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Abstract: Recently, CNN-based methods for hyperspectral image super-resolution (HSISR) have
achieved outstanding performance. Due to the multi-band property of hyperspectral images, 3D
convolutions are natural candidates for extracting spatial–spectral correlations. However, pure 3D
CNN models are rare to see, since they are generally considered to be too complex, require large
amounts of data to train, and run the risk of overfitting on relatively small-scale hyperspectral
datasets. In this paper, we question this common notion and propose Full 3D U-Net (F3DUN), a
full 3D CNN model combined with the U-Net architecture. By introducing skip connections, the
model becomes deeper and utilizes multi-scale features. Extensive experiments show that F3DUN
can achieve state-of-the-art performance on HSISR tasks, indicating the effectiveness of the full 3D
CNN on HSISR tasks, thanks to the carefully designed architecture. To further explore the properties
of the full 3D CNN model, we develop a 3D/2D mixed model, a popular kind of model prior, called
Mixed U-Net (MUN) which shares a similar architecture with F3DUN. Through analysis on F3DUN
and MUN, we find that 3D convolutions give the model a larger capacity; that is, the full 3D CNN
model can obtain better results than the 3D/2D mixed model with the same number of parameters
when it is sufficiently trained. Moreover, experimental results show that the full 3D CNN model
could achieve competitive results with the 3D/2D mixed model on a small-scale dataset, suggesting
that 3D CNN is less sensitive to data scaling than what people used to believe. Extensive experiments
on two benchmark datasets, CAVE and Harvard, demonstrate that our proposed F3DUN exceeds
state-of-the-art HSISR methods both quantitatively and qualitatively.

Keywords: 3D convolution; hyperspectral image; super-resolution; convolutional neural network

1. Introduction

Hyperspectral imaging systems receive reflections of multiple electromagnetic spec-
trum intervals from objects and acquire multi-band images. Thus, hyperspectral images
(HSI) preserve the complete spectrum curve for each pixel, and this information is widely
used in numerous areas, such as mineral exploration [1], medical diagnosis [2], and plant
detection [3], etc. However, due to hardware limitations, most hyperspectral cameras must
compromise between spatial resolution and spectral resolution. As a result, the spatial
resolution of HSIs is relatively low compared to natural images, which becomes an obstacle
to downstream high-level tasks such as image classification [4] and anomaly detection [5].

To solve this challenge, hyperspectral image super-resolution (HSISR) is in high
demand, with the aim of reconstructing high-resolution (HR) MSIs given one or more
inputs. Since the loss of spatial resolution comes from the multi-band property of an HSI, a
natural idea is to fuse high-resolution multispectral images (HR-MSIs) and low-resolution
hyperspectral images (LR-HSIs) to generate high-resolution hyperspectral outputs. Some
works use corresponding RGB images as supplementary information [6–8], while others
use panchromatic (PAN) images [9,10]. The main reason for the shortage of fusion-based
methods is because co-registered HSI-MSI pairs are hard to collect, which limits their
application scenarios. Therefore, we focus on an HSISR that is executed solely using
LR-HSIs, i.e., single hyperspectral image super-resolution (SHISR), in this article.
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Single hyperspectral image super-resolution is an ill-posed problem, as multiple high-
resolution equivalents may correspond to a single low-resolution image. In the early period,
this kind of method is highly dependent on handcrafted priors, such as low-rank [11] and
sparsity [12]. However, these manually designed priors only reflect some aspects of
hyperspectral data. Recently, convolutional neural networks (CNNs) have shown a strong
representation ability, and they have been widely introduced to improve natural image
super-resolution (SR) [13,14]. However, the mainstream of natural image SR methods is
2D CNN, which can lead to severe spectral distortion when applied to multi-band HSIs.
Recently, some methods have emerged that combine hand-craft priors and neural networks
and introduce mathematical modeling considering the properties of HSI, such as [15–17].

The problem caused by the high dimensionality in HSIs is severe. In [18], Cai et al.
tried to solve this issue with a 3D attention mechanism and information bottleneck for
classification tasks. However, in super-resolution, the model needs to preserve sufficient
information of the input; thus, a natural way to solve this problem is to introduce 3D
convolutions, which are good at extracting spatial–spectral correlations. The key difference
between 3D and 2D convolutions is that 3D convolutions share parameters not only on
spatial sides, but also on spectral dimension (see Figure 1). Thus, 3D convolutions can
utilize the similarities between adjacent bands. The pioneering work of 3D CNN on HSISR
is 3DFCNN [19], which consists of five cascaded 3D convolutional layers. However, the
wave of full 3D CNN models did not last long, and 3D CNNs have received two main
critiques. On the one hand, it is believed that 3D models are too complex to have good
performance on HSI datasets with limited scale and are at risk of overfitting. On the other
hand, some argue that the HSISR model should focus more on spatial enhancement, and 3D
models cannot accomplish this. The latter comment leads to 3D/2D mixed models, which
introduce extra 2D convolutions to boost spatial details. Representatives of such methods
are MCNet [20] and ERCSR [21]. The former introduces multiple 2D branches to extract
multi-scale spatial information from the features generated by 3D convolutions in each
block (see Figure 2d), and the latter adds one 2D unit after every 3D unit to concentrate
on spatial features (Figure 2c). Recently, graph-based methods have been applied to many
tasks in hyperspectral image processing, such as classification [22–24], clustering [25–27],
target detection [28], and anomaly detection [29], and have achieved good performance.

(a) (b)

Figure 1. Comparison of 2D (a) and 3D convolution (b) on multi-band data.
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Figure 2. Simplified flowchart of several models: (a) full 2D CNNs, (b) full 3D CNNs, (c) ERCSR,
(d) MCNet, (e) MUN, (f) F3DUN.
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However, existing 3D HSISR models are very simple and plain, and they are not com-
bined with some advanced inventions of deep learning. Therefore, it is worth questioning
whether the critical views on 3D models still hold. We believe that the potential of 3D mod-
els has not been fully explored yet. This drives us to revisit those structures that have been
proven effective in the super-resolution field and combine them with 3D CNN. Specifically,
we propose a simple yet effective full 3D CNN model with a U-Net architecture, called Full
3D U-Net (F3DUN). F3DUN replaces the 2D blocks in normal U-Net with 3D convolutions
and removes the downsampling–upsampling process in the middle. Experiments show
that F3DUN outperforms state-of-the-art methods, which proves the effectiveness of full 3D
models in HSISR tasks. Moreover, we design a 3D/2D mixed model that shares the same
U-Net structure with F3DUN called Mixed U-Net (MUN), where cascaded 3D convolutions
are used for feature extraction in the shallow half while 2D convolutions are gathered in
the deep half for spatial enhancement. F3DUN and MUN provide an excellent pair to
compare the two kinds of model priors, 3D/2D mixed models and full 3D CNN models. In
Figure 2, we summarize the main model priors in HSISR. The experimental results show
that full 3D CNN models have larger modeling capacities than the 3D/2D mixed model
with the same number of parameters; that is, full 3D CNN models have better performance
with sufficient training data. Another common concern regarding full 3D CNN models is
that they cannot perform well on small-scale datasets, since they demand a lot of training
samples. A comparison on a small-scale dataset disproves this point, since F3DUN still
obtains competitive results with MUN. With little harm on performance, F3DUN eliminates
severe overfitting. Thus, we conclude that full 3D CNN models are less sensitive to the
scale of training sets than we used to think and that overfitting can be prevented with
carefully designed architectures.

In summary, the contributions we made in this paper are listed here:

• We rethink the role that 3D CNN plays in the HSISR field and design a novel full
3D CNN model based on thd U-Net architecture called Full 3D U-Net (F3DUN).
Experimentally, it outperforms existing state-of-the-art, single-image SR methods,
which proves the effectiveness of full 3D CNN models in this field.

• We develop a mixed 3D/2D model that shares the same structure with F3DUN,
termed Mixed U-Net (MUN), for comparison. Extensive analysis on the two models
shows that the full 3D CNN model has a larger modeling capacity than the 3D/2D
mixed model with the same number of parameters; thus, it performs better with
large-scale datasets.

• We explore the relationship between the scale of training samples and the prior of
the model. We argue that the full 3D CNN model can obtain competitive results on
small-scale training sets compared with the 3D/2D mixed model, which concludes
that the full 3D CNN model is more robust with respect to the amount of training
samples than commonly thought.

The rest of this paper is organized as follows: In Section 2, we briefly introduce related
works on hyperspectral and natural image super-resolution. Then, in Section 3, we describe
the model designs of F3DUN and MUN in detail. Experiments on public datasets are
shown and discussed in Section 4, and the conclusion is in Section 5. For ease of reading,
we have provided a list of abbreviations in Table 1 for reference.
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Table 1. Abbreviations used in the paper.

Abbreviation Full Name

HSI hyperspectral image
LR low-resolution
HR high-resolution
SR super-resolution
HSISR hyperspectral image super-resolution
SHISR single-image hyperspectral super-resolution
MUN Mixed U-Net
F3DUN Full 3D U-Net

2. Related Work

In this section, we briefly review some research fields related to our work. First, we
introduce 3D convolution and its applications in computer vision tasks. Then, we give a
big picture of hyperspectral image super-resolution, including single hyperspectral image
super-resolution and fusion-based hyperspectral image super-resolution. At the end of this
section, the development of single natural image super-resolution is summarized.

2.1. Three-Dimensional Convolution

Three-dimensional convolution shares parameters not only on spatial dimensions
but also on channel dimension, which is suitable to deal with cube data such as HSIs or
video. A typical application of 3D convolution is hyperspectral image classification [30–33],
since 3D convolution can tackle the rich spatial–spectral information contained in HSIs.
Furthermore, Jiang et al. [34] used a 3D convolutional neural network for dehazing in HSIs.
The application of 3D convolution expands to some other remote sensing data, such as
SLAM [35] and LiDAR [36,37]. Three-dimensional convolution also plays an important
role in video processing due to its ability to capture inter-frame relationships. Li et al. [38]
proposed a 3D CNN for video person re-identification, and Ying et al. [39] employed
deformable 3D convolution in a video super-resolution task.

2.2. Single Hyperspectral Image Super-Resolution

Single hyperspectral image super-resolution (SHISR) aims to reconstruct an HR-MSI
solely from its LR opponent. Without the need of an auxiliary image, SHISR can be widely
applied and thus attracts considerable research attention. The pioneering work is [40], in
which Akgun et al. proposed an acquisition model and applied the projection onto convex
sets (POCS) algorithm [41] on SHISR. Subsequently, Huang et al. [12] introduced low-rank
and sparsity constraints on dictionary learning to reconstruct HR-MSIs. The aforemen-
tioned works can be categorized as model-driven methods, since they rely on manually
designed priors. With the coming of the deep learning era, data-driven frameworks are
also being applied in the SHISR field. Yuan et al. [42] tried to transfer knowledge from
natural image SR to SHISR and combined CNN and non-negative matrix factorization
(NMF) to super-resolve MSIs. Xie et al. [43] utilized CNN and NMF to extract spatial and
spectral features separately, super-resolving HSIs in a non-end-to-end manner. Due to
the strong representative ability, Mei et al. [19] first proposed a five-layer full 3D CNN
(3D-FCNN) for SHISR. Subsequently, Li et al. [20] designed a mixed 2D/3D CNN (MCNet),
introducing multiple 2D branches to extract multi-scale spatial information. Furthermore,
in [21], the authors replaced the redundant multi-branch structure with interleaved 2D/3D
blocks. On the other hand, Li et al. [44] proposed a full 2D CNN model (GDRRN) with
grouped convolutions and recursive architecture. Then, Jiang et al. [45] divided HSIs
into overlapped band groups based on the similarity of adjacent bands, and designed
a multi-branch model (SSPSR) in a divide-and-merge manner. Li et al. [46] presented
intra-group and inter-group fusion to gather features from different band groups. Another
category of SHISR methods is sequence models, motivated by video SR. Wang et al. [47]
proposed a dual-channel model, fusing spatial and spectral features from neighboring
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bands and super-resolving LR-MSIs band by band. Recently, Liu et al. [48] proposed a
parallel network called Interactformer for SHISR, which contains a Transformer branch
and a 3D-CNN branch; the Transformer branch is used to capture long-range dependencies
to obtain global features, and the 3-D CNN branch is used to extract local features while
preserving the spectral correlation of HSIs.

2.3. Fusion-Based Hyperspectral Image Super-Resolution

Fusion-based hyperspectral image super-resolution is a classical method of HSISR
with a long history. Its basic idea is to fuse the information of LR-HSIs and HR-MSIs to
improve the spatial resolution of the LR-HSIs. Yokoya et al. [49] proposed an approach
based on coupled non-negative matrix factorization (CNMF). In addition, more researchers
have taken the abundant spectral information encoded in HSIs into consideration and
have exploited various priors, such as sparsity [50,51], non-local similarity [52], tensor and
low-rank constraints [53]. Recently, deep learning methods have shown their superiority
in feature representation and they rely less on assumptions; thus, they have gradually
become popular [54]. Some deep unfolding networks have been proposed, which turn
a mathematical model to a neural network [6,7,55,56]. However, all the above methods
require co-registered HSI-MSI pairs, which severely limits the scope of their application,
since the collection of paired data can be extremely hard.

2.4. Single Natural Image Super-Resolution

Single-image super-resolution (SISR) has been a research topic for a long time. In the
early stages, researchers focused on designing good priors to super-resolve RGB or gray
images [57–59]. With the rise of deep learning, CNN-based SISR methods have played an
important role. Dong et al. [60] proposed the first end-to-end model consisting of three
convolutional layers. Later, Kim et al. [13] presented a very deep convolutional model
of 20 layers for SISR, and Lim et al. [14] introduced residual connection and removed
unnecessary modules to make the model more effective and robust. Afterwards, enormous
CNN-based works emerged, such as RCAN [61], SAN [62], HAN [63], NLSA [64], IPT [65],
and SwinIR [66], which achieved considerable success.

3. Method

In this section, we describe the details of the proposed Full 3D U-Net (F3DUN). Our
main interest in F3DUN is whether the performance of previous full 3D CNN models is
limited by their inherent nature or by flaws in the designs of their architectures. We also
introduce F3DUN’s 3D/2D mixed counterpart, Mixed U-Net (MUN), in order to analyze
the effect of 3D convolutions in HSISR models.

3.1. Full 3D U-Net

F3DUN follows the idea of a full 3D CNN that can be traced back to 3DFCNN and, at
the same time, integrates advanced experience in model design. As is shown in Figure 3,
our full 3D U-Net consists of three parts: shallow feature extraction, nonlinear mapping,
and an upsampler. To prevent memory loss and generate multi-scale features, multiple
skip connections are introduced.
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Figure 3. Overview of F3DUN.
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For clarity, let ILR ∈ RL×H×W and IHR ∈ RL×sH×sW denote the LR-MSI and HR-MSI,
respectively, where H and W represent the height and weight of each band, L is the number
of spectrum bands, and s indicates the scale factor. The super-resolved HSI has the same
size of IHR and is remarked as ISR. Given ILR as input, we first use a 3D convolution of
3× 3× 3 to preliminarily extract information:

F0
3D = Conv0

3D(unsqueeze(ILR)). (1)

The aim of the unsqueeze operation is to transfer ILR to size of 1× L× H×W so that it can
be handled by 3D convolution.

Then, the shallow feature F0
3D is sent to the nonlinear mapping part, which con-

sists of cascaded 3D blocks. Each 3D block in the shallow half of this part has two
3× 3 convolutions and a ReLU activation function in between. In addition, all 3D blocks
use a residual connection for stability, and its formula can be written as:

Fk
3D = Blockk

3D(Fk−1
3D ) + Fk−1

3D (2)

= Conv3×3×3(ReLU(Conv3×3×3(Fk−1
3D ))) + Fk−1

3D . (3)

We use skip connections to link 3D blocks at symmetrical locations in order to prevent
memory loss and provide cross-scale information for deep 3D blocks:

FK−k
3D = BlockK−k

3D ([FK−k
3D , Fk

3D]) f or k = 1, 2, ..., K/2, (4)

where K is the total number of 3D blocks for non-linear mapping, and [·, ·] denotes concate-
nation operation. In addition, 3D blocks in the deep half add an extra 1× 1× 1 convolution
to fuse the information from the previous block and the skip connection. Beyond skip
connections within the U-Net architecture, we further introduce three long-distance connec-
tions. Two of them are located in the first and second halves of the non-linear mapping part:

F
′K/2
3D = FK/2

3D + F0
3D, (5)

F
′K
3D = F

′K/2
3D + FK

3D, (6)

and the other one is a global skip connection:

ISR = Upsampler(F
′K
3D) + nearestu psample(ILR). (7)

As for the upsampler, the input is F
′K
3D, and we use a transposed 3D convolutions to scale it

up to b× C× L× sH× sW. At last, a pseudo-3D convolution, which is made of a 1× 3× 3
and a 3× 1× 1 filter, squeezes the channel number to 1. For 4× super-resolution, we
directly use one transposed 3D convolution layer for upsampling. When the scale factor
is 8, we first use one transposed 3D convolution layer to upsample to 4×, and then use
another transposed 3D convolution layer to scale up to the desired size. This progressive
upsampling strategy prevents the upsampling factor from being too large beyond the
capabilities of a single deconvolution layer.

3.2. Mixed U-Net

The basic idea of Mixed U-Net (MUN) is to divide the non-linear mapping of the
network into two parts: a group of 3D convolutions for feature extraction and cascaded 2D
convolutions for spatial enhancement. The specialized structure of MUN can effectively
avoid the feature confusion problem caused by interleaved structures of 3D and 2D modules
in previous 3D/2D mixed models, and skip connections can also effectively suppress
memory forgetting. MUN provides a useful tool to compare 3D/2D mixed models and full
3D CNN models, since it shares similar architecture with F3DUN.

As is shown in Figure 4, MUN shares the same architecture with F3DUN, only replac-
ing 3D Blocks with 2D blocks in the deep half of the non-linear part. The 2D blocks follow
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the structure of a resblock and use a 1× 1 convolution to fuse the two inputs from the
previous block and the skip connection, respectively. The pipeline of the 2D block in MUN
can be depicted as:

Fk
2D = Block2D([Fk−1

2D , reshape(FK−k
3D ]), (8)

where K is the total number of 3D and 2D blocks. Here, 3D features FK−k
3D are reshaped from

b× C× L× H ×W to (b× L)× C× H ×W before being fed into the corresponding 2D
block, where b and C denote batch size and feature channels, respectively. At the junction
of the 3D group and the 2D group, i.e., after the Nth 3D block, a particular 2D block is
added without the fusion convolution.

Figure 4. Overview of MUN.

3.3. Loss Function

Following the main stream of HSISR methods, we employ L1 loss to lead the model to
generate sharp results:

Lrec =
1
M

M

∑
i=1
||Ii

SR − Ii
HR||1, (9)

where M denotes the number of samples. However, in practice, we find that although
reconstruction loss can effectively constrain spatial similarity, spectral distortion is still a
serious problem. Here, we additionally introduce a loss based on the SAM [67] criterion for
HSI quality assessment to constrain the spectral similarity:

LSAM =
1

sH × sW ∑
(x,y)

arccos(
< I(x,y)

SR , I(x,y)
HR >

||I(x,y)
SR ||2||I

(x,y)
HR ||2

), (10)

where < ·, · > means dot production and (x, y) denotes the spatial coordinate of the pixel.
Since the derivative of arccos(x) is− 1√

1−x2 , there exists a gradient explosion problem when

x2 → 1. Therefore, we filter the pair of pixels whose cosine similarity lies in [−1 + ε, 1− ε]
and only apply SAM loss on them. In practice, we choose ε = 10−8. In general, the total
loss function is:

Ltotal = Lrec + λLSAM, (11)

in which λ is a hyperparameter to balance the two losses. In practice, we set λ = 0.05. This
loss function is applied to both F3DUN and MUN.

3.4. Relationship with Other Methods

(a) 3DFCNN: 3DFCNN is the pioneering work of full 3D CNN models for HSISR. It
consists of 5 3D convolution layers and uses MSE loss to train. However, there are
noticeable drawbacks to it. Most importantly, the model architecture of 3DFCNN is
too shallow and it does not combine with advanced ideas of deep learning, such as
residual learning and long skip connections. Therefore, in this paper, we rethink the
prior of full 3D CNN in HSISR and argue that full 3D CNN models’ bad results are
not caused by 3D CNN, but rather a lack of model design. It is obvious that F3DUN
is much deeper than 3DFCNN and successfully prevents overfitting and achieves
SOTA results.

(b) Two- and three-dimensional mixed models: The main idea of 3D/2D mixed models
is to introduce 2D convolutions into 3D CNN in order to boost the ability of spatial
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enhancement. They have become popular recently and can be seen as a modification
to full 3D CNN models. However, there are two potential problems. On the one
hand, the 2D convolutions in 3D/2D models are shared in the spectral dimension,
which leads to a risk of spectral distortion. On the other hand, 3D/2D mixed models
always face the dilemma of balancing the two kinds of convolutions, where features
enhanced by 2D convolutions can be polluted by cascading 3D modules. In MUN, we
partially solve the two above problems, but we make a step forward: could a full 3D
CNN model outperform 3D/2D mixed ones? Model analysis on MUN and F3DUN
supports our idea and proves the advantages of the full 3D CNN model compared
with 3D/2D mixed models.

4. Experiments and Analysis

In this section, we conduct comprehensive experiments to evaluate the effectiveness
of the proposed F3DUN. Two benchmark datasets, i.e., CAVE [68] and Harvard [69],
are used for the comparisons. We present the quantitative and perceptual results of
our F3DUN together with seven existing HSISR methods, including Bicubic, EDSR [14],
3DFCNN [19], SSPSR [45], MCNet [20], ERCSR [21], and SFCSR [47]. Furthermore, analysis
between F3DUN and MUN using different data scales reveals the data efficiency of our
proposed method.

4.1. Datasets

(a) CAVE dataset: The CAVE dataset [68] is taken by a cooled CCD camera, and the
range of the wavelength is from 400 nm to 700 nm, at a step of 10 nm (31 bands).
The 32 hyperspectral images are divided into five sections: real and fake, skin and
hair, paints, food and drinks, and stuff. Each image has a size of 512× 512× 31, and
every band is stored as a grayscale picture separately in the form of a PNG.

(b) Harvard dataset: The Harvard dataset [69] contains 77 indoor and outdoor hyperspec-
tral images under daylight illumination collected by the Nuance FX, CRI Inc., camera.
Each image covers the wavelength range of 400 nm to 700 nm, evenly divided into
31 bands. The spatial resolution is 1040× 1392, and all images are stored as .mat files.

4.2. Implementation Details

For the CAVE dataset, we select 12 images as the test set, and the remaining 20 images
are used for training. When the scale factor is 4, each training image is cropped into
96× 96 patches with a stride of 48 pixels. For an 8× super-resolution, the patch size and
stride are 192× 192 and 36. After that, we use bicubic downsampling to generate LR
patches and LR images for test. 10% of the cropped patches are randomly sampled to form
a validation set. Several data argumentation methods are applied, including rotations of
90◦, 180◦ and 270◦, vertical and horizontal flips, and their combinations.

The training samples of the Harvard dataset are cropped randomly on the spatial
dimensions, and each training image generates 72 patches for both 4× and 8× super-
resolution. The patch sizes of the training samples are 96× 96 and 128× 128 for scale
factors of 4 and 8, respectively. Additionally, we select 5 and 3 images from the outdoor and
indoor categories as test set. Due to the image size in the Harvard dataset being too large,
we crop the top-left 1024× 1024 part of each test image and divide it into 4 sub-images of
512× 512. Then the LR images are generated by bicubic downsampling.

We trained F3DUN for scale factors of 4 and 8, with random initialization. The model
contains 10 and 12 3D blocks for 4× and 8× super-resolutions, respectively, and the number
of filters in each convolutional layer is set to 64. We adopt the Adam optimizer [70] and set
β1 = 0.9 and β2 = 0.999. The learning rate is initialized as 10−4 and halved every 35 epochs.
We employ the batch size to be 16 and train our model for 200 epochs. Our algorithm is
performed using PyTorch library with NVIDIA GeForce GTX 2080ti GPUs.
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4.3. Evaluation Metrics

We adopt six common metrics to evaluate the quality of super-resolved images: peak
signal-to-noise ratio (PSNR), structure similarity (SSIM) [71], cross correlation (CC) [72],
spectral angle mapper (SAM) [67], root mean squared error (RMSE), and erreur relative
globale adimensionnelle de synthese (ERGAS) [73]. We compute the mean of all bands for
PSNR and SSIM, which are generally used to measure image restoration quality quantitatively:

PSNR =
1
L

L

∑
l=1

10 log10(
MAX2

l
MSEl

), (12)

SSIM =
1
L

L

∑
l=1

(2µl
ISR

µl
IHR

+ c1)(2σl
ISR

σl
IHR

+ c2)

mn
, (13)

where

m = (µl
ISR

)2 + (µl
IHR

)2 + c1, (14)

n = (σl
ISR

)2 + (σl
IHR

)2 + c2. (15)

Here, L denotes the total number of bands of the hyperspectral image, and will refer to
the same hereinafter. SAM is widely used to compare the spectral difference between two
hyperspectral images, and its definition can be found in Equation (10). RMSE measures
the absolute error between the reconstructed image and the ground truth. CC and ERGAS
are often employed in HS fusion, and they reflect the overall quality of the reconstructed
images. Their mathematical definitions are as follows:

CC =
1
L

L

∑
l=1

cov
(

Il
SR, Il

HR

)
σIl

SR
σIl

HR

, (16)

ERGAS = 100s

√√√√ 1
L

L

∑
l=1

(
RMSEl

mean
(

Il
HR
))2

. (17)

Here, s represents the scale factor, and mean denotes the average operation. The limit
values of the six above indicators are +∞, 1, 0, 0, 0, and 1, respectively.

4.4. Model Analysis
4.4.1. Comparison with 3D-2D Model Prior

In this section, we perform a comparison on F3DUN and MUN to analyze the ad-
vantages and disadvantages of the 3D/2D mixed model and the full 3D CNN model for
the HSISR task. Without loss of generality, this model analysis is performed on the CAVE
dataset, and the scale factor is set to 4. And we made comparisons on both normal and
reduced datasets, in order to explore the relationship between data scale and model priors.
The results can be found in Tables 2 and 3 respectively. The reason why MUN is chosen as a
representative of 3D/2D mixed model is manifold. Firstly, MUN has been proven to outper-
form other HSISR models, especially all previous 3D/2D mixed models (see Tables 2 and 4).
Secondly, F3DUN and MUN share similar architectures, making the comparison fairer and
more significant. Thirdly, it is easy to control the number of parameters of the two models
so that they are on the same level.
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Table 2. Comparison of the full 3D CNN model and the 3D/2D mixed model on the original
CAVE dataset.

Method Param. PSNR↑ SSIM↑ RMSE↓ SAM↓ ERGAS↓ CC↑
MUN 2.4 M 36.8860 0.9452 0.0188 3.6500 5.4975 0.9779
F3DUN 2.5 M 36.9368 0.9458 0.0186 3.6340 5.4429 0.9786

Table 3. Comparison of the full 3D CNN model and the 3D/2D mixed model on the reduced
CAVE dataset.

Method Param. PSNR↑ SSIM↑ RMSE↓ SAM↓ ERGAS↓ CC↑
MUN 2.4M 36.7015 0.9454 0.0189 3.6472 5.5522 0.9783
F3DUN 2.5M 36.7249 0.9453 0.0188 3.6496 5.5330 0.9783

In Table 2, we summarize the quantitative results of the two models on the original
CAVE dataset. We control the two models to have roughly the same amount of parameters,
thereby ruling out performance gains for one model due to having more parameters. It can
be seen that F3DUN beats MUN on all indicators, excluding SSIM, which indicates that the
full 3D CNN model has a larger modeling capacity than the 3D/2D model. Considering
that the main difference between F3DUN and MUN is the use of 3D convolution and 2D
convolution in the deep half of the nonlinear mapping, we can reason that the advantage
of F3DUN is basically brought about by 3D convolutions. In Figure 5, we present a visual
comparison between MUN and F3DUN, and F3DUN shows some superiority in edge and
complex context recovery tasks.

Figure 5. Some visual results and error maps of MUN (the upper line) and F3DUN (the bottom line).

A long-standing concern about full 3D CNN models is that they are computationally
more complex and therefore prone to poor results due to overfitting on hyperspectral
image datasets, the scale of which is limited by various sensors. This concern follows
common sense in the field of deep learning. However, we want to more precisely analyze
the conditions in which the full 3D CNN model could work. To further investigate this
issue, we adjust the step size of patch cropping in the CAVE dataset to 72 pixels and thus
construct a smaller training set. In the original training set, each image generates 81 patches,
while only 36 patches are collected per image in the reduced training set.

The performances of MUN and F3DUN on the reduce dataset are shown in Table 3.
With fewer training samples, both models have a certain decline in most indicators, which
is consistent with the common sense of deep learning. However, the full 3D CNN model
still achieves acceptable results on this smaller dataset, even outperforming the 3D/2D
mixed model on several metrics such as PSNR, RMSE, and ERGAS. This demonstrates that
the full 3D CNN model is less sensitive to the scale of training samples, contrary what
people commonly thought, and it could achieve competitive performance compared with
the 3D/2D mixed model on the small-scale dataset. In addition, if we put the two tables
together, it suggests that the full 3D CNN model is more effective than the 3D/2D mixed
model when sufficiently trained.
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4.4.2. Results on Noisy Images

Hyperspectral images are prone to suffering from various distortions. However, the
robustness to degradation is not our main concern. On the one hand, we argue that bench-
marks are collected by real-world sensors, so a model’s performance on them is meaningful
for practical cases. On the other hand, super-resolution is a subset of hyperspectral im-
age reconstructions, and there are many techniques that deal with degradation, such as
denoising [74,75] and deblurring [76,77].

In Figures 6 and 7, we present reconstruction results with noisy inputs on the CAVE
dataset. It can be seen that our model is somewhat robust to Gaussian noise, but can be
severely affected by impulse noise. The main reason for this is that we do not introduce
noise manually in training, and the model has no chance to learn to remove it.

Figure 6. Some reconstruction results with Gaussian noise (σ = 5) on the CAVE dataset (4×).

Figure 7. Some reconstruction results with impulse noise (3%) on the CAVE dataset (4×).

4.5. Comparison with State-of-the-Art Methods

In this section, we compare the proposed F3DUN with several existing single-image
hyperspectral super-resolution methods. The selected methods widely cover popular
model priors in this field. Among them, bicubic upsampling is a traditional interpolation-
based super-resolution approach, and EDSR [14] is a full 2D convolutional neural network
that achieves remarkable success in natural image super-resolution. The 3DFCNN [19]
model is the pioneer work that applies the full 3D CNN model to the HSISR task. Moreover,
SSPSR [45] is a full 2D model designed for HSISR specifically using the similarity of
neighboring bands. Another kind of method is 3D/2D mixed models, including MCNet [20]
and ERCSR [21]. Finally, SFCSR [47] is a sequence model that treats bands in an HSI as
frames in a video.

A quantitative comparison on the CAVE dataset is shown in Table 4. It can be seen
that our method outperforms other models on all six metrics for both 4× and 8× super-
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resolutions. Bicubic upsampling obtains the worst results in both cases, since it cannot re-
cover missing high-frequency components in LR-MSIs. The comparison between 3DFCNN
and F3DUN supports our hypothesis: the full 3D CNN model can achieve SOTA per-
formance by carefully designing the network structure. A 3D/2D mixed model, MCN,
achieves the second highest score on PSNR for a 4× scale factor, but it fails to generate
good SR images when the scale factor increases to 8. In contrast, ERCSR performs better on
8× upsampling. The sequence model SFCSR obtained results second only to F3DUN in
most of the indicators of the 8× super-resolution experiment, showing good reconstruction
ability and balance in several indicators. However, the advantage of our model is obvious,
proving the effectiveness of full 3D CNN in HSISR. In the 4× super-resolution experiment,
F3DUN outperforms the advanced 3D/2D mixed model MCNet by 0.22dB on the PSNR
metric. Furthermore, in the case of 8×, F3DUN is 0.27dB higher than the second best model
on the PSNR index and significantly outperforms other methods in the SSIM index, which
illustrates that F3DUN is more robust and capable for larger scale factors. Additionally,
there are clear gains on the SAM score, namely, −0.28 rad for 4× and −0.45 rad for 8×,
showing the remarkable effect of introducing SAM loss on suppressing spectral distortion.

Table 4. Quantitative evaluation of different HSISR methods on the CAVE dataset. The best and
second best results are in bold and underlined, respectively.

Method Scale PSNR↑ SSIM↑ RMSE↓ SAM↓ ERGAS↓ CC↑
Bicubic 4 34.6163 0.9287 0.0225 5.1869 6.8047 0.9728

EDSR [14] 4 36.1569 0.9393 0.0202 4.4149 5.9793 0.9758
3DFCNN [19] 4 35.3479 0.9349 0.0209 4.0415 6.0750 0.9758

SSPSR [45] 4 36.5934 0.9431 0.0195 3.9691 5.7608 0.9766
MCNet [20] 4 36.7182 0.9434 0.0191 3.9590 5.6281 0.9769
ERCSR [21] 4 36.6318 0.9436 0.0193 3.9140 5.6610 0.9772
SFCSR [47] 4 36.6718 0.9438 0.0191 3.9218 5.6409 0.9774

F3DUN 4 36.9368 0.9458 0.0186 3.6340 5.4429 0.9786

Bicubic 8 30.0719 0.8511 0.0367 7.0948 10.8664 0.9349
EDSR [14] 8 30.9524 0.8703 0.0347 6.0270 10.1562 0.9393

3DFCNN [19] 8 30.3622 0.8669 0.0354 5.6714 10.2498 0.9391
SSPSR [45] 8 30.4524 0.8670 0.0367 5.6093 10.7448 0.9322
MCNet [20] 8 31.2193 0.8790 0.0339 5.6056 9.7672 0.9403
ERCSR [21] 8 31.3491 0.8808 0.0335 5.5721 9.7204 0.9421
SFCSR [47] 8 31.4008 0.8814 0.0330 5.6069 9.6230 0.9432

F3DUN 8 31.6730 0.8849 0.0325 5.1230 9.4327 0.9441

The results of the Harvard dataset are summarized in Table 5. The salient feature of
the Harvard dataset is that the training samples are sparser than the CAVE dataset, since
they are randomly cropped and possibly unable to cover the entire training images. Under
these conditions, our F3DUN still generates competitive SR results. It can be seen that
SSPSR achieves sub-optimal scores for most indicators on the Harvard dataset with respect
to 4× SR. SSPSR shows slight advantage on SAM, and this margin possibly comes from
its divide-and-merge strategy. Since SSPSR first processes each band separately and then
merge all bands together, this architecture can preserve spectral information. Moreover,
F3DUN is optimal on all six indices. When the scale factor is 8, our method achieves
the highest scores, except in RMSE and SAM. Specifically, F3DUN performs best on the
SSIM and ERGAS metrics, which indicates that the reconstructed images preserve more
complete structures and have higher overall quality. The lightweight 3D/2D mixed model
ERCSR obtains the second-best scores on most indices, and the sequence model SFCSR
achieves pretty good results, which suggests the advantages of models with less complexity.
However, with the help of a deliberately designed architecture, our model still obtains an
outstanding output.
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In Table 6, we compare the model scale and computational complexity of our F3DUN
and other state-of-the-art methods. It is shown that our model achieves superior perfor-
mance with little extra computational cost. In specific, the number of parameters and
FLOPs of F3DUN are at the same level of MCNet, while F3DUN outperforms MCNet
on all six quantitative metrics. In addition, the main cost of our model comes from its
pure 3D CNN structure, since 3D convolutions are very dense in terms of parameter and
calculations. Our model is slightly heavier than the mixed 3D/2D models (i.e., MCNet and
ERCSR), and 3DFCNN is lightweight due to its shallow structure. Though sequence models
such as SFCSR have fewer parameters, they can run slowly due to their bad parallelism.

Table 5. Quantitative evaluation of different HSISR methods on the Harvard dataset. The best and
second best results are in bold and underlined, respectively.

Method Scale PSNR↑ SSIM↑ RMSE↓ SAM↓ ERGAS↓ CC↑
Bicubic 4 42.4128 0.9265 0.0137 3.0520 3.4897 0.9519

EDSR [14] 4 43.0512 0.9359 0.0126 2.7879 3.2591 0.9578
3DFCNN [19] 4 42.8021 0.9310 0.0129 2.8593 3.3495 0.9554

SSPSR [45] 4 43.4522 0.9387 0.0120 2.6788 3.0980 0.9615
MCNet [20] 4 43.3126 0.9375 0.0124 2.7428 3.1590 0.9602
ERCSR [21] 4 43.2983 0.9376 0.0124 2.7416 3.1839 0.9600
SFCSR [47] 4 43.3817 0.9383 0.0123 2.7571 3.1462 0.9605

F3DUN 4 43.4855 0.9389 0.0120 2.6555 3.0923 0.9618

Bicubic 8 38.3909 0.8667 0.0225 3.7980 5.4231 0.8967
EDSR [14] 8 38.6719 0.9359 0.0216 3.4233 5.1530 0.9025

3DFCNN [19] 8 38.8676 0.8737 0.0210 3.4619 5.2309 0.9047
SSPSR [45] 8 39.1889 0.8829 0.0204 3.2637 4.9324 0.9127
MCNet [20] 8 39.1702 0.8819 0.0207 3.5117 4.9475 0.9123
ERCSR [21] 8 39.3185 0.8839 0.0202 3.4649 4.8799 0.9144
SFCSR [47] 8 39.2607 0.8829 0.0203 3.4426 4.9007 0.9137

F3DUN 8 39.3265 0.8849 0.0204 3.2739 4.8552 0.9149

Table 6. Comparison of computational complexity among the proposed F3DUN and state-of-the-art
methods. All metrics are measured for ×4 upscaling on the CAVE dataset.

Method EDSR [14] 3DFCNN [19] SSPSR [45] MCNet [20] ERCSR [21] SFCSR [47] F3DUN

Params × 106 1.54 0.04 12.89 2.17 1.59 1.22 2.40
FLOPs × 109 36.98 328.99 977.50 4483.56 4460.10 2011.9 4932.08

To compare the reconstruction effect more straightforwardly, we also present some
visual results. Figure 8 shows the reconstruction results and absolute error maps with the
×4 upsampling of some bands in the CAVE dataset. The results shown in the figure are a
reconstructed single spectral band (represented in grayscale), and all images are normalized.
Generally, the images generated by our model have a lower error, and spatial details are
recovered better. Specifically, our F3DUN could better recover sharp edges such as those
in the red rectangles in Figure 8. As is seen in the third line in Figure 8, F3DUN handles
images with higher contrast successfully, while the other methods have the problem that
the overall brightness is too dark or too light. Some super-resolution results and error
maps with ×4 upsampling in the Harvard dataset are shown in Figure 9. Obviously, our
method is better at recovering complex contexts, such as the lattice of the chair (line 3). In
Figure 10, we show the reconstructed results and absolute error maps with ×8 upsampling
of some bands in the CAVE dataset and Harvard dataset. From the seventh row, we can
see that different degrees of deformation and artifacts appear in the reconstruction results
of several other deep learning methods. In Figure 11, we visualize the spectrum curves
at the pixel positions of (65, 125), (250, 250), and (340, 340) for chart_and_stuffed_toy in
the CAVE dataset. Among all the methods, the reconstructed spectrum vectors are quite
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similar at each location. Though the difference is tiny, the curve of EDSR has an observable
deviation from the ground truth, while the spectral distortion of our model is minimal.
Similar phenomena also occur in the Harvard dataset, the results of which are shown in
Figure 12.

GT

Bicubic EDSR 3DFCNN SSPSR

MCNet ERCSR SFCSR F3DUN

GT

Bicubic EDSR 3DFCNN SSPSR

MCNet ERCSR SFCSR F3DUN

Figure 8. Reconstruction results and error maps in the CAVE dataset. From top to bottom: cd_ms at
530 nm (4×), fake_and_real_food_ms at 690 nm (4×).
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GT

Bicubic EDSR 3DFCNN SSPSR

MCNet ERCSR SFCSR F3DUN

GT

Bicubic EDSR 3DFCNN SSPSR

MCNet ERCSR SFCSR F3DUN

Figure 9. Reconstruction results and error maps in the Harvard dataset. From top to bottom: img4 at
690 nm (4×), imga6 at 560 nm (4×).
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GT

Bicubic EDSR 3DFCNN SSPSR

MCNet ERCSR SFCSR F3DUN

GT

Bicubic EDSR 3DFCNN SSPSR

MCNet ERCSR SFCSR F3DUN

Figure 10. Reconstruction results and error maps in CAVE dataset and Harvard dataset. From top to
bottom: clay_ms at 670 nm (8×) from CAVE dataset and img4 at 640 nm (8×) from Harvard dataset.
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Figure 11. Visual comparison of spectral curves for image chart_and_stuffed_toy at three pixel positions
in the CAVE dataset (4×).

Figure 12. Visual comparison of spectral curves for image img4 at three pixel positions in the Harvard
dataset (4×).

5. Conclusions

In this paper, we rethink an important model prior for HSISR, namely, the full 3D
CNN model, in view of model design. We argue that this model prior is not inevitable, and
it could achieve good performance with combination of advanced architectures. Thus, we
combine the full 3D CNN model with the U-Net architecture, introducing skip connections
to save memory and using a multi-scale structure. Extensive experiments show that the
full 3D CNN model can achieve a performance that surpasses the current single-image
hyperspectral image super-resolution methods and rediscovers the effectiveness of full 3D
models for this task. Through comparison with MUN, the 3D/2D mixed counterpart of
F3DUN, we find that 3D convolutions can bring higher performance improvements than
2D ones using the same number of parameters; that is, the modeling capacity of the full
3D model exceeds that of the 3D/2D mixed model. Furthermore, contrary to common
belief, the full 3D CNN model can work in a setting with fewer training samples, and the
requirements of the full 3D model on training data are not as demanding as one might
imagine. All these illustrate that, combined with more advanced network structures, the
full 3D model can be a simple and effective method to play a greater role in the field of
hyperspectral image super-resolution.

In the future, we plan to explore a more lightweight full 3D CNN for hyperspectral
image super-resolution in order to reduce the computational workload. There are some
successful works for 2D convolution, such as separable convolution [78] and dilated
convolution [79], but lightweight 3D convolution still needs more effort. In addition, some
useful designs, such as an attention mechanism, can be combined with full 3D models.
Our experiments prove the advancement of full 3D models in hyperspectral image super-
resolution, and we believe F3DUN opens a new door for more 3D CNN-based methods
to come.
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