detail. Section 5 presents the experimental results and performance evaluation, and ana-
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lytically verifies the DST algorithm. Section 6 concludes the paper and provides an outlook
on future spaceborne ATR.

2. Related Work
2.1. KD

KD was initially proposed by Geoffrey Hinton [14], in order to enable a smaller
network to learn the correlations between classes from the output of a larger pretrained
teacher model. This work was extended in [15], to teach students to use intermediate
representations as knowledge. They achieved this by minimizing the L2 distance between
the feature maps of the student and teacher. In [15], it was shown that, if the gap between
students and teachers is too large, the student’s performance decreases. They suggested
using intermediate features to distill knowledge between teachers and students. Each
model uses a different architecture and has a separate set of weights. Slimmable neural
networks [22] can execute on different widths by uniformly compressing the model width
through a joint training approach. The smaller models benefited from the shared weights
and the implicit KD provided.

In [23], a method to provide additional supervision for students using the feature
map of the teacher was proposed. This method transfers only its intermediate layers with
the help of encoding feature maps. Similarly, probabilistic knowledge transfer (PKT) [24]
transfers the feature map of the penultimate layer (i.e., the layer before the classification
layer) by matching its probability distribution. However, sharing the knowledge of an
intermediate layer does not capture the critical connections between the layers. Attention
transfer (AT) [25] involves an attention mechanism that transfers all intermediate layer rep-
resentations to address this problem. Similarly, the hierarchical self-supervised augmented
knowledge distillation (HSAKD) method [25] employs classifiers at the top of all interme-
diate layers to supervise the KD procedure. In addition, reference [26] introduced contrast
representation distillation (CRD), which uses contrast loss to distill the feature maps from
the last convolutional layer. All previous approaches considered the encoding of feature
maps to match the width of teachers and students, allowing for a traceable architecture
between students and teachers. Therefore, reference [27] introduced a method to efficiently
encode the extracted features before the KD; however, encoding is still required.

2.2. Pruning

Neural networks often need to be more balanced, and there may be significant redun-
dancy in deep learning models [28]. Network pruning removes channels and the corre-
sponding weights that contribute insignificantly to the network accuracy. GoogLeNet [29,30]
reduces the number of parameters of a neural network by employing an global average
pool, instead of a fully connected layer. Network pruning is used to reduce the network’s
complexity and over-fitting. An early approach to pruning was biased weight decay [31].
Optimal Brain Damage [17] and Optimal Brain Surgeon [32] prune networks to reduce the
number of connections based on the Hessian of the loss function, and it has been suggested
that such pruning is more accurate than magnitude-based pruning approaches such as
weight decay. However, the second-order derivative requires additional computation.
There are two main branches of pruning, based on the granularity of the pruning: (1) un-
structured pruning, which prunes individual weights; and (2) structured pruning, which
prunes neurons (in most cases, channels of convolutional neural networks).

2.2.1. Unstructured Pruning

Unstructured pruning [17] uses a single weight as the basic unit to delete weights
and connections in the neural network, while maintaining the number of neurons in the
network. General unstructured pruning consists of three steps: (1) training a large network
model; (2) removing unnecessary connections (synapses) and weights (neurons), according
to custom rules; and (3) finally fine-tuning the entire sparse neural network for updates.
The iterative magnitude pruning (IMP) technique [33], which iteratively applies magnitude-
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based trimming and fine-tuning, results in a significant performance enhancement. Lottery
ticket rewinding (LTR) is an iterative magnitude pruning method with entitled repeated
rolls [20,34]. IMP with learning rate (LR) rewinding, which recounts the learning rate
schedule, has recently been shown to yield better results with more extensive networks [35].
However, the unstructured pruned network structure (i.e., the number of channels per
layer) remains the same. As such, it is not easy to accelerate an unstructured pruning
network without dedicated hardware [36].

2.2.2. Structured Pruning

Structured pruning [37–40] takes filters (i.e., neurons in channel units) as the basic
unit and removes some filters that do not contribute much. Such an approach provides
a smaller network with a more efficient network structure. This method can use general-
purpose hardware acceleration and does not require specialized hardware and libraries to
be designed. Similarly to magnitude-based unstructured pruning, the most straightforward
approach is based on weight pruning filters [38,41]. Another method is to add a regularizer
that induces sparsity during training [42–44]. Liu et al. [2] and Ye et al. [45] proposed
a structured pruning scheme with filter-based batch normalization (BN) scale factors.
Zhuang et al. [46] incorporated a polarization regularizer with a BN scale factor into
structured pruning. However, the pruned network had more weights (parameters) than
the unstructured pruning, due to the limitations of the network structure [34].

2.2.3. KD and Pruning

Previous works [47–50] combined KD and pruning for model compression. However,
these approaches coincide with ours, in terms of technology and methodology. In [47],
specific layers of the model were pruned, and a separate KD was performed on them.
In [48], the pruned model was applied to the distilled student network. In [49], the teacher
model was pruned to have the same width as the student network, in order to facilitate
the transfer of intermediate layers. In [50], the teacher networks were also pruned, and the
authors demonstrated that the pruned teacher networks had a regularization effect.

3. Motivation
3.1. Redundancy in the Student Network

KD [14] transfers knowledge from a strong teacher network to a smaller student
network. The student network is trained with soft targets and some intermediate features
provided by the teacher network [25,51,52]. Section 2.2.3 investigates and introduces the
combined compression method, where knowledge flows from the teacher network to the
student network. Even if KD is used to obtain the student network, there is still much
redundancy. We propose an algorithm that can improve the network inference speed and
provide an efficient storage format, while also improving the accuracy of the network.

3.2. Acceleration and Storage of Unstructured Pruning

As shown in Figure 1, unstructured pruning can make the dense weight tensor sparse.
While this reduces the model size and computational effort, it also reduces the computa-
tional regularity, making parallelization in hardware more complex. For example, modern
hardware architectures have many parallel processors, such as GPUs, with multiple pro-
cessing unit (PEs). Numerous CUDA cores (also called arithmetic logic units or ALUs) exist
in each PE of the general-purpose hardware acceleration unit, which can support multiple
computations such as float32, float16, and/or int8 computations. Each PE handles part of
the workload in parallel, allowing for faster computation than with serial execution of the
workload. A pruning network leads to the potential problem of an unbalanced distribution
of nonzero weights when computed in parallel on multiple PEs, resulting in a situation
where each PE performs a different number of multiplicative accumulation operations.
Therefore, the PE with fewer computational tasks must wait until the PE with the most
computational tasks has finished before proceeding to the following computation stage.
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As such, unbalanced workloads on different PEs may result in a gap between the actual
and peak performance of the hardware. Traditional unstructured pruning stores the zero
elements (as in Figure 1a) and the masks of the pruning process, resulting in a sizable final
model, in terms of storage. This is even more detrimental regarding the deployment and
acceleration of embedded systems.

Figure 1. The sparse matrix of the pruning network is depicted in (a). Sorting operations performed
on the whole matrix, such as that shown in (b) PE0–PE7, require at least five clocks for computation.

4. Methodology
4.1. Overview

In this paper, we design a unified end-to-end DST compression framework, as shown
in Figure 2. We define a teacher network ft(·; wt) and a student network fs(·; ws). More
formally, ft(·; wt) is a cumbersome network that needs to be compressed into a lightweight
network fs(·; ws). Even after the KD and compression of the student network model
fs(·; ws), much redundancy remains. This section provides a detailed architectural design
based on the pruned student network fs(·; wp).

As shown in Figure 2, the design of the pruning algorithm for the student network is
added to the KD (with respect to the student and teacher networks). The key idea of the
student network pruning algorithm is to reconfigure the unstructured pruning architecture
and construct a UHP method. After constructing the student network, each layer is pruned
by 50% using the UHP method. Distillation learning is then performed on the pruned
student network. Thus, the proposed compression algorithm includes three steps:

1. Train a teacher network and obtain ft(·; wt).
2. Apply the UHP algorithm to prune and obtain the pruned student network fs(·; wp).
3. Distill the teacher network ft(·; wt) to the student network fs(·; wp).

4.2. Distillation Formulation

As shown in Figure 2, this paper analyzes DST mathematically. Let {(xi, yi)}N
i=1 be the

data set, where the value of label yi comes from {1, 2, . . . , K}. For each training instance x,
the neural network f (·; w) outputs the probability of each label as p(k | x) = softmax(zk) =

exp(zk)
K
∑

i=1
exp(zi)

, where zi is the logit of the neural network f (·; w). Neural networks are trained

by minimizing the cross-entropy loss H(p1, p2) = −
K
∑

k=1
p1[k] log p2[k]. We are interested

in a classification model with a K-dimensional probability distribution of the output. Let
ftrue (xi) ∈ RK be a one-hot encoding, where ftrue (xi)[yi] = 1 denotes the real label yi,
and ftrue (xi)[y′] = 0 denotes all y′ 6= yi. Let ft(x; w) be the output of the teacher network.
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When the input is x and the weight is w, we train the teacher ft(·; w) to achieve wt such
that the cross-entropy loss is minimized.

When the input is fs(x; ws) and the weight is ws, x is the output of the student network.
For temperature τ, the knowledge distillation loss is given by:

LKD(ws) =
1
N

N

∑(1− α)H( ftrue (xi), fs(xi; ws)) + αH( ft(x; wt), fs(x; ws)). (1)

Further, through analysis of Equation (1):

LKD(ws) =
1
N

N

∑(1− α)H( ftrue (xi), fs(xi; ws)) + αH( ft(x; wt), fs(x; ws))

=
1
N

N

∑(1− α) ftrue (xi) log fs(xi; ws) + α ft(x; wt) log fs(x; ws)

=
1
N

N

∑ ftrue (xi) log fs(xi; ws)− α ftrue (xi) log fs(xi; ws) + α ft(x; wt) log fs(x; ws)

=
1
N

N

∑((1− α) ftrue (xi) + α ft(x; wt)) log fs(x; ws).

, (2)

When fα(x; wt) = (1− α) ftrue (x) + α ft(x; wt), Equation (2) is equivalent to Equation (3):

LKD(ws) =
1
N

N

∑
i=1

H( fα(xi; wt), fs(xi; ws)). (3)

As shown by [53] and our derivation of Equations (1) and (3), in addition to teaching
students knowledge, KD can be equated to label smoothing regularization (LSR). Thus, KD
facilitates network label smoothing regularization training in students.

Figure 2. Overview of the DST strategy. The teacher network teaches the pruned student network,
which can learn more from the teacher. The pruning algorithm used is the UHP method.
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4.3. Pruned Student Distillation

This paper considers a pruned student network fs(x; wp) to implement distillation
training. The pruned student network fs(x; wp) can also learn from the teacher network
ft(x; wt). We propose a new network compression framework for unstructured pruning
of the student network fs(x; ws). The critical challenge is obtaining the pruned student
network fs(x; wp) to learn knowledge from the teacher network ft(x; wt). The pruned
student network fs(x; wp) is added to the loss function based on the above considerations.
Thus, the distillation loss function is redesigned as follows:

LKD(wp) =
1
N

N

∑
i=1

H
(

fα(xi; wt), fs
(
xi; wp

))
, (4)

where fα(x; wt) = (1− α) ftrue (x) + α ft(x; wt).

4.4. Pruning Formulation

The pruned network is obtained using a m ∈ {0, 1}|w| binary mask applied to the
student network’s weight ws. Although this mask can be applied to all weights in the
network, we restrict our attention to the convolutional layers, as they contribute the most
to the overall computational cost. Pruning aims to learn the weight wp that contributes
most to the current objective of achieving a comparable performance to the original model.
With the above considerations, we define Equation (5):

L( fs(x, ws ·m)) ≈ L( fs(x, wp)),
m0

|w| = p, (5)

where p ∈ [0, 1] is a predefined pruning rate that controls the trade-off between the number
of weights used, the computational complexity, and the expressiveness of the model.

4.5. Uniformity Half-Pruning
4.5.1. Pruning Structure

The advantage of unstructured pruning is its high pruning ratio (e.g., 90%). Typically,
90% of unstructured sparsity is used for model inference. However, with general-purpose
hardware acceleration architectures, such as GPUs and TPUs (tensor cores and systolic
arrays, respectively), the gains in inference speed when using unstructured pruning may
be more apparent. We start by initializing a random network and training the model
with a fixed sparse pattern. The UHP sparse model architecture is obtained, to efficiently
utilize hardware during training and inference. Based on the advantages of general-
purpose hardware, the GPU kernel is optimized to accelerate this pruning model on the
CUDA kernel. This solves the speed problem of unstructured pruning on general-purpose
processors at the algorithmic level.

In this paper, we set the sparsity of only two nonzero weights among the four weights,
to address the challenge posed by the unstructured pruning sparsity described in Section 3.1.
The UHP pattern specifies that, for each group of 4 values, at least 2 must be 0. This
results in a 50% sparsity, which makes it more practical to maintain accuracy without
hyperparametric exploration than when using a higher sparsity. When accelerating a
matrix, the UHP model has the following benefits over other sparsity methods: (1) efficient
memory access; (2) low overhead compression format; and (3) 2× higher computational
throughput in a general-purpose processor architecture.

4.5.2. Efficient Storage and Accelerating Computation

The UHP matrix (W) storage format is shown in Figure 3. In this mode, only 2 nonzero
values from each group of 4 values need to be stored. The metadata in decoded compressed
format are stored separately, using 2 bits to encode the location of each nonzero value in
the 4 sets of values. For example, the metadata of the first row of the matrix in Figure 1 are
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given as [[0; 3]; [0; 2]]. When performing matrix multiplication, metadata information is
required to obtain the corresponding values from the second matrix.

Figure 3. UHP matrix (W) storage format. The size of the uncompressed matrix is R× C, and the
size of the compressed matrix is R×C

2 .

The UHP matrix (W) storage format allows for efficient memory access. The un-
structured sparse pattern results in low utilization of cache lines when accessing memory,
therefore promoting low utilization of memory bandwidth. In addition, unstructured
schemas usually use CSR/CSC/COO storage formats [54], which leads to data-dependent
access and an increased latency of matrix reads. In contrast, each sub-block of the UHP
matrix has the same sparsity level, allowing the hardware to take full advantage of large
memory reads. Again, as the sparsity is constant throughout the matrix, the location of a
nonzero value in the memory can be determined directly from the metadata.

The UHP matrix (W) allows for use of efficient storage formats. As the UHP matrix
(W) storage format (shown in Figure 3) requires only 2 bits of metadata per value index;
in the case of 32-bit operands, storing the sparse tensor in a compressed format results
in a 47% saving in storage space: 4 Bytes require 4 × 32 bits = 128 bits of storage space,
while the sparse UHP matrix (W) results in 2 × 32 bits + 2 × 2 bits = 68 bits to store the
2 nonzero weights.

4.5.3. UHP Computation Overhead

In this paper, we designed a convolution operation for the program, as shown in
Figure 4. During model inference, the program loads the matrix, indexes the nonzero
elements for matrix multiplication operations, and performs accumulation operations.
The program unifies the design instructions. These instructions are the basis for the neural
network layers involving mathematical operations, mainly matrix convolution operations.
A network with 50% sparsity can halve the number of multiplication operations, thus
doubling the computational performance of the hardware in the same network.
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Figure 4. General-purpose hardware acceleration. The algorithm selects elements from the matrix X
corresponding to nonzero values of the matrix W for the convolution operation by indexing, skipping
unnecessary zero multiplication operations.

4.6. DST Workflow

Figure 5 shows the DST training process. In this method, the network is pruned
with a 50% sparse pattern, maintaining the original accuracy and avoiding the need to
conduct a hyperparameter search. As the aim is to reduce the size of the neural network
and the running time at deployment, we trade higher training costs for smaller models.
First, we train a teacher network ft(·; wt), which has better performance and generalization
ability. Second, the teacher network ft(·; wt) and student network fs(·; ws) are trained
simultaneously (the student network fs(·; ws) was not pretrained) and distilled for training.
When the student network fs(·; ws) reaches a certain accuracy, the student network fs(·; ws)
is uniformly pruned by half to obtain fs(·; wp). Finally, fine-tuning and distillation training
are performed on the pruned student network fs(·; wp). The algorithm is described in
Algorithm 1.

Figure 5. Timing of DST. Purple represents the teacher network ft(·; wt). Blue represents the student
network fs(·; ws). Red represents the student network after pruning fs(·; wp).



Remote Sens. 2023, 15, 2609 10 of 22

Algorithm 1: Distillation Sparsity Training (DST)

input : teacher network pretrained ft(x; wt)
student network fs(x; w)

Initialize : ft(x; wt) KD fs(x; w), LKD(ws) =
1
N

N
∑

i=1
H( fα(xi; wt), fs(xi; ws))

if fs(x; ws)← fs(x; w) then
fs(x; w)← fs(x; ws) by UHP

end

Initialize : ft(x; wt) KD fs(x; w), LKD(wp) =
1
N

N
∑

i=1
H
(

fα(xi; wt), fs
(
xi; wp

))
if fs(x; wp)← fs(x; w) then

output : fs(x; wp)
end

5. Experiment
5.1. Data Sets

The algorithm proposed in this study was evaluated on both the optical CIFAR-100
data set and the SAR MSTAR and FUSAR-ship data sets, in order to demonstrate the
effectiveness of the DST algorithm. Experimental results were obtained to validate the
proposed algorithm.

CIFAR-100 [55] consists of labeled subsets of the 80 million tiny image data set, col-
lected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. This data set includes 100 cat-
egories, with each category containing 600 images. There are 500 training images and
100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 super-
classes. Each image comes with a “fine” label (the class to which it belongs) and a “coarse”
label (the super-class to which it belongs).

The MSTAR (Moving and Stationary Target Acquisition and Recognition) data set [56]
was collected and published by Sandia National Laboratory in the USA. The MSTAR data
set can be divided into standard operating conditions (SOCs) and extended operating
conditions (EOCs) data sets. There are 10 different ground military targets in the MSTAR
data set, including BMP2 (tank), BTR70 (armored vehicle), T72 (tank), BTR60 (armored ve-
hicle), 2S1 (artillery), BRDM (truck), D7 (bulldozer), T62 (tank), ZIL131 (truck), and ZSU234
(artillery). In the SOC, the training set has 2747 samples with a depression angle of 17◦, and
the test set has 2425 samples with a depression angle of 15◦.

The FUSAR-Ship data set [57] was constructed and published by the Key Laboratory
for Information Science of Electromagnetic Waves (MoE) of Fudan University, Shanghai,
China. The FUSAR-Ship data set includes eight different ship targets: Bulk General, General
Cargo, Container, Other Cargo, False Alarm, Fishing, Other Ship, and Tanker. We randomly
selected 75% as the training set and 25% as the test set, such that the ratio of the training set
to the test set was 3:1.

5.2. Experiment Setup and Implementation Details

For this experiment, we used a Jetson AGX Orin embedded device for evaluation of
the proposed algorithm. The Jetson AGX Orin is based on an embedded platform with a
12-core ARM® v8.2 64-bit CPU, 32 GB of 256-bit LPDDR5 memory, and a 64 GB eMMC flash
device running Ubuntu 20.04. In the evaluation, the inference processes were accelerated
using CUDA and Tensor units for computation. We selected different teacher networks
for different data sets, to achieve smooth knowledge transfer (e.g., ResNet18, ResNet34,
ResNet50). The student networks were MobileNet, MobileNetV2, and MobileNetV3. One
teacher network corresponded to three student networks, in order to test the effect of
DST separately. For the CIFAR-100 data set, the momentum was 0.9 and the learning rate
was 0.1 using the SGD optimizer, where learning rate was decayed by a factor of 5 at the
60th, 120th, and 160th epochs. The network was trained with an input size of 32 × 32,
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batch size equal to 128, and weight decay of 0.0005 for 200 epochs. For the MSTAR and
FUSAR-ship data sets, the momentum was 0.9 and the learning rate was 0.1 using the SGD
optimizer, where the learning rate was decayed by a factor of 5 at the 60th, 120th, and 160th
epochs. The network was trained with an input size of 224 × 224, batch size equal to 128,
and weight decay of 0.0005 for 200 epochs. Unstructured pruning (50% pruning ratio) and
UHP experiments were performed. To prevent overfitting of the network, we used the
Pytorch library to implement dataset augmentation during training; for example, equal
scaling of the images, random cropping, and random horizontal and vertical flipping.

5.3. Pruning Analysis

Figures 6–8 show the pruning ratio for the student networks MobileNet, MobileNetV2,
and MobileNetV3, respectively, regarding the unstructured pruning (50% pruning ratio)
and UHP for each layer. It can be seen that the pruning ratio of each layer under UHP
was 50%. From the analysis in Section 4.5, our proposed algorithm is more suitable for
general-purpose hardware acceleration. We set the overall pruning ratio for unstructured
pruning to 50%; however, the pruning rate differed for each layer. According to the analysis
in Section 3.1, the unstructured pruning algorithm does not accelerate well on general-
purpose hardware. These results are validated in the experimental evaluation detailed in
Section 5.4.

Figures 9–11 show views of the feature maps for the student networks MobileNet,
MobileNetV2, and MobileNetV3, respectively, under unstructured pruning (50% pruning
ratio) and UHP for each layer. Both sub-figures (a) and (b) show the same channel, where (a)
is the channel with an unstructured pruning ratio higher than 50% and (b) is that with UHP.
It can be seen that the features extracted under UHP are smoother and more focused than
those with unstructured pruning, due to the random pruning per layer in the unstructured
case. Figures 10 and 11 show that the relatively high ratio of unstructured pruning led to
the direct loss of features in some layers, while the channel features under UHP remained
relatively stable. This lack of concentration and the disappearance of features can lead to
an inability to learn knowledge well in the process of DST. These results are validated in
our analysis of the experimental evaluation in Section 5.5.

Figure 6. MobileNet network pruning ratio per layer. The blue line denotes UHP, and the red line
denotes unstructured pruning.
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Figure 7. MobileNetV2 network pruning ratio per layer. The blue line denotes UHP, and the red line
denotes unstructured pruning.

Figure 8. MobileNetV3 network pruning ratio per layer. The blue line denotes UHP, and the red line
denotes unstructured pruning.
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(a) (b)

Figure 9. The feature maps of MobileNet after pruning: (a) Unstructured pruning; and (b) UHP.

(a) (b)

Figure 10. The feature maps of MobileNetV2 after pruning: (a) Unstructured pruning; and (b) UHP.



Remote Sens. 2023, 15, 2609 14 of 22

(a) (b)

Figure 11. The feature maps of MobileNetV3 after pruning: (a) Unstructured pruning, and (b) UHP.

5.4. Computational Performance Evaluation

The network was deployed in an embedded system (Jetson AGX Orin), in order
to validate the inference performance of UHP. In addition to evaluating the accuracy,
we further evaluated the computational performance of the network. We validated the
efficiency of our algorithm by calculating three metrics on the network. First, we assessed
the model size by comparing the size of the pretrained, unstructured pruning, and UHP
models. Second, we compared the number of network parameters for the pretrained,
unstructured pruning, and UHP models. Third, we tested the frames per second (FPS),
which is the computational efficiency of networks in embedded systems (Jetson AGX Orin),
achieved by the three models with the embedded system.

Table 1 provides the model size, parameters, and FPS of the student networks. The Mo-
bileNet, MobileNetV2, and MobileNetV3 pretrained models were used as benchmarks.
For the model size, unstructured pruning saved −1.57%, 5.47%, and 2.99% of the storage,
while UHP saved 22.52%, 40.35%, and 37.72% of storage, respectively. For the parameters,
both were reduced by 50%. Regarding the FPS of the network, when the input of the net-
work was 32× 32, unstructured pruning led to an improvement of 6.03%, 2.67%, and 3.22%,
while UHP led to an improvement of 130.00%, 110.70%, and 122.83%, respectively. When
the network input was 224 × 224, unstructured pruning led to an improvement of 2.81%,
2.13%, and 5.49%, while UHP led to an improvement of 129.90%, 110.00%, and 111.37%,
respectively. These experiments further validate the analysis provided in Section 5.3.

5.5. Accuracy Evaluation
5.5.1. Results on CIFAR-100

We conducted nine groups of experiments on the CIFAR-100 data set. The teacher
networks ResNet18, ResNet34, and ResNet50 were used to separately teach the student
networks MobileNet, MobileNetV2, and MobileNetV3 by implementing DST. The set
of experiments included assessment of the accuracy of single teacher and student net-
works. The accuracy of the networks was compared when implementing unstructured
pruning (50% pruning rate) and UHP, when implementing DST, and when implementing
unstructured pruning (50% pruning rate) and UHP and performing DST.



Remote Sens. 2023, 15, 2609 15 of 22

Table 1. Evaluation results of the computational performance for the student networks with the
embedded system. Distillation sparsity training, DST; unstructured pruning (50% pruning ratio), UP;
uniformity half-pruning, UHP. “X” denotes baseline, and “-” denotes non-baseline.

MobileNet MobileNetV2 MobileNetV3 Baseline

Model Size(MB)

Pretrained 12.70 9.69 16.70 X
DST-UP [48] 12.90 9.16 16.20 -

DST-UHP(Ours) 9.84 5.78 10.40 -
Relative +1.57%/−22.52% 5.47%/−40.35% −2.99%/−37.72% -

Parameters(M)

Pretrained 4.20 3.40 5.40 X
DST-UP [48] 2.10 1.70 2.70 -

DST-UHP(Ours) 2.10 1.70 2.70 -
Relative −50.00%/−50.00% −50.00%/−50.00% −50.00%/−50.00% -

FPS

Pretrained 1160 675 622 X
Input DST-UP [48] 1230 693 682 -

32 × 32 DST-UHP(Ours) 2668 1418 1386 -
Relative +6.03%/+130.00% +2.67%/+110.70% +3.22%/+122.83% -

Pretrained 748 422 510 X
Input DST-UP [48] 769 431 538 -

224 × 224 DST-UHP(Ours) 1720 886 1078 -
Relative +2.81%/+129.90% +2.13%/+110.00% +5.49%/+111.37% -

Table 2 shows the accuracy of the student network MobileNet under various con-
ditions. Here, we used MobileNet without KD, UP, or UHP as a benchmark. After DST
using the teacher networks ResNet18, ResNet34, and ResNet50, the accuracy increased by
4.00%, 3.21%, and 3.72%, respectively. Table 3 shows the accuracy of the student network
MobileNetV2 under various conditions. Here, we took MobileNetV2 without KD, UP,
or UHP as a benchmark. After DST using the teacher networks ResNet18, ResNet34,
and ResNet50, the accuracy increased by 0.82%, 0.27%, and 0.55%, respectively. Table 4
shows the accuracy of the student network MobileNetV3 under various conditions. Here,
we took MobileNetV3 without KD, UP, or UHP as a benchmark. After DST using the
teacher networks ResNet18, ResNet34, and ResNet50, the accuracy increased by 1.58%,
1.68%, and 2.70%, respectively. These experiments validated the analysis in Section 5.3.

Table 2. Teacher networks ResNet18, ResNet34, ResNet50, and the student network MobileNet;
all implemented the DST results. Unstructured pruning (50% pruning ratio), UP; uniformity half-
pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 67.58% [59] Baseline

* MobileNet * X * 68.26% [58] +0.68%
* * X 67.62% −0.32%

ResNet18
X * * 71.62% [14] +4.04%

76.41% X X * 70.75% [48] +3.17%
X * X 71.48% +4.00%

ResNet34
X * * 70.17% [14] +2.59%

78.05% MobileNet X X * 69.88% [48] +2.30%
X * X 70.79% +3.21%

ResNet50
X * * 71.25% [14] +3.67%

78.87% X X * 70.16% [48] +2.58%
X * X 71.30% +3.72%
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Table 3. Teacher networks ResNet18, ResNet34, ResNet50, and the student network MobileNetV2;
all implemented the DST results. Unstructured pruning (50% pruning ratio), UP; uniformity half-
pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 68.90% [60] Baseline

* MobileNetV2 * X * 69.10% [58] +0.20%
* * X 68.33% −0.57%

ResNet18
X * * 70.17% [14] +1.27%

76.41% X X * 68.93% [48] +0.03%
X * X 69.72% +0.82%

ResNet34
X * * 69.89% [14] +0.99%

78.05% MobileNetV2 X X * 68.00% [48] −0.90%
X * X 69.17% +0.27%

ResNet50
X * * 69.75% [14] +0.85%

78.87% X X * 69.13% [48] +0.23%
X * X 69.45% +0.55%

Table 4. Teacher networks ResNet18, ResNet34, ResNet50, and the student network MobileNetV3;
all implemented the DST results. Unstructured pruning (50% pruning ratio), UP; uniformity half-
pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 71.79% [61] Baseline

* MobileNetV3 * X * 72.03% [58] +0.24%
* * X 71.75% −0.04%

ResNet18
X * * 73.41% [14] +1.62%

76.41% X X * 72.69% [48] +0.90%
X * X 73.37% +1.58%

ResNet34
X * * 73.54% [14] +1.75%

78.05% MobileNetV3 X X * 72.15% [48] +0.36%
X * X 73.47% +1.68%

ResNet50
X * * 74.52% [14] +2.73%

78.87% X X * 73.96% [48] +2.17%
X * X 74.49% +2.70%

5.5.2. MSTAR Results

Next, we implemented three groups of experiments using the MSTAR data set. The ex-
perimental process was similar to that in Section 5.5.1. As ResNet18 performed well on the
MSTAR data set, the other teacher networks were not used. Table 5 shows the accuracy of
the student network MobileNet under various conditions, taking MobileNet without KD,
UP, or UHP as a benchmark. After DST, by implementing ResNet18 with the teacher net-
work, the accuracy increased by 0.75%. Table 6 shows the accuracy of the student network
MobileNetV2 under various conditions, taking MobileNetV2 without KD, UP, or UHP as a
benchmark. After DST, by implementing ResNet18 with the teacher network, the accuracy
increased by 2.85%. Table 7 shows the accuracy of the student network MobileNetV3
under various conditions, taking MobileNetV3 without KD, UP, or UHP as a benchmark.
After DST, by implementing ResNet18 with the teacher network, the accuracy increased by
0.45%. These experiments validated the analysis provided in Section 5.3.
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Table 5. Results for the teacher network ResNet18 and the student network MobileNet; both
implemented the DST results. Unstructured pruning (50% pruning ratio), UP; uniformity half-
pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 98.56% [59] Baseline

* MobileNet * X * 98.34% [58] −0.22%
* * X 98.21% −0.35%

ResNet18
X * * 99.32% [14] +0.76%

99.78% MobileNet X X * 99.24% [48] +0.68%
X * X 99.31% +0.75%

Table 6. Results for the teacher network ResNet18 and the student network MobileNetV2; both
implemented the DST results. Unstructured pruning (50% pruning ratio), UP; uniformity half-
pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 96.54% [60] Baseline

* MobileNetV2 * X * 96.55% [58] +0.01%
* * X 96.48% −0.06%

ResNet18
X * * 99.40% [14] +2.86%

99.78% MobileNetV2 X X * 99.36% [48] +2.82%
X * X 99.39% +2.85%

Table 7. Results for the teacher network ResNet18 and the student network MobileNetV3; both
implemented the DST results. Unstructured pruning (50% pruning ratio), UP; uniformity half-
pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 99.13% [61] Baseline

* MobileNetV3 * X * 99.06% [58] +0.07%
* * X 99.05% −0.08%

ResNet18
X * * 99.59% [14] +0.46%

99.78% MobileNetV3 X X * 99.55% [48] +0.42%
X * X 99.58% +0.45%

5.5.3. FUSAR-Ship Results

We also conducted nine groups of experiments on the FUSAR-Ship data set. The ex-
perimental process was similar to that in Section 5.5.1. Table 8 shows the accuracy of
the student network MobileNet under various conditions, taking MobileNet without KD,
UP, or UHP as a benchmark. After DST using the teacher networks ResNet18, ResNet34,
and ResNet50, the accuracy increased by 3.89%, 4.50%, and 4.20%, respectively. Table 9
shows the accuracy of the student network MobileNetV2 under various conditions, tak-
ing MobileNetV2 without KD, UP, or UHP as a benchmark. After DST using the teacher
networks ResNet18, ResNet34, and ResNet50, the accuracy increased by 2.88%, 3.31%,
and 4.20%, respectively. Table 10 shows the accuracy of the student network MobileNetV3
under various conditions, taking MobileNetV3 without KD, UP, or UHP as a benchmark.
After DST using the teacher networks ResNet18, ResNet34, and ResNet50, the accuracy in-
creased by 3.46%, 3.80%, and 4.52%, respectively. These experiments validated the analysis
in Section 5.3.
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Table 8. Results for the teacher networks ResNet18, ResNet34, ResNet50, and the student network
MobileNet; all implemented the DST results. Unstructured pruning (50% pruning ratio), UP; unifor-
mity half-pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method is not
used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 70.42% [59] Baseline

* MobileNet * X * 70.35% [58] −0.07%
* * X 70.67% +0.25%

ResNet18
X * * 74.82% [14] +4.40%

74.38% X X * 73.59% [48] +3.17%
X * X 74.31% +3.89%

ResNet34
X * * 75.35% [14] +4.93%

75.31% MobileNet X X * 73.82% [48] +3.40%
X * X 74.92% +4.50%

ResNet50
X * * 75.62% [14] +5.20%

75.87% X X * 74.01% [48] +3.59%
X * X 74.62% +4.20%

Table 9. Results for the teacher networks ResNet18, ResNet34, ResNet50, and the student network
MobileNetV2; all implemented the DST results. Unstructured pruning (50% pruning ratio), UP;
uniformity half-pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method
is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 71.37% [60] Baseline

* MobileNetV2 * X * 70.16% [58] −1.21%
* * X 69.27% −2.10%

ResNet18
X * * 74.16% [14] +2.79%

74.38% X X * 73.29% [48] +1.92%
X * X 74.25% +2.88%

ResNet34
X * * 74.87% [14] +3.50%

75.31% MobileNetV2 X X * 73.74% [48] +2.37%
X * X 74.68% +3.31%

ResNet50
X * * 74.98% [14] +3.61%

75.87% X X * 73.85% [48] +2.48%
X * X 74.96% +3.59%

According to the computational performance evaluation in Section 5.4 and the accuracy
evaluation in Section 5.5, DST improved the accuracy of the pruned network. Regarding
the model size of the student network, UHP saved close to 40% of storage space, compared
to unstructured pruning. Considering the FPS of the network, UHP achieved a 2× increase
in speed compared to the pretrained model, while the speed increase due to unstructured
pruning was insignificant.
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Table 10. Results for the teacher networks ResNet18, ResNet34, ResNet50, and the student network
MobileNetV3; all implemented the DST results. Unstructured pruning (50% pruning ratio), UP;
uniformity half-pruning, UHP. “X” denotes that the method is used, and “*” denotes that the method
is not used.

Teacher Teacher Acc
(Top-1) Student KD UP [58] UHP (Ours) Student Acc

(Top-1) Relative

*
* * * 71.12% [61] Baseline

* MobileNetV3 * X * 70.19% [58] −0.93%
* * X 71.44% +0.12%

ResNet18
X * * 74.57% [14] +3.45%

74.38% X X * 73.18% [48] +2.06%
X * X 74.58% +3.46%

ResNet34
X * * 74.98% [14] +3.86%

75.31% MobileNetV3 X X * 74.15% [48] +3.03%
X * X 74.92% +3.80%

ResNet50
X * * 75.92% [14] +4.80%

75.87% X X * 74.13% [48] +3.01%
X * X 75.64% +4.52%

6. Conclusions

KD and network pruning are essential technical tools for model compression. In this
work, we proposed a model compression algorithm that combines KD and network pruning,
which we call DST. In particular, network pruning was applied to the student network to
effectively transfer knowledge from the teacher network to the pruned student network
and further compress the student network. We theoretically derived and designed a
new teacher-pruned student objective function, in order to achieve compression while
improving the accuracy of the student network. Considering that unstructured pruning
cannot achieve general-purpose hardware acceleration, we reconstructed the unstructured
pruning approach, to propose the UHP method. Extensive experiments on the CIFAR-100,
MSTAR, and FUSAR-Ship data sets demonstrated that the proposed DST can achieve state-
of-the-art compression performance in terms of prediction accuracy, inference acceleration,
and storage efficiency. We also obtained the FPS values for the compressed models when
using the proposed DST on embedded platforms, in order to demonstrate the real-time
application potential of our compressed model on mobile devices.

Deep neural networks include CNNs, transformers, etc. The DST algorithm mainly
implements model compression for generic CNNs, but the structure of the transformer
differs significantly from CNNs, and the proposed algorithm requires further improvement
in its compression structure. Compression techniques for general-purpose deep neural
networks (e.g., CNNs, transformers) could be further investigated in the future. Currently,
we have only performed tests on a GPU-based Jetson AGX Orin. Test studies have yet to
be conducted for other embedded devices (e.g., FPGA, DSP). Spaceborne SAR technology
may carry different embedded systems and use various deep neural networks, and we
hope the proposed compression algorithm can achieve generality.
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Abbreviations
The following abbreviations are used in this manuscript:

ATR Automatic Target Recognition
KD Knowledge Distillation
DST Distillation Sparsity Training
CNNs Convolutional Neural Networks
PKT Probabilistic Knowledge Transfer
AT Attention Transfer
HSAKD Hierarchical Self-supervised Augmented Knowledge Distillation
IMP Iterative Magnitude Pruning
LTR Lottery Ticket Rewinding
LR Learning Rate
BN Batch Normalization
PEs multiple Processing units
ALUs Arithmetic Logic Units
FPS Frames Per Second
UHP Uniformity Half-Pruning
UP Unstructured Pruning
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