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Abstract: As the largest species of birds in Antarctica, penguins are called “biological indicators”.
Changes in the environment will cause population fluctuations. Therefore, developing a penguin
census regularly will not only help carry out conservation activities but also provides a basis for
studying climate change. Traditionally, scholars often use indirect methods, e.g., identifying penguin
guano and establishing regression relationships to estimate the size of penguin colonies. In this paper,
we explore the feasibility of automatic object detection algorithms based on aerial images, which locate
each penguin directly. We build a dataset consisting of images taken at 400 m altitude over the island
populated by Adelie penguins, which are cropped with a resolution of 640 × 640. To address the
challenges of detecting minuscule penguins (often 10 pixels extent) amidst complex backgrounds in
our dataset, we propose a new object detection network, named YoloPd (Yolo for penguin detection).
Specifically, a multiple frequency features fusion module and a Bottleneck aggregation layer are
proposed to strengthen feature representations for smaller penguins. Furthermore, the Transformer
aggregation layer and efficient attention module are designed to capture global features with the
aim of filtering out background interference. With respect to the latency/accuracy trade-off, YoloPd
surpasses the classical detector Faster R-CNN by 8.5% in mean precision (mAP). It also beats the
latest detector Yolov7 by 2.3% in F1 score with fewer parameters. Under YoloPd, the average counting
accuracy reaches 94.6%, which is quite promising. The results demonstrate the potential of automatic
detectors and provide a new direction for penguin counting.

Keywords: Antarctic penguins; conservation; remote sensing images; object detection; attention module

1. Introduction

In the past 30 years, the Antarctic and Southern Ocean Marine ecosystems have been
undergoing great changes [1]. Turel [2] statistically analyzed the meteorological data of
17 stations in Antarctica and disclosed that the Amundsen Sea’s low pressure significantly
warmed the Antarctic Peninsula by changing the radial component of the wind, which
certainly had important implications for the Antarctic ecosystem.

As the largest species of birds in Antarctica, penguins are labeled as “biological indica-
tors” [3]. Environmental changes influence their survival and reproduction. Therefore, it is
of great significance to monitor the changes in the penguin population, which can provide
bases for discovering an environmental urgency [4]. On the other hand, the Commission for
the Conservation of Antarctic Marine Living Resources (CCAMLR) revised the Ecosystem
Monitoring Program [5], including four species of penguins (Adelie penguin, chinstrap pen-
guin, gentoo penguin and macaroni penguin) as dependent species that rely on harvested
species for survival. By studying various life parameters, such as population size, breeding
success and foraging behavior, changes in the abundance of harvested species (e.g., krill)
can be detected. Thus, monitoring penguin populations provides valuable information to
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implement sustainable commercial fishing plans. In this paper, based on the characteristics
of our dataset, we concentrate on investigating changes in the Adelie penguin’s population
size from the perspective of statistical penguin counting.

Currently, research data on penguins mainly include satellite remote sensing, aviation
and field investigation [6]. Due to the limitations of climate and time costs, field investiga-
tion is mostly abandoned. Remote sensing images have emerged as the primary means
for investigation of penguin distribution evolution. However, the ground resolution is
low even in high-resolution satellite remote sensing images. Often penguins cannot be
directly observed from images and an indirect regression relationship was established to
count penguins. A variety of remote sensing data, such as Landsat and Quickiro-2, have
been used to determine the changes in the penguin population [7,8]. Medium-resolution
Landsat-7 is commonly used to map Adelie penguin colonies on a continental scale and
high-resolution satellite images taken by Worldview can be used for detection of single or
multiple penguin species. Witharana et al. used seven fusion algorithms to further enhance
the resolution of high-resolution images [9].

In the 1980s, M.R. et al. [10] proposed to identify the guano region through satellite
remote sensing images and then established a linear regression relationship between the
area of guano and the size of Adelie penguin populations. Since then, scholars adopt
supervised classification and object-oriented methods to extract fecal areas. Ref. [11]
proposed a semantic segmentation network to improve the accuracy of feces extraction.
However, the cost of acquiring satellite images is high; aerial images can be used as its
substitute, whose ground resolution is higher. An unmanned aerial vehicle (UAV) system
was used in [12] to observe the active nests of Southern Giant Petrel (SGP) on the Antarctic
Specially Managed Area no. 1, Admiralty Bay, King George Island. In contrast, the penguin
population has a larger community and dense distribution, which requires a large (if not
prohibitive) amount of manpower and time to obtain sufficiently accurate data statistics
in Antarctica. To overcome it, Ref. [13] suggested a method called Population Counting
with Overhead Robotic Networks (POPCORN) to optimize the flying trajectory of UAV.
Eventually, they used five drones to complete the sampling of 300,000 penguin burrows
(~2km2) on Ross Island, Antarctica within 3 h. In addition, Clarel developed a semi-
automated workflow for counting individuals by fusing multi-spectral and thermal images
by UAV [14], proving that the method was effective in most cases but may produce large
errors in large population sizes. Based on those fused aerial images, an object-oriented
method was developed to distinguish penguins from rock shadows [15], achieving an
average accuracy of 91%.

The above indirect counting method relies heavily on manual design and prior knowl-
edge. When the environment changes, the model may deviate significantly from reality.
In 2012, convolution (Conv) was first introduced into machine learning [16], significantly
improving accuracy and speed over traditional algorithms in image classification. Since
then, the convolutional neural network (CNN) has played a dominant role in computer
vision research and applications. By leveraging deep learning-based image processing
methods to accurately locate each penguin, we can not only count the numbers but also
achieve better explanatory power and robustness.

Object detection is meant to find all objects of interest from images, extracting the
image features through, for example, CNN and returning the categories in detection
boxes. Recently, multiple high-performance algorithms such as region convolutional neural
network (R-CNN) series [17–19], Yolo series [20–26] and Vision Transformer (ViT) [27,28]
have exceeded the accuracy of human vision in detecting small targets.

R-CNN [17] was the first deep learning detector that used the selective search method
to generate around 2000 proposals where objects might exist. Linear regression was then
used to refine the target position after a Support Vector Machine (SVM). While R-CNN
outperformed other detectors, it had poor computational efficiency. To speed up training,
Fast R-CNN [18] adopted the spatial pyramid pool layer to extract features from the entire
image and Faster R-CNN [19] proposed using a region proposal network to replace the
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selective search method, significantly improving speed. Despite satisfying visual detection
needs, the R-CNN series’ speed has always been a concern.

In contrast, Yolo [20] was another method that used a single CNN network to regress
detection boxes and categories by fusing two steps in R-CNN, resulting in higher speed with
the same network size. However, the number of detections was limited. Yolov2 [21] divided
feature maps into grids, with each grid producing nine preset bounding boxes (Anchors)
that were friendly for dense detection. It predicted the offset of Anchors to acquire more
detections. In 2018, Yolov3 [19] fused multi-scale features to predict features with three
different sizes, surpassing Faster R-CNN in both speed and accuracy. Moreover, Yolov4 [23],
Yolov5 [24], Yolov6 [25], and Yolov7 [26] integrated more tricks to achieve better speed and
accuracy. With its excellent balance between speed and accuracy, the Yolo series has been
widely applied in target detection, especially for small objects. For example, Refs. [29,30]
improved the detection performance of road cracks and potholes on the basis of Yolov3 by
optimizing multi-scale fusion modules, k-means, and loss functions. The former increased
F1 by 8.8%, while the latter further increased F1 by 15.4% by combining data augmentation
techniques. Yolov4 was first introduced in oil derrick detection in [31], achieving excellent
performance. Refs. [32–34] utilized Yolov5 to perform pedestrian detection in aerial images,
surpassing other SOTA (state of the art) algorithms. Ref. [35] improved the Backbone
of Yolov7 by space-to-depth convolution to reduce feature loss for small targets during
down-sampling, further enhancing the accuracy of pedestrian detection. To increase the
amount of information, an adaptive illumination-driven input-level fusion module was
proposed in [36] to fuse infrared and RGB images. Similarly, Ref. [37] added an attention
module during feature fusion to focus more on the scattered information, improving the
accuracy of ship detection in synthetic aperture radar images.

Remote sensing image object detection has the same theoretical basis as general
detectors. However, there are also differences in the detailed implementation according to
the objects’ characteristics. The penguin detection case has the following difficulties:

• The scale variation of objects is large;
• The target distribution is dense and the pixel size can be very small (width < 10 pixels);
• High-resolution imaging of large areas (hundreds of millions of pixels) leads to huge

hardware overhead.

In order to solve problems similar to those above, YOLT [38] divided the remote
sensing image (millions of pixels) into blocks size of 416× 416 by a sliding window with
15% pixels overlap. The improved Yolov2 network was trained to detect cars with five
pixels in size with a detection accuracy (e.g., F1 score) of 85%. An unsupervised two-
stage detection method [39] enhanced the accuracy of small ships (a few tens of pixels)
by scanning for potential target areas of the ship first. This was followed by a detector
to execute localization and classification, significantly reducing data annotation costs. In
addition, deformable convolutions [40] and parallel Region Proposal networks (RPN) [41]
are incorporated into the Feature Pyramid Networks (FPN) [42] to integrate multi-scale
features in order to counteract the scale variations in remote sensing imagery, remarkably
boosting the detection performance of vehicles which are densely dispersed.

Furthermore, several studies are investigating the use of deep learning applications for
wildlife monitoring with the aid of aerial images. Duporge et al. [43] used Faster R-CNN to
identify elephants in satellite images, exceeding human vision with an F1 of 0.75. Ref. [44]
compared the accuracies of three detection algorithms in recognizing six species (elephant,
buffalo, African water antelope, corner wildebeest, warthog, and African oryx). Ref. [45]
detects large marine animals such as dolphins that are easily confused with sunlight by
abnormal thermal images. Moreover, small and medium-sized animals such as rabbits,
kangaroos, wild boars [46], domestic cattle [47] and birds [48] can be rapidly detected with
an accuracy rate of over 90% from in UAV-required images.

Note that, in contrast to the cars, ships, rabbits or other animals in remote sensing
images, penguins appear to be smaller and the harsh conditions in Antarctica result in
a higher cost for obtaining images. These challenges make it difficult to develop direct



Remote Sens. 2023, 15, 2598 4 of 25

methods for penguin recognition in images. Fortunately, with the support of the Polar
Research Institute of China, we obtain high-resolution aerial remote-sensing images of
Adelie penguins in Antarctica. When viewed from above, penguins appear as black dots
that contrast with the white snow and rocks background, making them easily detectable in
images. Motivated by the deep learning method, we establish a penguin detection dataset
and propose a new network for counting Adelie penguins based on their characteristics.
Our overall contributions call be summarized as follows:

• We explore the flexibility of directly counting penguins from remote-sensing images.
Based on deep learning method, a penguin detection dataset is established, which
includes 58 high-resolution images of 9504 × 6336 captured over the Antarctic island.

• To address the challenges of detecting tiny penguins from significant background
interference, we propose an automatic detection network, named YoloPd, for counting
penguins directly and investigate its performances in the dataset we established.

• We design the multiple frequency features fusion module (named MAConv) and
Bottleneck efficient aggregation layer (BELAN) to increase the informative content of
small penguins, providing deeper semantic features. Additionally, we incorporated a
lightweight Swin-Transformer (LSViT) and attention mechanism into BELAN (named
TBELAN and AELAN, respectively) to extract low-frequency information that can
effectively help the network filter out complex background interference.

• We reconstruct the penguin detection datasets using Gaussian kernels with varying
degrees of blur and validate the feasibility of YoloPd within them. Furthermore, we
also verify the robustness of YoloPd on the DOTA dataset [49].

2. Materials and Methods
2.1. Penguin Dataset
2.1.1. Data Preparation

The Polar Research Institute of China is the only scientific research and support center
in China dedicated to polar exploration. We have the privilege of collaborating with them
and obtained national permission from the relevant authorities to carry out the counting
penguin project from remote-sensing imagery. Based on the images captured over the
island (53.7742

◦
S, 65.844

◦
E) on 1 January 2019 during China’s Antarctic Expedition, we

conduct the deep learning exploration in penguin detection. The image acquisition method
is described as follows:

• A high-definition camera (SONY-ILCE-7RM4) was equipped on a helicopter to com-
plete the remote-sensing task in a clear day with sufficient sunlight.

• The helicopter was positioned 400 m over the island and flew in an elliptical trajectory
around the entire island while maintaining a stable horizontal position.

• During the flight, the camera was set to take an image per second, with a ground
resolution exceeding 5 cm/pixel, until the entire island was covered.

Please note that in Ref. [12], keeping the aircraft at a height of 130 m above ground
level will not cause any change in bird behavior. Throughout the data acquisition process,
we followed the requirements of PRAS Guidelines [50] by maintaining the altitude of the
aircraft at 400 m above the island to ensure the survival of the penguins was not impacted.
The filming took place during the summer when the penguin breeding season had already
ended. The investigation did not affect their breeding.

In addition, the entire island is dominated by Adelie penguins and for other bird
species, we only found a few skuas flying in the air. Overall, this is unlikely to introduce
false positives in the detection of penguins.

We select 58 high-quality images with a resolution of 9504× 6336 covering different
parts of the island. Figure 1 shows some examples. Since the adjacent images overlapped
by a small part, we divide the images containing overlapping areas into different sets,
getting 40 training images and 18 validation images. Both training and validation sets
contain sparse and densely distributed scenes. Among them, a single image contains a
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minimum of five penguins and a maximum of 2580 penguins. The distribution of penguins
on the island is extremely uneven, which brings great challenges to our experiment.
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in Antarctica.

2.1.2. Data Processing

As obtained high-definition images through precise equipment, we directly processed
the original images into formats that can be used for deep learning. Firstly, we use the
software LabelImg [51] to annotate all the images, identifying each penguin and marking
it with a rectangle box. Among them, we acquire a total of 32,567 annotated instances.
Similar to YOLT, 58 images are cut into sub-images with the size of 640 × 640. All adjacent
sub-images have an overlap of 128 pixels in size. In order to recover original images during
testing, each sub-image is named as Imagename_height_width.jpg, where (height, width)
denotes the coordinates in the upper left corner of the sub-image in the original image.

Due to the concentration of penguin distribution in dense areas, a mass of pure
background images (without penguins) may be included in a complete image. Directly
training all images can cause the problem of class imbalance and may lead to underfitting.
To address the above issues, we adopt the following process. The sub-image containing
penguins is taken as a positive sample. We randomly eliminate some of the negative
samples to keep the ratio of positive to negative roughly at four. Detailed information is
given in Table 1. Meanwhile, in order to evaluate the prediction performance applied to
the original images, we also use 18 high-resolution original images in the test set.

Table 1. Sub-image statistics.

Dataset Positive Negative Total Penguin Labels

Train 1797 450 2247 33,436
Val 1038 260 1298 20,058

2.1.3. Data Analysis

As shown in Table 2, we gather the statistics of the pixel size of penguins (width). They
occupy 10–20 pixels mostly, with 1–10 pixels accounting for 5.2%. There are 450 penguins
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whose pixels size is less than five. As a comparison, in the typical datasets studied for
YOLT, the smallest objects (e.g., cars) often occupy 20–50 pixels which are also larger than
penguins. In addition, the penguins are frequently mixed with its shadow or background
in the image.

Table 2. Statistics of the penguin pixel size.

1–5 Pixels 6–10 Pixels 11–20 Pixels 21–50 Pixels

Train 287 1511 25,820 5818
Val 163 833 16,151 2911

According to different backgrounds, images can be roughly divided into three classes.
Figure 2a depicts the snow field, where the contrast between the penguins and the back-
ground is distinct, making detection relatively easy. Figure 2b represents the white rocks
area. The shadow of rocks presents similar color to the shadow of penguins, leading to
confusion. In Figure 2c, black rocks are shown that can merge with black penguins, making
discrimination challenging even for human vision.
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2.2. Method
2.2.1. Objects Detectors

As shown in Figure 3, modern object detectors generally consist of three parts: Back-
bone, Neck and Head. CNN is used to down-sample images and extract multi-scale features
by Backbone, such as ResNet-34 [19], DarkNet-53 [22] and Swin-Transformer [28]. In gen-
eral, Backbone will produce multi-scale feature maps of different levels Ci, usually i ∈ (1, 5)
represents the down-sampling times. Then FPN in Neck is responsible to fuse the features
Ci to produce semantic features Pi, where i ∈ (3, 5). Based on these prediction feature map,
position regression and classification are completed in Head to output a detection box of
each object of interest in the image.
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confidence of the detection box, specifically.

In the field of object detection in remote-sensing, Faster R-CNN and Yolo have become
popular choices due to their excellent performance. The former uses ResNet to extract
image features, which generates Ci by stacking Bottleneck N times and has a fixed induction
bias. The Bottleneck brings higher parameter utilization to the network through a concise
pixel-wise addition (Add) operation. In contrast, the latest Yolo detector, Yolov7 creates
a deeper network by controlling the shortest and longest gradient paths. It aggregates
information by concatenating image features (Concat) in the channel dimension to obtain
comprehensive features, enabling the network to learn and converge efficiently.

Although Yolov7 can satisfy the need for detecting tiny penguins in our dataset, it
is inadequate for denser detection in complex backgrounds. Given the characteristics of
the penguin dataset, it is highly desired to develop detection methods to discriminate tiny
objects from complex backgrounds. Lessons can be learned from the routine practices of
human beings. Human vision often focuses on the local area of interest rather than the
whole, which is called the attention mechanism [52]. Refs. [53–55] have shown that through
the attention mechanism, human vision will automatically focus on the objects without
background and even reinforce the expression of tiny objects. This is equally effective for
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deep learning models. Yolov5 integrated the attention mechanism [32–34], significantly
improving the accuracy of the model in detecting vehicles from complex backgrounds.
Ref. [56] has improved the feature fusion module of EfficientDet [57] by incorporating the
attention mechanism, developing a detection algorithm for underwater robotics, which
enables them to easily recognize small marine creatures such as sea urchins in complex
underwater environments.

Although the attention mechanism filters out complex backgrounds to a certain extent,
CNN often extracts high-frequency features (e.g., texture), while human vision focuses
more on low-frequency features (e.g., shape) to recognize the objects. Ref. [55] proved
that Transformer captures low-frequency information at the global level. Ref. [27] adopted
Transformer in Backbone for the first time, which was called Vision Transformer, getting
SOTA performance but required more computational overhead and trained parameters. To
overcome it, a stronger Backbone, Swin-Transformer was proposed in [28]. By calculating
Attention within image patches (called, Window-Attention), it reduced calculation greatly.
Even so, with the same calculation, Convolution-based nets can easily beat Transformer-
based nets in speed. On the other hand, Refs. [58–62] mix Convolution and Transformer from
the perspective of latency/accuracy trade-off. Moreover, high and low-frequency information
are integrated to enhance deep features. For that, the hybrid paradigm becomes mainstream.

In counting tasks, perfect accuracy is desirable but often comes at the cost of speed.
Given the millions of pixels in a single image of a large island, processing time can be
immense. That is why we strive to strike a balance between accuracy and speed. To meet
these requirements, we have developed a new network named YoloPd, which integrates
the advantages of several existing techniques. These include the succinctness of R-CNN,
the speed of Yolo, the flexibility of Attention and the high performing capabilities of ViT.

2.2.2. The Proposed Method

Based on the above analysis and lots of experiments, we blend Transformer and Conv
in Backbone. In Neck, we use Attention modules to fuse multiple frequency features
without increasing the number of parameters. We design a new down-sampling module
that can fuse high-frequency and low-frequency features to avoid losing features of small
objects. Figure 4 shows the overall structure of the YoloPd network.
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stride s. Ci stands for feature maps of different scales. SPPCSP is an Attention module proposed
in Yolov7. Modules Detect (P3-P5) is responsible for detecting small, medium and large penguins,
respectively. MAConv, TBELAN-i and AELAN are proposed modules discussed in following.
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To design an efficient Backbone, we refer to the structure of Faster R-CNN, Yolov7
and Swin-Transformer. It is widely recognized that the down-sampling module in the
Backbone and Neck results in information loss. While large objects may retain enough
information for the network to classify and locate them, smaller objects may lose significant
features, potentially leading to missed detections. As shown in Figure 5a, Average pooling
Conv (AConv) module in Yolov7 only splices high-frequency features, neglecting the
importance of low-frequency features. To address this issue, we develop a Max-Average
pooling Conv (MAConv) module to enhance the features in Figure 5b. Specifically, we
introduce a low-frequency feature extraction branch composed of average pooling and
remove unnecessary Conv layers. By superimposing three types of information, not only
could it avoid information damage, but also achieve more comprehensive representations.
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Through the analysis presented in Section 2.2.1, it is evident that Faster R-CNN
leverages the Add operation to substantially increase the amount of information in the
width and height dimensions of the image, while Yolov7 employs the Concat operation
to enhance the features in the channel dimension by efficient layer aggregation network
(ELANet). Thus, with the aim of harnessing the benefits of both algorithms to augment
the features and information, we propose a novel module named BELAN in Figure 6c,
which aggregates several Bottleneck modules after MAConv without bringing an extra
huge computation burden.
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To provide more low frequency features for FPN, according to [55], we place Trans-
former in the generation of C3 ∼ C5. Following the paradigm in Refs. [28,60], as shown
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in Figure 7, we design a lightweight Swin-Transformer module, named LSViT. Note that
average pooling in Efficient Multi-head Self-Attention (EMSHA) is used to reduce computa-
tional dimension of the embedded feature patches for Window-Attention. We replaced the
last two Bottlenecks in BELAN by LSViT to aggregate high and low frequency information,
called TBELAN-i, where i represents the down-sampling times of output features. The new
Backbone is called BELANet.
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To compensate for the hardware overhead led by Transformer, we improve a lightweight
Neck by hybridizing Conv and Attention modules. CBAM [63] is a simple and lightweight
attention module that can be integrated into the CNN network for end-to-end training. As
shown in Figure 8, CBAM executes the spatial and channel attention of features serially.
Given an intermediate feature map F ∈ RC×H×W as input, the former one infers a 2D
map; Ms ∈ R1×H×W represents the attention weight of each pixel. It can tell the network
where to pay attention to. While the channel attention module will produce a 1D map,
Mc ∈ RC×1×1 represents the attention weight of each channel which tells what to pay
attention to. The output (F′′) of CBAM can be calculated as following:

F′ = Channel Attention(F) = F⊗ (F⊗Mc)

F′′ = Spatial Attention(F′) = F′ ⊗ (F′ ⊗Ms)
(1)

Following Refs. [32–34], CBAM has been integrated into the network to facilitate the
recognition of penguins amidst complex backgrounds. Specifically, in BELAN, we have
replaced the two Conv layer before concatenation with CBAM, known as Attention-based
ELANet (AELAN).

In the Head module, we have kept the RepConv from Yolov7. As illustrated in Figure 9,
during training, RepConv updates the parameters of two convolution kernels. During
the inference, the weights of 1 × 1 Conv and Add branch are reparameterized into the
3 × 3 convolution which can significantly improve the inference speed while maintaining
performance. Specific details can be found in [26]. Additionally, to ensure dense detection,
each pixel in the last feature map will generate nine anchors of different sizes. Ultimately,
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our YoloPd model predicts all the detection boxes comprising six essential parameters [x, y,
w, h, class, confidence].
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During backpropagation, we retain the commonly used loss functions in the Yolo
series. The total loss Ltotal is calculated as Formula (2), consisting of three parts: localization
loss Lbox, confidence loss Lobj and classification loss Lcls.

Ltotal = λ1Lbox + λ2Lobj + λ3Lcls (2)

where λi represents the weights of each component. Let N, Np denotes the number of
the prediction boxes and TP, respectively. Then Lbox can be obtained from the complete
intersection over union (CIoU) [64] between the prediction boxes BboxPred

i and the labeled
boxes BboxGT

i as follows.

Lbox =
1

Np
∑

i
Lbox

i =
1

Np

Np

∑
i
(1− CIoU) (3)
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Let si represent the predicted confidence of the sample i. Then, binary cross-entropy
function is used to calculate Lobj of all the predicted boxes.

Lobj =
1
N ∑

i
Lobj

i = − 1
N

N

∑
i
(CIoU ∗ logsi + (1− CIoU)∗logsi) (4)

Different to Lbox, Lcls only calculate the loss for TPs as Formula (5), where pi represent
the network’s predicted probability of penguin class.

Lcls =
1

Np
∑

i
Lcls

i = − 1
Np

Np

∑
i

log pi (5)

2.3. Accuracy Assessment

For penguin counting, we adopt multiple indicators to evaluate the detector’s per-
formance comprehensively. For each image, the detection boxes whose intersection over
union (IoU) between ground truth surpass IoUthre and predicted confidence score greater
than IoUthre will be seeded as a true sample. According to the confusion Matrix defined in
Table 3, we can get the number of True Positive (TP, correctly predicted penguins), False
Positive (FP, predicted penguins that are not labeled, also called false detections) and False
Negative (FN, penguins that are not detected, also called missed detections).

Table 3. Confusion Matrix. Prediction and Label represent detected and labeled boxes, respectively.

Label
Positive Negative

Prediction
Positive TP FP
Negative FN TN

Then we can calculate Precision (P) probability and Recall (R) probability, from
Formula (6). P represents the rate of real penguin number to predictions while R rep-
resents the rate of real penguin number to ground truths. In the evaluation of precision and
recall, both types of errors (FPs and FNs) are equally weighted with TPs. The F1 score can
balance P and R synthetically. From Formula (7), we can see F1 gives an overall indication
of the compromise between FP and FN.

P =
TP

TP + FP
, R =

TP
TP + FN

(6)

In addition, object detection is the coupling of localization and classification, while F1
ignores the former. Considering it, the average precision (AP) can be another index that
indicates the area under the P-R curve. For one IoUthre, by adjusting the Con f thre, a series
of P and R values can be calculated. Following [65], mAP.5 is the AP value when setting
IoUthre = 0.5 and mAP takes the average of AP when IoUthre ranges in [0.5, 0.95].

F1 =
2× P× P

P + R
(7)

In order to match the counting task, counting accuracy is also used, which measures
the effectiveness of the count:

counting accuracy =
|Prednum − GTnum|

GTnum
(8)

where Prednum and GTnum denote the detection and label numbers, respectively.
Based on [34,39,40], in the process of validation, we choose IoUthre = 0.5 and

Con f thre = 0.5 to get P, R, F1, mAP.5 and mAP. For the whole images, P, R, F1 and
counting accuracy are used to measure the quality of results. Different from sub-images, we
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pursue the best counting accuracy of the whole images. For that, we select the best Con f thre
that maximizes F1 to calculate F1, mAP and counting accuracy.

Furthermore, we employ Params and frames per second (FPS) to assess the speed of
the network. The former expresses the number of parameters to train, reflecting the train
speed while the latter is an approximation of the inference speed to some extent.

3. Results

To balance the speed and accuracy, we follow the design paradigm of Yolov7 to
determine the size of our network. The number of BELAN and TBELAN-i in Backbone are
shown in Table 4.

Table 4. The number of BELAN and TBELAN-i modules.

BELAN TBELAN-3 TBELAN-4 TBELAN-5

Bottleneck LSViT Bottleneck LSViT Bottleneck LSViT Bottleneck LSViT

3 0 4 2 8 2 2 2

250 epochs were trained on a single V100 GPU with a batch-size of 16. An SGD
optimizer is used as well with the initial learning rate of 1× 10−2. The cosine decay strategy
is used to make the learning rate reach to 1× 10−4 with 0.0005 weight decay.

As a result, YoloPd achieves an average F1 of 88.0% in sub-images. Its mAP.5 reaches
89.4% and mAP reaches 40.9%. Specific numerical results are shown in Table 5 in Section 4.
In contrast to the F1 of detecting kobs being 64% [44], human vision detecting elephants
with 75% F1 [43] and 85% F1 in car counting [38], our results are remarkable, which initially
meets the demand for correctly categorizing penguins. Additionally, YoloPd’s nearly 90%
mAP.5 indicates its excellent positioning capabilities.

Table 5. Comparison of different start-of-the-art methods on penguin detection. The unit of P, R, F1,
mAP.5 and mAP are all %. Params’ unit is 106.

Method Backbone P R F1 mAP.5 mAP Params FPS

Faster
R-CNN

ResNet-34 87.7 76.6 81.8 78.4 32.4 38.4 20
Swin-Transformer-tiny 88.8 78.1 83.1 79.7 34.2 44.8 13

Yolov7
ELANet-l 89.1 82.5 85.7 87.3 39.0 37.2 66
ELANet-x 89.1 82.9 85.9 87.5 39.9 70.8 36

YoloPd BELANet 90.7 85.5 88.0 89.4 40.9 35.2 43

As shown in Figure 10, in white snow areas, small and densely distributed penguins
can be detected commendably with almost no errors due to obvious aberration. According
to statistics, the smallest penguin occupies three pixels. In the white rocks, though the
shadow of penguin gets darker which may confuse with neighboring black penguins,
YoloPd can still locate the two adjacent penguins. With the complexity of the terrain,
penguins become increasingly invisible to human vision. As demonstrated in Figure 10c,
penguins and their shadows can be highly similar to the background in shape and color
around black rocks, even leading to missed detections by human vision. However, YoloPd
can separate them that are hard to distinguish from black rocks. In particular, for the
top image, some little rocks which have the same white color can be easily mistaken
as penguins.
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image can reach to 93.5%. In scenario (b) with sparse penguin distribution, the 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is close to 99%. 

Figure 10. Detection results for the selected penguin datasets in different backgrounds: (a) snow field,
(b) white rock and (c) black rock. Each detected penguin is marked with a green box.

When analyzing the whole image prediction, it is important to consider both F1 and
counting accuracy comprehensively. To investigate the impact of Con f thre on them, we
select 20 thresholds within the range of [0.30, 0.50]. As shown in Figure 11, the maximum
counting accuracy of 95.8% is achieved when Con f thre = 0.33, whereas the maximum F1
of 94.0% is observed at Con f thre = 0.40. Although large counting accuracy is desirable, the
false detections may lead to the inclusion of non-penguin object. On the other hand, F1 can
better reflect the predicted number of real penguins. Therefore, we choose Con f thre that
corresponds to the highest F1 as the optimal choice. The other one is used as a measurement
of feasibility for algorithms. When Con f thre = 0.40, 18 test images achieve 94.6% average
counting accuracy.
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F1=93.5% 
Accuracy=93.8% 

F1=98.9% 
Accuracy=98.8% 

-FN(122) -FP(41) -GT(1286) -TP(1164) -FN(16) -FP(5) -GT(944) -TP(928) 

Figure 12. Example results of 9506 × 6336 image detection by YoloPd. The resolution of the sub-
images shown in the figure is 2000 × 2000. (a) densely distributed and (b) sparse distributed areas.
TPs, FPs, FNs and GTs (ground-truth) are marked as green, red, yellow and blue boxes, respectively.
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4. Discussion
4.1. Method Comparison

To emphasize the advantage of our network in detecting penguins, we compare it
with two SOTA methods Faster R-CNN and Yolov7. We select lightweight Backbones,
ResNet-34 and ELANet-l, respectively, with similar Params. In order to show the advantage
of Transformer, we also choose the smallest Backbone Swin-Transformer-tiny in Faster
R-CNN. Besides, we select a stronger and larger Backbone ELANet-x as a contrast.

Firstly, as shown in Table 5 for the most classical detector Faster R-CNN, the Backbone
Swin-Transformer shows better performance in accuracy than ResNet-34. Specifically, given
a similar number of parameters, the former one improves F1, mAP.5, mAP by 1.3%, 1.3%
and 1.8% respectively. However, the huge hardware overhead of Transformer leads to the
reduction of FPS. When the more efficient Backbone ELANet-l is adopted in Yolov7, the
F1 score is improved to 85.7% and achieves real-time detection performance with 66 FPS.
By combining the advantages of both, our YoloPd outperforms Faster R-CNN (ResNet-34)
by 6.2% F1, 8.5% mAP. Meanwhile, in contrast to the latest detector Yolov7, our hybrid
structures provide performance gains with negligible inference speed degradation. YoloPd
beats it by 2.3% F1, 2.1% mAP.5 and 1.9% mAP. Even compared to Yolov7 with the larger
Backbone ELANet-x, the F1 is improved from 85.9% to 88.0% with 50.3% fewer parameters,
achieving a good balance between accuracy and speed. We also show the visualized results
of different methods in Figure 13.

Regarding the snow area (a), based on Faster R-CNN, the Backbone Swin-Transformer
avoids a lot of false detections (penguins shadows) located by ResNet-34. From Refs. [28,50],
this is likely due to the Transformer-based network’s ability to extract global features,
enabling it to learn the difference between penguins and shadows. Additionally, Yolov7
with a stronger backbone is capable of extracting deeper features of objects, resulting in
better classification accuracy. When combing both advantages, YoloPd can even detect
penguins at the edges of the image correctly. Meanwhile, from the scene (b) we can see that
Faster R-CNN demonstrates poor ability to detect densely distributed penguins. While
equipped with the Yolo detector Head which is friendly for densely detections, YoloPd is
able to reduce the number of missed penguins from 33 to five. In the complex scene (c),
there exists small rocks that exhibit similar features to penguins. This can cause confusion
for object detection models such as Faster R-CNN (ResNet-34), Faster R-CNN (Swin-
Transformer) and Yolov7 (ELANet-l), which have mistaken five, two, and one rocks as
penguins, respectively. In contrast, our network has managed to learn the subtle differences
between the two, accurately detecting all penguins. Consequently, YoloPd achieves 100%
F1 and counting accuracy, proving to be the most effective model in this scenario.

In addition, according to our knowledge, there have been no papers published so far
on using object detection algorithms to count penguins on the Antarctic islands because
acquiring high resolution remote-sensing images is difficult due to their remote location.
Compared to other indirect methods used for counting individuals such as Ref. [11] which
uses a semantic segmentation technique that achieves a counting accuracy of 91%, our
method has competitive indices. Besides, contrast to detect other animals, such as rab-
bits [46] and domestic cattle [47] with a counting accuracy of 95%, bird detection [48] with
90.63% mAP.5 and marine lives detection with an F1 of 79.7%, our results are remarkable.
The new method initially meets the demand for correctly categorizing penguins, making
this an exciting prospect for further research.
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4.2. Ablation Experiments

To verify the effect of each of the improvements on the model performance, ablation
experiments are conducted. For the sake of comparison, we treat BELAN and TBELAN as a
unified entity BELAN during the experiment. We recorded F1, mAP.5, mAP, Params and FPS
with different combination of MAConv, BELAN and AELAN based on Yolov7 (ELANet-l).

According to Table 6, we observe that the performance metrics vary when different
modules are combined. However, not all combinations of modules can result in perfor-
mance gains. For instance, we notice that adding the MAConv module leads to a 0.1%
decrease in F1 score compared to using the AELAN module alone. This can be attributed
to the fact that each improvement technique is not entirely independent, and sometimes
combining the modules can be ineffective despite effective individual modules. Therefore,
we have analyzed the results of the ablation experiments in the order of optimal network
performance increment: Baseline + MAConv + BELAN + AELAN.

Table 6. Network model performance for different combination modules. √. indicates that the
current module is used.

MAConv BELAN AELAN F1 mAP.5 mAP Params FPS

85.7 87.3 39.0 37.2 66√ 86.4 88.3 40.2 38.0 61
√ 87.0 89.0 40.5 35.0 48

√ 86.8 88.9 40.6 37.2 57
√ √ 87.3 89.4 40.8 35.2 47
√ √ 86.7 88.8 40.1 38.1 53

√ √ 87.7 89.9 41.4 35.0 41
√ √ √ 88.0 89.4 40.9 35.2 43

Baseline + MAConv: Firstly, we incorporate the multi-frequency attention fusion
module MAConv in the down-sampling module of the entire network. By removing redun-
dant convolutional layers, fusing multi-frequency information and avoiding information
loss caused by small targets during down-sampling, we design a structure that slightly
improves the network’s performance indicators while maintaining its speed.

Baseline + MAConv + BELAN: Next, in the Backbone, we utilize the efficient Trans-
former and CNN hybrid module BELAN to extract more low-frequency features, signifi-
cantly improving the network’s localization and classification capabilities. Compared to
Yolov7, the incorporation of the two efficient modules improves F1, mAP.5, and mAP by
1.6%, 2.1% and 2.8%, respectively. However, the high computational cost of the Transformer
reduces the inference speed of the network, resulting in a lowered FPS of 19.

Baseline + MAConv + BELAN + AELAN: Finally, we add the attention module
AELAN in the Neck, which fuses multiscale features to produce an attention prediction
feature map, further enhancing the network’s performance. Through these optimizations,
we achieve an improved F1 of 88%, mAP.5 of 89.4 and mAP of 40.9 while striking a
balance between speed and performance. Despite the loss of inference speed, the network
maintained real-time inference performance at 43 FPS.

In conclusion, our proposed network with efficient modules showed improved perfor-
mance in object detection while maintaining real-time inference speed. The incorporation
of the MAConv, BELAN and AELAN modules contributed to the enhancement of the net-
work’s performance in various aspects. Future work can focus on improving the network’s
efficiency and performance further.
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4.3. Exclusive Performance Comparison Experiments

In order to better demonstrate the advantages of YoloPd in recognizing smaller pen-
guin compared to other SOTA method, we define TPR[p,q] to record the rate of detected
penguins whose pixel size range in [p, q] to labeled penguins, it is calculated as following:

TPR[p,q] =
Pred[p,q]

num

GT[p,q]
num

(9)

where Pred[p,q]
num and GT[p,q]

num represent the number of predicted penguins that are true positive
samples and labelled penguins, respectively. The pixel size is range in [p, q].

As shown in Table 7, we conducted an experiment to compare the accuracy of Yolov7
(ELANet-l) and YoloPd in identifying penguins of different sizes. The former cannot
recognize tiny penguins with pixels less than five, while YoloPd can accurately locate 4.8%
of penguins that have been labelled. As pixels increase to 6–10, YoloPd outperforms Yolov7
in TPR[p,q] by 2% even though small penguins still provide limited information. When
the pixel of the penguin is greater than 10, YoloPd can locate 98.6% of labelled penguins
resulting in better recognition performance in detecting small objects. While YoloPd shows
lower accuracy than Yolov7 in detecting larger penguins, it displays better average accuracy,
which suggests that improving the detection performance of large objects could be a viable
direction for subsequent optimization.

Table 7. Comparison results of TPR[p,q]. The unit is %.

Method 1–5 Pixels 6–10 Pixels 11–20 Pixels 21–50 Pixels

Yolov7 0 33.3 93.6 63.7
YoloPd 4.8 35.3 98.6 62.0

In addition, to evaluate our net’s ability of filtering out interference from complex
backgrounds, we visualize the heat maps of the output feature (P3) from YoloPd and
Yolov7 in Figure 14. From the three scenes with different backgrounds, it is apparent that
YoloPd can rapidly capture penguin features and separate them from complex backgrounds.
Specifically, in the white snow area (a), Yolov7 assigns more weight to cracks with color
features similar to the penguins, while our network is able to accurately locate each pen-
guin, resulting in higher recognition accuracy. In the rock areas (b) and (c), as previously
mentioned, many black stones and their shadows have features extremely similar to the
penguins, which confuses Yolov7’s ability to recognize them and leading to many false
detections. However, YoloPd learns the global features of the interaction between penguin
and their surroundings, thus greatly reducing the occurrence of missed and false detections.
Furthermore, we also observed that when the background texture becomes more complex,
such as having many scratched stones or cracked ice surfaces, YoloPd assigns relatively
more attention to these backgrounds due to its ability of extracting low-frequency texture
information. Fortunately, the attention weight of these backgrounds was much lower
than that of the penguins we are interested in, so they could not significantly affect the
detection performance.
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4.4. Stability and Robustness Verification Experiments

As widely acknowledge, the quality of remote-sensing data is crucial to the recognition
results. To ensure high-quality data, we employed the most advanced camera available.
However, in the actual shooting process, external conditions such as camera, lighting and
weather may significantly affect the quality of the captured images. To validate the stability
of our proposed YoloPd, we follow the method in Ref. [38] and convolve the original
images with Gaussian kernels of different sizes to simulate real-world situations to reduce
the image quality. Specifically, we construct the blurred datasets by Gaussian kernels of
sizes 3 × 3, 5 × 5 and 7 × 7. For clarity, we denote the original dataset as dataset_ori and
the blurred dataset as dataset_blurryj, where j ∈ (3, 5, 7), respectively, corresponding to
different levels of blurriness.

We train them on Yolov7l and YoloPd as presented in Table 8. Our analysis reveals that
as image quality deteriorates, Yolov7’s performance remains comparatively steady without
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any notable metric drop, whereas accuracy falls noticeable in YoloPd from validation set.
Conversely, despite such shortcomings, YoloPd outperform yolov7 in terms of performance
when tested on similar datasets. Results given in Figure 15, visualizing the effects of
Gaussian Blur value, show that YoloPd can efficiently handle guillemot count requirements,
as advancements in technology have significantly reduced the occurrence of images with
low clarity levels. Moreover, our methodology leaves ample room for future improvements.

Table 8. Comparison of datasets with different levels of blurriness on Yolov7 and YoloPd.

Method Dataset P R F1 mAP.5 mAP

Yolov7

dataset_ori 89.1 82.5 85.7 87.3 39.0
dataset_blurry3 88.5 82.9 85.6 87.7 38.8
dataset_blurry5 89.1 82.8 85.8 87.9 39.3
dataset_blurry7 88.8 81.7 85.1 86.6 38.3

YoloPd

dataset_ori 90.7 85.5 88.0 89.4 40.9
dataset_blurry3 90.0 84.9 87.4 89.4 39.9
dataset_blurry5 90.2 84.0 87.0 89.0 40.5
dataset_blurry7 89.1 83.4 86.2 88.4 39.9
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To evaluate the robustness of YoloPd and its ability to predict small targets from
complex backgrounds, further experiments are conducted on other datasets. Since similar
animal detection data are not publicly available and to ensure that the targets have similar
sizes to penguins, we select the smallest category “small vehicle” in the DOTA dataset. The
data processing followed the same procedure as the penguin detection dataset, where the
images are cropped to a size of 640 × 640. A total of 9206 training set images and 2779
validation set images are obtained. Table 9 presents the experimental results of Yolov7
and YoloPd.

Table 9. Comparison results of small vehicle detection in DOTA on Yolov7 and YoloPd.

Method P R F1 mAP.5 mAP

Yolov7 83.8 68.7 75.5 76.3 41.3
YoloPd 83.6 70.4 76.4 76.5 41.2

From results available it can be seen that YoloPd surpasses yolov7 by around 0.9% on
F1 metric while demonstrating comparable mAP values. Although YoloPd doesn’t perform
well for detecting cars as guillemots yet it possesses advantages in statistical smaller object
counts. With respect to larger targets like discussed before. it may perform relatively lesser
than Yolov7, but still satisfies our needs for counting penguins.

Meanwhile, it can be observed that our penguin detection dataset belongs to the cate-
gory of small sample datasets, compared to the DOTA dataset, which has a training set of
9000 images. Generally speaking, networks trained on large datasets demonstrate enhanced
robustness and accuracy on the same dataset, avoiding the problems of underfitting and
overfitting. Fortunately, through careful selection, our validation set and training set have
no overlap, achieving a better ratio of training set to validation set. This highlights the
network’s adaptability to new scenarios, even with a smaller dataset. Therefore, overfitting
is not a concern due to the smaller dataset size. Consequently, exploring methods to expand
the dataset is also a direction for our future research.

5. Conclusions

In summary, our study showcases the effectiveness of automatic object detection in
counting penguins from aerial remote-sensing images. Unlike traditional datasets, our
dataset presents its own set of challenges, such as tiny penguins with intricate backgrounds.
However, we are able to address these obstacles by introducing our novel object detection
network, YoloPd, which is specifically designed to balance accuracy and speed. Our results
show an impressive average counting accuracy of 94.6% across 18 images using YoloPd.
This work highlights the potential of automatic object detection as a good automatic
detection and identification tool for the Antarctic penguins. It can be used in practice to
save human time, create new training data and establish initial, rapid population counts,
with human verification of detected individuals as post-processing. Meanwhile, we also
aim to apply our research to the study of species closely related to the Antarctic climate,
such as seals, migratory birds and other organisms, with the commitment to accurately
detect climate change and protect Antarctic wildlife.

However, there is still much potentials for improvement. Our dataset, in comparison
to the commonly used remote-sensing dataset DOTA, is not sufficiently large to ensure
solid interpretability. Therefore, further collection and annotation of penguin images is
required, likely on a multi-year basis, to expand the dataset and improve accuracy as well
as robustness. Additionally, improving the accuracy of large penguin detection is also a
key optimization direction for us, so we can study the evolution of penguin distribution
over time. Furthermore, investigation reveals that the number of active penguin nests has a
significant impact on the population of penguins. Due to different data collection methods,
we are unable to locate the position of nests from the images. In our future work, we aim
to obtain high-quality, utilizing a combination of activate nest counting and individual
counting methods to accurately detect population changes.
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