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Abstract: Synthetic aperture radar (SAR) can detect objects in various climate and weather conditions.
Therefore, SAR images are widely used for maritime object detection in applications such as maritime
transportation safety and fishery law enforcement. However, nearshore ship targets in SAR images are
often affected by background clutter, resulting in a low detection rate, high false alarm rate, and high
missed detection rate, especially for small-scale ship targets. To address this problem, in this paper,
we propose a novel deep learning network with deformable convolution and attention mechanisms
to improve the Feature Pyramid Network (FPN) model for nearshore ship target detection in SAR
images with complex backgrounds. The proposed model uses a deformable convolutional neural
network in the feature extraction network to adapt the convolution position to the target sampling
point, enhancing the feature extraction ability of the target, and improving the detection rate of
the ship target against the complex background. Moreover, this model uses a channel attention
mechanism to capture the feature dependencies between different channel graphs in the feature
extraction network and reduce the false detection rate. The designed experiments on a public SAR
image ship dataset show that our model achieves 87.9% detection accuracy for complex scenes and
95.1% detection accuracy for small-scale ship targets. A quantitative comparison of the proposed
model with several classical and recently developed deep learning models on the same SAR images
dataset demonstrated the superior performance of the proposed method over other models.

Keywords: SAR image; ship target detection; deformable convolutional networks; channel attention

1. Introduction

The continuous monitoring of ship targets in harbors and marine areas is an important
practical task that is widely used in various maritime fields such as combating illegal
fishing, oil spill monitoring, and traffic management [1,2]. Synthetic aperture radar (SAR)
has become an important method for ship detection at sea because it is unaffected by
weather, has a large imaging area, and has a constant resolution far from the observed
object [3–5]. However, accurate ship detection remains challenging. Currently, several
detection methods can easily miss ships that are in close proximity to each other.

Numerous manually extracted features have been used for ship detection [6,7]. Re-
cently, deep learning models have been widely used for ship detection in SAR images [8–10].
Ship detection is a combination of target localization and classification. Target classifica-
tion determines whether the input image contains the desired object, and target location
identifies the location of the target [11–13]. For example, Wang et al. used SDD models to
detect ships in complex backgrounds in SAR images and used alternate learning methods
to improve the accuracy [14]. Kang used a fast region with a convolutional neural net-
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work (CNN) to obtain initial ship detection results and adjusted the final results using an
adaptive threshold alarm rate [15].

In the SAR image ship target-detection task, target detection is better in a simple sea
clutter background, because the grayscale characteristics of the target are significantly
higher than those of the sea clutter [16–18]. However, in actual SAR image imaging pro-
cesses, backgrounds such as ports, islands, and buildings appear in SAR images, which can
cause confusion because of their high grayscale characteristics, resulting in low detection
and high false alarm rates for deep learning target-detection algorithms [19]. The complex
backgrounds mentioned in this study refer to SAR images with backgrounds, such as ports
and islands, for ship targets in complex scenes. For the target-detection problem of complex
scene interference, some scholars solve this problem from the perspective of improving the
backbone network [20,21]. Wu et al. proposed a SAR image ship small target-detection
algorithm to improve the network structure of the feature pyramid by redesigning the
underlying residual units to solve the contradiction between the perceptual field and lo-
calization and introduced a balance factor to optimize the small target weights in the loss
function [22]. Zhang et al. proposed a feature-fusion-based ship target-detection algorithm
based on a multiscale single-shot detection framework with enhanced network feature
extraction by adding deconvolution and pooling feature fusion modules [23]. He et al.
proposed the Deformable Feature Fusion You Only Look Once (DFF-Yolov5) algorithm
based on YOLOv5, which improved the YoloV5 model in two aspects: feature refinement
and multifeature fusion in the feature extraction network [24]. Other scholars consider
introducing attention mechanisms to solve the above problems [25,26]. Liu et al. improved
the target-detection method by integrating the detection frame length and width as pa-
rameters, performing curve optimization of the loss function, and combining it with the
coordinate attention mechanism to detect ship targets [27]. Li et al. used multiple receptive
field integration and channel domain attention to enhance the resistance of features to
scale and environmental changes [28]. SAR ship detection can also occur in scenes with
numerous ships, high density, and a small target size (less than 15 pixels× 15 pixels), which
further increases the difficulty of target extraction and recognition. When using a deep
learning model of ship targets for detection, the CNN can only extract relatively regular
features in the target area. For SAR ship targets with complex backgrounds, standard
CNNs are susceptible to interference from background coastal information when extract-
ing features, which affects the expressiveness of the feature extraction network [14,29].
However, because SAR image ship targets have different scale information, the extraction
of the semantic information of small targets is comparatively lower with an increase in
the number of feature-mapping layers when feature extraction is performed by convo-
lution. Therefore, the above method still has limitations for nearshore ship targets in
complex backgrounds.

To counter the challenges of low detection rates of ship targets and small target detec-
tion in SAR images in complex scenes, classical Feature Pyramid Networks (FPNs) have
been introduced by multiple authors to implement multiscale SAR ship detection [30]. For
example, Lin et al. added a compressed incentive-based module to the top of an FPN to
focus on more important channel features, thus enhancing the description of the top-level
semantic information [31]. Li et al. embedded a convolutional block attention module
into the feature fusion branch of an FPN, which enables a joint feature channel and spatial
attention to facilitate the representation of multilevel ship features [32]. Zhao et al. pro-
posed a field-of-view attentional FPN to enhance background discrimination by extending
the field-of-view range of the contextual background [33]. Liu et al. designed a scale-
migratable FPN to further enhance the fusion benefits of multiscale features and ultimately
improve detection accuracy [34]. Recently, Li et al. proposed a feature self-attention-guided
FPN to refine more representative multiscale features, thereby facilitating multiscale in-
formation flow [35]. However, the multiscale SAR ship detection performance of these
existing detection models remains limited. On the one hand, most of them use classical
regular convolution kernels to extract ship features, which cannot perform multiscale
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modeling of ship deformations owing to different incidence angles, resolutions, and other
factors, resulting in limited multiscale feature expression capability. On the other hand,
the multiscale feature fusion approach they adopt cannot provide global content, and the
multiscale feature fusion methods they use cannot effectively perceive the global content,
which leads to limited fusion benefits and is not conducive to a more comprehensive and
adequate multiscale feature representation. This study made structural improvements to
the FPN. First, a deformable CNN was used to replace the original CNN to improve the
expression ability of the network features. Next, a target-detection network was used to
extract features, and a channel attention mechanism was introduced to extract the weights
of the feature channels to further enhance target feature extraction in complex backgrounds.
Finally, through multiple sets of comparison experiments and an analysis of the detection
results of high-density small target ship detection and SAR image ship target detection in
complex environments, the practicality and effectiveness of the proposed algorithm for the
detection of ship targets in complex backgrounds of SAR images were verified.

2. Materials and Methods
2.1. Revisiting FPN

Because of the difference in imaging mechanisms between SAR and optical images,
distinguishing ship targets from maritime false targets and background noise in SAR
images is difficult and often confusing [36]. The use of an FPN can effectively eliminate the
background environment and scattering noise, thereby improving the recognition accuracy
of ship targets in SAR images. First, feature mapping was obtained by convolution using
the backbone network, where the convolution layers formed feature-mapping layers from
bottom to top in the following order: {C1, C2, C3, C4, C5}, and then by undergoing
upsampling through the top-down pathway to obtain feature maps from higher pyramid
layers. {C1, C2, C3, C4, C5} are laterally connected with the upsampling results through
a 1 × 1 convolution kernel (256 channels) to form new feature maps {M2, M3, M4, M5}.

M5 = C5.Conv (256, (1, 1)),

M4 = UpSampling (M5) + C4.Conv (256, (1, 1)),

M3 = UpSampling (M4) + C3.Conv (256, (1, 1)),

M2 = UpSampling (M3) + C2.Conv (256, (1, 1)).

Finally, to remove the confusion effect, feature maps from m2 to m5 were obtained
using a 3 × 3 convolution, and a sequence of FPN feature maps {P2, P3, P4, P5} was
obtained. The FPN structure is illustrated in Figure 1 [37].
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2.2. Improved Structure of FPN with Deformable CNNs

The backbone network of the original FPN target-detection algorithm used a CNN
for feature extraction. Standard convolution is not sufficiently flexible for the shape-
receptive field of the target, and the efficiency of convolution naturally decreases, whereas
deformable convolution uses irregular shapes, which addresses this problem. Compared
with the standard convolution kernel, the pixels used for convolution by the deformable
convolution kernel are not shifted by a fixed step size in the x- and y-directions relative to
the central pixel; however, a new convolution kernel is used to record x and the offset in
the y-direction. Figure 2 shows the learning process for the deformable convolution. After
the traditional convolution layer, a biased convolution layer was added. The convolution
kernel of this layer was identical to that of an ordinary convolution kernel. The output
deviation was the same as that of the input feature map. The generated channel dimension
is 2N, where N is the number of channels of the input feature map, which implies that the
x-direction was recorded twice separately, as well as the offset features in the y-direction.
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To improve the FPN target-detection model, {C1, C2, C3, C4, C5} feature maps were
first generated based on the input images using conventional convolution kernels. To avoid
redundant computations, deformable convolution kernels were used after the convolution
layers conv3, conv4, and conv5 of the FPN; that is, the {C3, C4, C5} feature maps were
used as the input, and another convolution layer was added to each feature layer to
learn the deformation offsets in the x- and y-directions of the deformable convolution.
During training, the convolutional kernels for generating output features and offsets
were simultaneously learned using an interpolation algorithm and backpropagation [38].
Specifically, for the initial position p0 of the input feature map, the output was obtained as
y after an ordinary convolution operation.

y(p0) = ∑
pn∈<

w(pn)·x(p0 + pn) (1)
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where w is the network weight parameter, < is the specified convolution region, and pn
traverses this convolution region by adding a learning position offset ∆pn to the ordinary
convolution y. The deformed convolution is formulated as follows:

y(p0) = ∑
pn∈<

w(pn)·x(p0 + pn + ∆pn) (2)

A deformable convolutional neural network can extract the features of an input image
more effectively by offsetting the convolutional kernel and adjusting its shape according to
the actual situation. As shown in Figure 3, the use of deformable CNNs can improve the
feature representation capability of SAR image target-detection networks.
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Figure 3. Compared with the CNN (a), the deformable CNN (b) extracts the features of the input
image by adjusting its shape according to the actual situation by shifting the convolutional kernel.

2.3. Channel Attention Mechanism Introduced

In the complex backgrounds of SAR images, distinguishing nearshore ship targets is
difficult because of increased interference. To improve the expression ability of features in
images, in the target-detection model FPN, for feature-mapping layers of different scales,
the channel attention mechanism is used to capture different channel maps, compute the
feature dependencies between them, and calculate the weighted values of all the channel
maps. The feature weight vector was learned to explicitly model the correlation between
the feature channels. To compute the channel attention efficiently, we squeeze the spatial
dimension of the input feature map. For aggregating spatial information, average pooling
and max pooling have been commonly adopted to compute spatial statistics. as shown
in Figure 4. The dot product of the original feature layer (F) of any H ×W × C and the
feature weight vector w were determined to obtain the feature layers with different levels
of importance for different channels. The layers with channel weights were then merged
at each layer in the FPN manner; that is, a new feature map layer is obtained, as shown
in Figure 5.
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each convolution layer, which obtained different levels of importance for different channels.

First, using the feature layer (F) of any H ×W × C as the input, the global average
pooling AvgPool and the maximum pooling MaxPool of the space were conducted, where
the pool size was H×W, and the channel description row vectors Favg and Fmax of the two
1 × 1 × C were obtained. Two fully connected layers were shared, and the ReLU activation
function was used to fit the complex correlations between the channels. Then, we added
the description row vectors of the two channels and obtained the feature weight vector w
of 1 × 1 × C using the sigmoid activation function. The original feature layer (H ×W × C)
and feature weight vector w were multiplied to obtain feature layers with different channel
importance values, as shown in Figures 4 and 5, respectively. The region of interest was
determined using a sliding window operation on the reconstructed feature map.

w = sigmoid(TFC
(
Favg)+TFC(Fmax )),

Favg = 1
H×W

H
∑

i=1

W
∑

j=1
AvgPool(F),

Fmax = 1
H×W

H
∑

i=1

W
∑

j=1
MaxPool(F).

(3)

2.4. Loss Function

The overall loss of the model includes classification loss Lclass and bounding box
loss Lbox, the classification loss adopts the cross-entropy loss function, and the bounding
box loss includes the location loss L1 the of ground truth bi and predicted box b̂σ(i) and
Intersection over Union (IoU) loss LGIoU .

Lclass = −
1
N

N

∑
i=1

(pi log p̂σ̂i + (1− pi) log(1− p̂σ̂i)), (4)

Lbox

(
yi, ŷσ(i)

)
=

N

∑
1

[
λ1‖bi − b̂σ(i)‖+ λGIoU LGIoU

(
bi, b̂σ(i)

)]
, (5)

where N is the number of prediction frames, pi is the true category probability, and p̂σ̂i repre-
sents the probability of predicting the σ̂i th ship target. λ1 and λGIoU are the corresponding
loss function penalty factors.

IoU reflects the degree of coincidence between the prediction box and the ground truth,
and the larger the coincidence, the greater the value; therefore, it works as an optimization
function. GIoU introduces the minimum enclosure box and can avoid the problem that,
when the prediction box and ground truth do not overlap, the gradient is 0, and the model
cannot be optimized. Given the coordinates of the ground truth are gt, and the calculated
predicted box coordinates are pb, IoU can be obtained through calculations.
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pb = (xp
min, xp

max, yp
min, yp

max),
gt = (xg

min, xg
max, yg

min, yg
max),

(6)

Ap = (xp
max − xp

min)× (yp
max − yp

min),
Ag = (xg

max − xg
min)× (yg

max − yg
min),

(7)

Ipg =

{ (
xI

2 − xI
1
)
×
(
yI

2 − yI
1
)
, if xI

2 > xI
1, yI

2 > yI
1

0, otherwise
,

Upg = Ap + Ag − Ipg,
(8)

xc
min = min

(
xp

min, xg
min

)
, xc

max = max
(

xp
max, xg

max

)
,

yc
min = min

(
yp

min, yg
min

)
, yc

max = max
(

yp
max, yg

max

)
,

(9)

Ac = (xc
max − xc

min)× (yc
max − yc

min), (10)

IoU =
Ipg

Upg
, GIoU = IoU −

∣∣Ac −Upg
∣∣

|Ac|
, (11)

LGIoU = 1− GIoU, (12)

where xI
1 = max

(
xp

min′x
g
min

)
, xI

2 = min(xp
min, xg

min), yI
1 = max

(
yp

min, yg
min

)
,

yI
2 = min

(
yp

min, yg
min

)
, Ipg is the intersection of the predicted box and ground truth, and Upg

is the union of the predicted box and ground truth.

3. Results and Discussion
3.1. Implement Details
3.1.1. Dataset

The SAR marine dataset is currently the largest SAR dataset available for multiscale
ship detection and was constructed by Wang et al. [39] and labeled by SAR experts. It entails
102 Chinese Gaofen-3 images and 108 Sentinel-1 images. The dataset comprises 43,819 ship
chips with a resolution of 256 pixels in both range and azimuth. For Gaofen-3, the image
modes included Ultrafine Strip-Map (UFS), Fine Strip-Map 1 (FSI), Full Polarization 1
(QPSI), Full Polarization 2 (QPSII), and Fine Strip-Map 2 (FSII). Furthermore, the resolution
of the SAR images in the dataset ranged from 3 m to 10 m. For Sentinel-1, the imaging
modes were S3 Strip-Map (SM), S6 SM, and IW-mode. The details of these images, including
their resolutions, incidence angles, and polarizations, are summarized in Table 1. Ship
objects have distinct scales and backgrounds. Furthermore, some ships were present in
complex scenes, which were divided into three categories: offshore, island, and harbor, as
shown in Figure 6. SAR ship detection can also occur in scenes with numerous ships, high
density, and a small target size (less than 15 pixels × 15 pixels; Figure 6). An overview of
the dataset is presented in Table 2. The training, verification, and testing sets constitute
70%, 20%, and 10% of the dataset, respectively.

Table 1. Detailed dataset information for original SAR imagery.

Sensor Polarization Imaging Mode Resolution
Rg. × Az. (m)

GF-3

Single UFS 3 × 3
Dual FSI 5 × 5
Full QPSI 8 × 8
Dual FSII 10 × 10
Full QPSII 25 × 25

Sentinel-1
SLC Dual SM 1.7 × 4.3~

3.6 × 4.9
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Table 2. Overview of the dataset.

DataType Image Complex Scenes High-Density Small
Target Scenes

Training 21,420 12,840 8580
Verification 6120 3660 2460

Testing 3060 1836 1224

3.1.2. Evaluation Metrics

For detection evaluation, the evaluation indicators corresponding to each algorithm
are calculated and categorized into the precision, recall rate, and F1 Score defined as follows:

Precision = NTD/N,

Recall = NTD/NGT ,

F1− score = 2 × Precision × Recall
Precision + Recall ,

(13)

where NTD is the number of ship targets detected correctly (true detection, TD), NGT is the
actual number of ship targets (ground truth, GT), and N is the total number of ship targets
detected. The average precision (AP) with the adaptive IoU threshold was used as a metric
based on the precision-recall (PR) curves, and AP is defined as

AP =
∫ 1

0
P(R)dR, (14)

Different IoU thresholds can be used to calculate different numbers of interest and
detect different NTD. Each IoU threshold corresponds to an AP value, and mAP denotes
its mean, which assesses the detection effect of the model, where n denotes the number of
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scene categories. Overall, the mAP and precision-recall curves were employed to evaluate
the proposed method.

mAP =

n
∑

i=1
APi

n
. (15)

3.1.3. Implementation Details

The experiment platform was Ubuntu16.0, the GPU was NVIDIA Tesla V100, and the
development platform was Paddle X. During the experiment, the empirical learning rate
of the semantic model was 0.0001, the batch size was 24, and the dataset was randomly
arranged in each iteration.

3.2. Experimental Process

Experiments verified the effects of the improvements and optimizations on vari-
ous parts of the FPN structure, as shown in Tables 3 and 4. Since the channel attention
mechanism enhances the model feature traction capability, the improved model with this
mechanism introduced alone improves the mAP by 2.1% in complex scenes and 6.1% in
high-density small target scenes over the original model. Similarly, after introducing the de-
formable convolutional network alone, the mAP improves by 7.7% in complex scenes and
9.5% in high-density small target scenes compared to the original model. This is because
the complex background information blurs the ship target location information, and also
the localization information of small targets is not obvious after multi-layer convolution, so
it is important to enhance the location and feature information using variable convolution.
In the final step, the two improvements were combined, and the regression loss function
was replaced with a new GIoU loss function. As a result, the mAP increases to 87.9% in
complex scenarios and 95.1% in high-density small target scenarios. The effectiveness of
the proposed method even in complex scenarios is demonstrated.

Table 3. Comparison of detection results in complex scenes.

FPN
Channel

Attention
Deformable

CNN
Improved

Loss Function

SAR Ships in Complex Scenes

Precision (%) Recall (%) F1 Score mAP (%)
√

83.4 71.3 0768. 79.4√ √
85.5 73.2 0.789 81.5√ √
89.1 78.1 0.833 87.1√ √ √
91.2 78.1 0.841 87.9√ √ √ √
91.7 78.1 0.844 87.9

The check mark “
√

” indicates that the technique was used in training.

Table 4. Comparison of detection results in high-density small target scenes.

FPN
Channel

Attention
Deformable

CNN
Improved

Loss Function

High-Density Small Target Scenes

Precision (%) Recall (%) F1 Score mAP (%)
√

87.7 75.3 0.810 83.8√ √
89.9 75.9 0.823 89.9√ √
95.3 85.4 0.900 93.3√ √ √
96.2 92.8 0.946 95.1√ √ √ √
96.5 93.0 0.947 95.1

The check mark “
√

” indicates that the technique was used in training.

The proposed model is compared with FPNs incorporating different mechanisms,
following their training protocols, using the reported default parameters and iterations on
each benchmark. Figure 7 shows the precision-recall curves of different models on the SAR
dataset in different scenarios.
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The results in Figures 8 and 9 show that the proposed model can detect multiscale
ship objects in various scenes. As shown in Figure 8, the proposed model can detect the
ship when it is located in a complex scene. Moreover, as shown in Figure 9, the model can
produce accurate detection results even when multiple dense ship targets are present.
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3.3. Experiments on HRSID

Other validation experiments were performed on the public dataset HRSID. The origi-
nal SAR image used to construct HRSID [40] includes 99 Sentinel-1B images,
36 TerraSAR-X images, and 1 TanDEM-X image. It is designed for ship detection based on
CNN. It is also divided 70:30, respectively, into a training set and a testing set. According
to statistics, the total number of ships marked in HRSID is 16,951. The number of small
ships accounted for 54.8% of all ships.

FPNs were used to train these models to obtain baseline results. Then, channel
attention and deformable CNNs were added to the models, and their original losses were
replaced with GIoU in the final bounding box refinement stage. Similar to the above
experiments, we gradually improved the models. The final results using the dataset HRSID
are presented in Table 5.

Table 5. Comparison among detection results in HRSID.

FPN Channel
Attention

Deformable
CNN

Improved
Loss Function Precision (%) Recall (%) F1 score mAP (%)

√
88.2 92.1 0.901 88.2√ √
88.7 92.6 0.906 88.7√ √
89.2 93.0 0.911 89.3√ √ √
89.3 93.2 0.912 89.3√ √ √ √
89.6 93.3 0.914 89.6

The check mark “
√

” indicates that the technique was used in training.

The F1 score and mAP of the proposed method herein are increased by 0.013 and 1.4%
as compared with the original object detection model, respectively. The small improvement
observed in the experiments demonstrates that the channel attention mechanism and de-
formable convolution are useful in target-detection tasks. On the other hand, it also shows
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that although deformable CNNs can adjust their shape by transforming the convolution
kernel according to the actual situation, and channel attention can adjust weights to better
extract features from the input image, they perform better in complex scenes or for small
target detection.

3.4. Comparison with Other Models

Currently, the model proposed in this paper is compared with several classical and
recently developed deep learning models, such as Yolov5 [27], CBAM Faster R-CNN [15],
SSD [9], Mask R-CNN [36], and MS-FPN [30]. These models can achieve good detection
results in general ship detection tasks. Figure 10 shows the ship recognition results of these
models and results with the proposed model under different scenarios. The aforementioned
models were executed on a Tesla V100, and the same training strategy was used to train the
SAR ocean dataset with 105 iterations. The batch size was set to 32, and the initial learning
rate was set to 0.00001. Tables 6 and 7 show that the proposed model has the highest
detection accuracy. The mAP reaches 87.9% in complex scenes, which is 2.1% higher than
the next-best model, Mask R-CNN, and 4.8% higher than the CBAM Faster R-CNN, which
also incorporates the attention mechanism This indirectly reflects that the proposed model
was more effective in identifying ships under extremely complex scenes. Meanwhile, the
mAP was 95.1% in high-density small target scenes, which was 3.7% higher than that of
the suboptimal model Mask R-CNN and 5.2% higher than that of the attention mechanism
model CBAM Faster R-CNN. This indirectly reflects the improvement of the proposed
model in terms of multiscale ship detection performance.

Table 6. Comparison of mAP from multiple models in complex scenes.

Model
SAR Ships in Complex Scenes

Precision (%) Recall (%) F1 Score mAP (%)

Yolo v5 78.2 76.1 0.771 76.3
CBAM Faster R-CNN 63.3 85.5 0.727 83.1

SSD 83.5 78.6 0.809 79.5
Mask R-CNN 91.7 77.9 0.842 85.8

MS-FPN 89.3 77.7 0.831 87.9
Proposed method 91.7 78.1 0.844 87.9

Table 7. Comparison of mAP from multiple models in high-density small target scenes.

Model
High-Density Small Target Scenes

Precision (%) Recall (%) F1 Score mAP (%)

Yolo v5 92.8 87.1 0.898 84.4
CBAM Faster R-CNN 91.4 77.7 0.839 89.9

SSD 94.1 71.3 0.822 70.0
Mask R-CNN 95.9 93.8 0.948 91.4

MS-FPN 92.9 93.2 0.930 92.9
Proposed method 96.5 93.0 0.947 95.1
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4. Conclusions

For small target detection in complex scenes, which is prone to errors and missed
detection problems, this study proposes a method based on an improved FPN target-
detection model that can significantly improve ship SAR detection performance in different
complex scenes and at different scales, especially the small ones. The improved FPN model
in this paper consists of the deformable CNN module and the channel attention mechanism
module. The deformable CNN was used to replace the original CNN, and the channel
attention mechanism was introduced to extract the weights of the feature channels to
optimize the expression ability of the network features. The performance of the proposed
model was verified on a SAR ship dataset, showing that the mAP of ship detection via the
proposed method reaches 94.7%, which can prove that the proposed method achieves a
better performance than other state-of-the-art ship detection methods, such as CBAM faster
R-CNN, SSD, YOLOV5, MS-FPN, and their variations.

To determine which module is most effective in improving the model, we compared
the deformable CNN module, the channel attention mechanism module, their combination,
and the replacement of the loss function. The results indicate that the deformable CNN
module has the greatest impact, while combining the two modules further improves
detection accuracy. However, we also observed that our proposed model fails to detect
some very small ships against an interference background. The low recall rate in our
ablation experiment suggests that there are missed detections. Additionally, introducing
the GIoU loss function did not significantly improve detection accuracy.

Overall, the proposed model effectively detects ships in complex scenes and small
ships in dense scenes. We have demonstrated that using deformable convolution instead
of traditional convolution and introducing the channel attention mechanism is a more
effective approach. However, it also needs to be noted that, although the proposed method
has better detection performance and can effectively reduce false alarms. it cannot com-
pletely eliminate all false alarms for complex backgrounds. Further analysis and research
are required.
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