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Abstract: Remote sensing is an important tool for the quantitative estimation of forest carbon stock.
This study presents a multiscale, object-based method for the estimation of aboveground carbon stock
in Moso bamboo forests. The method differs from conventional pixel-based approaches and is more
suitable for Chinese forest management inventory. This research indicates that the construction of a
SPOT-6 multiscale hierarchy with the 30 scale as the optimal segmentation scale achieves accurate
information extraction for Moso bamboo forests. The producer’s and user’s accuracy are 88.89% and
86.96%, respectively. A random generalized linear model (RGLM), constructed using the multiscale
hierarchy, can accurately estimate carbon storage of the bamboo forest in the study area, with a
fitting and test accuracy (R2) of 0.74 and 0.64, respectively. In contrast, pixel-based methods using
the RGLM model have a fitting and prediction accuracy of 0.24 and 0.01, respectively; thus, the
object-based RGLM is a major improvement. The multiscale object hierarchy correctly analyzed
the multiscale correlation and responses of bamboo forest elements to carbon storage. Objects at
the 30 scale responded to the microstructure of the bamboo forest and had the strongest correlation
between estimated carbon storage and measured values. Objects at the 60 scale did not directly inherit
the forest information, so the response to the measured carbon storage of the bamboo forest was
the smallest. Objects at the 90 scale serve as super-objects containing the forest feature information
and have a significant correlation with the measured carbon storage. Therefore, in this study, a
carbon storage estimation model was constructed based on the multiscale characteristics of the
bamboo forest so as to analyze correlations and greatly improve the fitting and prediction accuracy of
carbon storage.

Keywords: AGC; bamboo forest; object-based segmentation; RGLM model; SPOT-6

1. Introduction

The application of remote sensing data in combination with forest resource inventory
data is an important way to study the forest carbon sink and its response to global climate
change [1–7]. Carbon storage estimation using remote sensing data usually relies on
understanding absorption, reflection, and transmission of solar radiation, as well as other
associated mechanisms within the vegetation canopy and atmosphere. Using satellite-
derived information in combination with field measured biomass, forest carbon estimation
models based on image pixels can be used to reveal spatial and temporal variations of forest
carbon storage [4]. Generally, forest carbon stock is estimated in “pixels”; however, in China,
forest features such as woodland area, stand volume, forest growth, etc. are investigated in
“sub-compartments” within the forest management inventory [2]. A “sub-compartment” is
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a combination of stands with similar biological characteristics and management features.
However, there are often significant differences between adjacent stands [8], making it
arduous to match remotely sensed image “pixels” with irregular forest sub-compartments.
To overcome this limitation, previous studies converted field survey results to carbon stock
per unit area through linear interpolation. However, that approach does not sufficiently
account for the non-linear characteristics of the forest biomass spatial distribution and the
integrity of the forest structure.

An object-based approach has the capability to gather homogenous pixels into image
objects to form a closed area through multiscale segmentation. This allows us to extract
species information through the objects’ spatial characteristics such as size, shape, and po-
sition [2,9,10]. Therefore, within the object-based approach, objects and sub-compartments
have a certain degree of consistency that is more realistic with respect to the forest manage-
ment inventory.

Object-based forest information extraction is achieved through multiscale image seg-
mentation as well as the construction of a multi-level classification hierarchy [11–13].
Multiscale segmentation is a crucial element to object-based technology. Through segmen-
tation using different scales, both large- and small-scale data information can be obtained,
and therefore the same image can be expressed at various scales at the same time [14,15].
Moreover, the relationship between the super- and sub-object is analogous to the relation-
ship between a large- and small-scale object, which can overcome many limitations of
traditional pixel-based information extraction methods. The combination of object-based
technology and multiscale segmentation has been applied in prior studies on forest informa-
tion extraction [11,16–19], as well as for quantitative estimations of forest parameters [20].
Furthermore, object features derived from different scales can be integrated using the GIS
overlay tools.

Remote sensing data have three characteristics: (i) high dimensions, (ii) noise, and
(iii) complex collinearity issues between features. All three issues present accuracy chal-
lenges to models, especially for traditional statistical models such as multiple linear regres-
sion [21,22]. Much previous research has documented that machine learning algorithms
such as random forest, support vector machine, artificial neural network, etc., can efficiently
improve model performance [23–26]. However, many machine learning algorithms are
defined as “black box” models, and although they exhibit promising accuracy, it is different
to accurately interpret the intrinsic links between variables and output [27]. In this study,
a random generalized linear model (RGLM) was developed to estimate Moso bamboo
(Phyllostachys heterocycla var. pubescens) forest carbon stock. The RGLM integrates the high
accuracy of ensemble learning and the variable interpretability of the “forward” selection
regression model, which is suitable for satellite-based carbon stock estimation. Therefore,
the applicability of RGLM has been extended in this work.

The vegetation indices play an important role in estimating forest biomass, accurately
reflecting the growth and richness of forest vegetation [28–30], thereby providing a quanti-
tative indicator of forest carbon stock [31]. The vegetation index can be obtained through
remote sensing technology, using remote sensing data from different wavelength ranges, to
calculate the vegetation indices. Commonly used vegetation indices include the normal-
ized difference vegetation index (NDVI) [32], the difference vegetation index (DVI) [33],
and the ratio vegetation index (RVI) [34], etc. NDVI is the most widely used indicator
monitoring vegetation growth status [29,30]; DVI can reflect the growth and health status
of vegetation, and has a wide range of applications in agriculture, forestry, environmental
monitoring [29]; RVI is a sensitive indicator parameter for green vegetation, which can
reflect the dynamic changes in leaf stem biomass and chlorophyll content, and can be used
to estimate forest carbon stock [31]. Therefore, the application of vegetation indices in forest
carbon stock estimation can not only improve the monitoring ability of forest resources,
but also contribute to the scientific management and protection of forests as well.

Bamboo forests are an important forest type in the subtropical region of China; they
not only yield economic benefit to farmers, but also have a large potential for carbon
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sequestration, which can help mitigate global climate change. Therefore, they have become
a research focus in recent years [35–38]. Carbon storage is an important parameter that
characterizes the ability of forest sequestration. Much previous work has examined the
estimation of carbon stock in bamboo forests at the pixel or sub-pixel scale, and estimation
results were impressive [4,39–42]. In this study, we adopt an object-based multi-scale
segmentation method to construct a multi-scale hierarchical structure system and extract
information on the distribution of bamboo forests, and a multi-scale feature carbon storage
model of a Moso bamboo forest is constructed by coupling the irregular sample carbon
storage and object-based multi-scale remote sensing features. Therefore, we develop a new
method to estimate aboveground carbon (AGC) in Moso bamboo forests by using novel
object-based multiscale segmentation techniques based on the Chinese forest management
inventory. This method surpasses the traditional carbon storage calculation method based
on single scale (pixel scale). The results provide new methods for the satellite-based
estimation of forest carbon storage at a larger scale using inventory data.

2. Materials and Methods
2.1. Study Area

Anji County, located in northwest Zhejiang Province, China (119◦14′~119◦53′E, 30◦23′~
30◦53′N), was selected as the study area (Figure 1). The local climate is characterized as
subtropical oceanic, with an annual mean precipitation of 1400 mm and mean temperature
of 15.6 ◦C. Anji County has an undulating topography, with elevation ranging from 500
to 1000 m. There is approximately 6.97 × 104 ha of Moso bamboo forest, accounting for
40% of the total forest-covered area in the county. Thus, it has been named the home of the
Moso bamboo forest.
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2.2. Research Data and Processing
2.2.1. Remote Sensing Data

Satellite images were taken over the study area by the SPOT-6 satellite on 11 March,
21 July, and 7 October 2014. The SPOT-6 dataset consists of four multispectral bands (blue
[0.45–0.52 µm], green [0.53–0.59 µm], red [0.62–0.69 µm], and near-infrared [0.76–0.89 µm])
with a spatial resolution of 6 m × 6 m and a panchromatic band with a resolution of
1.5 m × 1.5 m. All images were geometrically corrected based on a 1:50,000 scale topo-
graphic map. The root mean square error (RMSE) was less than 1 pixel, and it was computed
using 10 independent ground control points. Subsequently, ortho-rectification using a dig-
ital elevation model (DEM) was conducted to reduce topographic effects. Multispectral
and panchromatic images were fused to enhance the spatial resolution of the multispectral
image to that of the panchromatic image at 1.5 m × 1.5 m. Additionally, the NDVI, DVI,
RVI were calculated from the relevant spectral bands.

2.2.2. Field Inventory

Field inventories, which are similar to forest management inventories, were conducted
in July 2013 and July 2014. According to a representative sampling and random sampling
schemes, a total of 72 irregular sample plots were measured throughout Anji County under
varying site conditions, stand density, and management conditions. GPS was also used to
record boundaries of those sample plots. In each irregular sample plot, the survey items
include the number of Moso bamboo, altitude, slope, canopy density, and management status.

As Moso bamboo is a gramineous species, radial growth stops with the end of high
growth, and the biomass per unit area of Moso bamboo has a significant correlation with
bamboo quantity. An exponential (Equation (1)) model was applied to demonstrate the
relationship between total biomass and number of Moso bamboo in each plot [43]:

y = 14.365x0.9839 (1)

where y is the total dry aboveground biomass (AGB) and x is the total quantity of Moso
bamboo in each plot. The exponential model was used to estimate AGB with an accuracy of
0.9643 at a significant level of 0.05. The proportion of bamboo with extremely high values is
very small in our study area, and these plots often affect model construction and estimation
accuracy. To ensure model performance, a value of 2σ (twice the standard deviation)
was used to detect the field sample plots with extremely high values. Twelve plots were
identified as outliers because the absolute differences between the AGB and average values
are greater than 2σ. Our previous research indicated that the conversion factor from dry
biomass to AGC for Moso bamboo is 0.5042 [44]. Thus, the carbon stocks (Mg·ha−1) of the
bamboo forest for each irregular plot can be successfully calculated. Statistics of the Moso
bamboo AGC from the field inventory are showed in Table 1.

Table 1. The descriptive statistics of Moso bamboo forest AGC in 60 sample plots from the field
inventory (unit: MgC/ha).

Sample Size Min Max Mean SD

Sample plots 60 1.14 10.92 5.72 2.62

2.3. Multiscale Image Segmentation and the Optimal Scale Selection

In the process of image segmentation, scale is a vital parameter, as it affects the size
of the segmentation object and the accuracy of the extracted information. In this study,
72 irregular vector polygons were applied as auxiliary data to participate in object-based
SPOT-6 data segmentation. Because the size of irregular sample plots varies, only by
matching the irregular plots with the segmentation results can the estimation model of the
bamboo forest AGC be accurately established.
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Five scales were tested to ascertain the most appropriate scale for Moso bamboo
mapping and carbon stock estimation. Multispectral bands and NDVI, DVI, and RVI, as
well as the filed sample datasets, were used as the input layers for image segmentation.
In order to obtain a satisfactory segmentation result, the most effective matching scale
with the polygon boundary of irregular plots must be carefully quantified. In this study,
segmentation experiments of five-scale parameters were carried out. Table 2 shows the
settings for the segmentation parameters. In previous research on information extraction of
bamboo distribution, shape criteria were all set to 0.1 [9,11,16,45]. However, because of the
inclusion of irregular sample plots in the segmentation, the shape criterion was increased
to 0.3 and the color criterion was reduced to 0.7 (shape criterion + color criterion = 1).

Table 2. The segmentation parameters of the SPOT-6 image.

Scale
Parameter

Samples Data
Used or Not Shape Color Compactness Smoothness

20 Yes 0.3 0.7 0.5 0.5
30 Yes 0.3 0.7 0.5 0.5
40 Yes 0.3 0.7 0.5 0.5
50 Yes 0.3 0.7 0.5 0.5
60 Yes 0.3 0.7 0.5 0.5

Image segmentation based on the optimal segmentation scale can match irregular
plots with the objects, but the object-based method is needed to extract the distribution
of bamboo forests from the land-use types. Furthermore, in order to accurately extract
bamboo forest information, it is necessary to build a multiscale object hierarchy using the
object layer segmented at the optimal scale [45]. In this study, the number of objects that
overlapped with irregular plots was used as the criteria for the determination of the optimal
segmentation scale.

2.4. Development of the AGC Estimation Model
2.4.1. Variable Selection Using All Subsets Regression Method

Object features, including each object’s (1) mean value, (2) standard deviation, and
(3) gray-level co-occurrence matrix (GLCM) texture measures, were extracted from every
scale level (Table 3). Thus, the corresponding features of 60 irregular samples were ex-
tracted. The original object features were filtered using all subsets regression (ASR) to
remove redundant features. Compared to the Stepwise Regression (SR) method, which has
the disadvantage of “local” optimal variable combination, ASR can traverse all variable
combinations and construct multiple linear regression models. ASR finds the “global”
optimal variable combination [46] according to the accuracy index of each model, such as
determination coefficients (R2), adjusted R2 (adjR2), RMSE, or Mallow’s CP. Therefore, the
variables selected by ASR are more representative than those from other methods. Since
there is a huge number of variables in this study, adjR2 was chosen as the screening index
to prevent overfitting during the process of screening variables.

Table 3. Principle of variable selection.

Total Number of Variables
(N)

Proportion of Randomly Selected Variables
(n/N)

1–10 1
11–300 1.0276–0.00276N
>300 0.2

2.4.2. Introduction of the Random Generalized Linear Model

The RGLM model is a new machine-learning method based on the simple generalized
linear model (GLM). This method not only combines the advantages of the “Bagging”
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ensemble learning model such as the high precision of the random forest model, but
also takes into account the interpretability of variables [27]. The model is summarized in
Figure 2.
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Figure 2. Schematic diagram of the RGLM.

In the first step, N samples were formed using the bootstrap method to train data; in
the second step, depending on the number of variables, a number of variables were selected
randomly by using the Random Subspace Method [47] to form the subsamples; the rules for
randomly selecting variables are shown in Table 3. In this study, there was no significant
interaction effects among the eight variables selected, so interactions were not considered.

There were eight variables in the training samples, so all variables were selected. In
the third step, the variables were sorted according to the correlations between independent
variables and dependent variables and their significance. By default, the first 50 variables
after sorting each subsample were used to construct the GLM model. In the fourth step, the
“forward selection” method based on the Akaike Information Criterion (AIC) was used to
introduce the variables that had sorted and screened subsamples into the GLM model. In
the fifth step, the results generated by the GLM model were averaged to obtain the final
results [27].

2.5. Accuracy Assessment

The performance of the AGC estimation model was measured by the RMSE, R2, and
Lin’s Concordance Correlation Coefficient (LCCC), calculated as follows:

RMSE =

√
1
n ∑n

i=1(pi − oi)
2 (2)

R2 = 1−∑n
i=1(pi −Oi)

2/ ∑n
i=1

(
Oi −Oi

)2 (3)

LCCC = 2rσoσp/
[
σo

2 + σp
2 + (o− p)

]
(4)

where oi and pi represent the observed value and the modelled value, respectively; σo and
σp represent the standard deviation of the observed and modelled values, respectively; r
represents the Pearson correlation coefficient between the observed and modelled value;
o and p represent the mean of the observed and modelled values, respectively. LCCC
characterizes the closeness between the best-fit regression and the 1:1 regression line,
ranging from 0–1, with larger values indicating better fits [48].
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To test the generalization ability of the model, the performance of the RGLM model
was evaluated through leave-one-out (LOO) cross-validation. In the LOO procedure [49],
one field plot was removed from the input dataset, and then an RGLM model was fitted to
the remaining n− 1 plot (where n is the number of field plots). The model was subsequently
used to estimate the carbon stock at the removed location. The procedure was repeated n
times, once for each field plot. Subsequently, the mean error between the predicted and
observed carbon was used as the final accuracy-evaluation standard.

3. Results
3.1. Optimal Segmentation Scale

The five segmentation scales shown in Table 2 were used to segment the SOPT-6 image
of Anji County. Table 4 lists the number of objects segmented at different scales and those
that overlap with irregular sample plots.

Table 4. Comparison of segmentation results using different scale parameters.

Segmentation Scale The Number of Objects The Number of Objects Overlapping
with Irregular Samples

20 2,168,849 40
30 1,096,942 68
40 563,176 35
50 375,692 31
60 264,880 26

As illustrated in Table 4, the number of segmentation objects decreased as the scale
increased, and the number of objects overlapping with irregular sample plots also changed.
When the segmentation scale was set to 30, the number of coincidences reached a maximum
value of 68. Figure 3 shows that some irregular samples coincided with objects exactly
at the 30 scale. The remaining four irregular sample plots that are not perfect matches
with objects were manually adjusted to coincide with the segmented objects. Therefore,
a scale of 30 was set as the optimal segmentation scale and the multiscale hierarchy was
constructed based on it.
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3.2. Multiscale Hierarchy Construction and Multiscale Object Features Extraction

Hierarchy is an important feature of object-based methods, including object and
class hierarchy [11,16]. The object hierarchy is constructed through multiscale image
segmentation. Each object layer is created based on its sub-object layer. Therefore, each
image object can clearly know its contextual relationships, such as neighbor, super- or sub-
objects. The class hierarchy is constructed based on object hierarchy, and the classification
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results at a certain scale can serve as contextual features that can be transmitted to the
corresponding super- or sub-objects at another scale. In this study, a scale of 30 was set
as the optimal segmentation scale; carbon stock estimation was conducted at this scale.
Multiscale hierarchy was constructed on a basis of scale 30; two other levels were created
above it for extracting the multiscale object features.

Based on the objects segmented at scale 30 (L30), two higher scales of 60 (L60) and
90 (L90) were set so as to establish a three-scale hierarchy (Figure 4) for bamboo forest
information extraction. Means and standard deviations of four multispectral bands as
well as NDVI, DVI, and RVI were extracted at L30, L60, and L90. In addition, the gray
level co-occurrence matrix of four multispectral bands were extracted. Three levels were
exported as vector layers with their object features and were intersected using the GIS
layer overlay tool. There are 30 object features for each scale and thus a total of 90 features,
would be used as a potential source of variables for developing models for carbon stock
estimation, as shown in Table 5. Overall, 90 object features were integrated into the layer
with the scale of 30.
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F9 L30-Std7 SD: RVI  F54 L60-GLCMStd3 Texture: RedSD 
F10 L30-Std6 SD: DVI F55 L60-GLCMStd2 Texture: GreenSD 
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Figure 4. (a) Class description in the multiscale hierarchy of image objects; (b) classification results at
different scales.

Table 5. Description of object-based features.

Feature Number Feature Name Feature Meaning Feature Number Feature Name Feature Meaning

F1 L30-GLCMHom4 Texture: NIR
homogeneity F46 L60-Mean7 Mean: RVI

F2 L30-GLCMHom3 Texture: Red
homogeneity F47 L60-Mean6 Mean: DVI

F3 L30-GLCMHom2 Texture: Green
homogeneity F48 L60-Mean5 Mean: NDVI

F4 L30-GLCMHom1 Texture: Blue
homogeneity F49 L60-Mean4 Mean: NIR

F5 L30-GLCMCon4 Texture: NIR
Contrast F50 L60-Mean3 Mean: Red

F6 L30-GLCMCon3 Texture: Red
Contrast F51 L60-Mean2 Mean: Green
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Table 5. Cont.

Feature Number Feature Name Feature Meaning Feature Number Feature Name Feature Meaning

F7 L30-GLCMCon2 Texture: Green
Contrast F52 L60-Mean1 Mean: Blue

F8 L30-GLCMCon1 Texture: Blue
Contrast F53 L60-GLCMStd4 Texture: NIRSD

F9 L30-Std7 SD: RVI F54 L60-GLCMStd3 Texture: RedSD
F10 L30-Std6 SD: DVI F55 L60-GLCMStd2 Texture: GreenSD
F11 L30-Std5 SD: NDVI F56 L60-GLCMStd1 Texture: GreenSD

F12 L30-Std4 SD: NIR F57 L60-GLCMMean4 Texture:
NIRaverage

F13 L30-Std3 SD: Red F58 L60-GLCMMean3 Texture:
Redaverage

F14 L30-Std2 SD: Green F59 L60-GLCMMean2 Texture:
Greenaverage

F15 L30-Std1 SD: Blue F60 L60-GLCMMean1 Texture:
Blueaverage

F16 L30-Mean7 Mean: RVI F61 L90-GLCMHom4 Texture: NIR
homogeneity

F17 L30-Mean6 Mean: DVI F62 L90-GLCMHom3 Texture: Red
homogeneity

F18 L30-Mean5 Mean: NDVI F63 L90-GLCMHom2 Texture: Green
homogeneity

F19 L30-Mean4 Mean: NIR F64 L90-GLCMHom1 Texture: Blue
homogeneity

F20 L30-Mean3 Mean: Red F65 L90-GLCMCon4 Texture: NIR
Contrast

F21 L30-Mean2 Mean: Green F66 L90-GLCMCon3 Texture: Red
Contrast

F22 L30-Mean1 Mean: Blue F67 L90-GLCMCon2 Texture: Green
Contrast

F23 L30-GLCMStd4 Texture: NIRSD F68 L90-GLCMCon1 Texture: Blue
Contrast

F24 L30-GLCMStd3 Texture: RedSD F69 L90-Std7 SD: RVI
F25 L30-GLCMStd2 Texture: GreenSD F70 L90-Std6 SD: DVI
F26 L30-GLCMStd1 Texture: GreenSD F71 L90-Std5 SD: NDVI
F27 L30-GLCMMean4 Texture: NIRaverage F72 L90-Std4 SD: NIR
F28 L30-GLCMMean3 Texture: Redaverage F73 L90-Std3 SD: Red

F29 L30-GLCMMean2 Texture:
Greenaverage F74 L90-Std2 SD: Green

F30 L30-GLCMMean1 Texture: Blueaverage F75 L90-Std1 SD: Blue

F31 L60-GLCMHom4 Texture: NIR
homogeneity F76 L90-Mean7 Mean: RVI

F32 L60-GLCMHom3 Texture: Red
homogeneity F77 L90-Mean6 Mean: DVI

F33 L60-GLCMHom2 Texture: Green
homogeneity F78 L90-Mean5 Mean: NDVI

F34 L60-GLCMHom1 Texture: Blue
homogeneity F79 L90-Mean4 Mean: NIR

F35 L60-GLCMCon4 Texture: NIR
Contrast F80 L90-Mean3 Mean: Red

F36 L60-GLCMCon3 Texture: Red
Contrast F81 L90-Mean2 Mean: Green

F37 L60-GLCMCon2 Texture: Green
Contrast F82 L90-Mean1 Mean: Blue

F38 L60-GLCMCon1 Texture: Blue
Contrast F83 L90-GLCMStd4 Texture: NIRSD

F39 L60-Std7 SD: RVI F84 L90-GLCMStd3 Texture: RedSD
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Table 5. Cont.

Feature Number Feature Name Feature Meaning Feature Number Feature Name Feature Meaning

F40 L60-Std6 SD: DVI F85 L90-GLCMStd2 Texture: GreenSD
F41 L60-Std5 SD: NDVI F86 L90-GLCMStd1 Texture: GreenSD

F42 L60-Std4 SD: NIR F87 L90-GLCMMean4 Texture:
NIRaverage

F43 L60-Std3 SD: Red F88 L90-GLCMMean3 Texture:
Redaverage

F44 L60-Std2 SD: Green F89 L90-GLCMMean2 Texture:
Greenaverage

F45 L60-Std1 SD: Blue F90 L90-GLCMMean1 Texture:
Blueaverage

Note: L30-, L60- and L90- represent feature variables obtained at 30, 60 and 90 scales, respectively; SD represents
standard deviation.

3.3. Mapping of the Moso Bamboo Forest

The multiscale hierarchical structure and the class definition of each scale are shown
in Figure 4a and Figure 4b, respectively. At the 90 scale, the layer is classified into forest,
construction, water, other land, and background. Objects at the 60 scale are sub-objects at the
90 scale. Therefore, at the 60 scale, the construction land at the 90 scale is subdivided into
roads and towns, while other land is subdivided into farm and bare land. At the 30 scale, the
Moso bamboo forest can be distinguished from forest land, while non-forest objects directly
inherit the classification results of the super-objects according to the class hierarchy, including
roads, towns, farmland, bare land at the 60 scale, and water at the 90 scale.

155 sample points were randomly generated to construct a classification confusion
matrix to evaluate results; overall accuracy was 83.87%, and the Kappa index was 0.8005.
The detection of the Moso bamboo forest was satisfactory, with a producer’s accuracy of
88.89% and user’s accuracy of 86.96%. Because classification accuracy is high, characteristics
of the bamboo forest in irregular sample plots will be used to construct an estimation model
of carbon stock in Anji County.

3.4. Input Variables Selection

The ASR method was used to filter 90 input variables, and the results are shown
in Figure 5. The blank area indicates that the corresponding variables are not selected,
the green area indicates that the corresponding variables are selected, and the deeper the
color, the higher the accuracy of the linear model. When the variables used to develop the
multiple linear regression model were F4, F7, F15, F27, F45, F55, F73 and F74, the model
had the best performance, with an adjR2 of 0.70.
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3.5. The Multiscale Carbon Storage Estimation Model

As shown in Figure 6, the RGLM model produces higher accuracy and less error. In the
model training phase, R2 is 0.74, RMSE is 1.1667 Mg C, and LCCC is 0.84. In the model valida-
tion phase, R2 reduced to 0.64, RMSE increased to 1.3559 Mg C, and LCCC also decreased
to 0.78. In general, it shows that the RGLM model has good stability and high precision in
estimating the carbon stock of the Moso bamboo forest. The predicted result of carbon stock
is shown in Figure 7. The distribution of carbon stock of the Moso bamboo forest generally
exhibited high values in the northeast and low in the south. The range of overall carbon stock
varies from 0 to 27 MgC/ha. Because of the dense population in central and northern areas of
Anji County, the distribution of bamboo forests is relatively small.
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4. Discussion

This study shows that an AGC estimation model for Moso bamboo forests based
on object-based multiscale segmentation performs well in development and validation
phases, with R2 of 0.74 and 0.64, respectively. There is a significant difference in the number
of overlapping objects and irregular sample plots under the three single scales of 30, 60,
and 90. Zhang et al. also showed that the segmentation scale has a significant impact on
the accuracy of object-based classification [50]. On this basis, the study included AGC
estimation of the Moso bamboo forest. The model using the features extracted from the
multiscale hierarchy greatly improved the accuracy of the AGC estimation in the bamboo
forest. Thus, the object-based multiscale model performs well for carbon storage estimation,
and the estimated carbon storage of the Moso bamboo forest in Anji County can accurately
reflect its spatial distribution.

The primary difference between the object-based AGC estimation model and pixel-
based models is that the hierarchical structure can obtain remote sensing information at
different scales, which allows carbon storage to be estimated comprehensively according to
the multiscale object characteristics. Figure 8 shows the correlations between the predicted
carbon storage values at three scales (L30, L60, L90), the object variables, and the measured
carbon storage values of the Moso bamboo forest. Feature 7 (F7) and Feature 15 (F15) have
a significant response to carbon storage at the 30 scale, and the correlation coefficients
between the predicted and measured carbon storage values at the 30 and 90 scales are
greater than those at the 60 scale. The main reasons for this are that the optimal segmen-
tation scale of multiscale segmentation is 30 (Table 3), and the sample plots are mainly
distributed at the 30 scale; as a result, the four variables (F4, F7, F15, F27) at the 30 scale
contain more bamboo forest carbon storage characteristics. A large amount of information
for bare and construction land (Figure 4) was primarily integrated at the 60 scale, but the
forest land information at the 90 scale was not inherited, so the correlation between the
predicted AGC and the measured AGC on this scale was not significant. As the forest
information at the 90 scale was inherited directly by the objects at the 30 scale, information
was obtained by further subdividing the characteristics on this scale, such that there is
a significant correlation between the predicted and measured at the 90 scale, where the
objects were regarded as super-objects.

As illustrated in Figure 3, the characteristics of Moso bamboo forest objects at the 60
and 90 scale (super-objects) were inherited directly by the objects at the 30 scale. Therefore,
the construction of the multiscale carbon storage estimation model not only considers the
micro-structure of the small-scale bamboo forest, but also considers the macro-features of
the large-scale bamboo forest, so that it can express bamboo forest characteristics with more
semantic information [46]. This means that the carbon stocks of bamboo forests are correlated
on multiple scales, and it improves the fitting and prediction accuracy of carbon storage.

In this study, based on the multiscale hierarchy constructed with the optimal seg-
mentation scale (segmentation parameter = 30), the information from the Moso bamboo
forest was extracted accurately with a producer’s accuracy of 88.89% and user’s accuracy
of 86.96%. Zhang et al. (2020) and Wei et al. (2023) showed that the object-based method
achieved improvement classification performance [5,50]. In comparison, Tan et al. (2021)
only utilizes object-based monitoring landslides without optimizing the segmentation scale.
The irregular sample plots directly participated in multiscale segmentation at the optimal
scale, which ensured that the segmentation objects were consistent with the irregular plots
(Figure 3). This lays an important foundation for the construction of an object-based multi-
scale estimation model for carbon storage in bamboo forests. This solved the challenge of
matching ground data with remote sensing pixels and ensured the integrity of the stand
structure and remote sensing information. Thus, the estimation accuracy of the carbon stock
model is high, and the carbon stock estimation results at the object scale can be presented
as a sub-compartment (Figure 7B), which also makes the model more practical. In addition,
the construction of a multiscale hierarchy makes the contextual relationship of each image
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object very clear, such that the information characteristics of the Moso bamboo forest at
different scales can be fully expressed.
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object variables and measured carbon storage values of the Moso bamboo forest.

Pixel-based classification often classifies individual pixels directly according to their
spectral information, which is simple to operate but reduces accuracy due to “same objects
with different spectra” and “different objects with the same spectra” issues. The object-based
method makes the upper layer effectively inherit information from the next layer through
multiscale segmentation, making the contextual information relatively coherent. Therefore,
objects composed of homogenous pixels have rich information features, such as spectrum,
geometry, texture, etc., which can potentially improve classification accuracy [51,52]. In this
study, the fitting effect of the AGC model based on pixel and object feature information
(F4, F7, F15, F27, F45, F55, F73, F74) was further compared. Results show that the object-
based RGLM model performs better than the pixel-based RGLM model in both training
and testing phases (Figures 6 and 9), which is consistent with the research results of [25].
Although the t-test shows that there is no significant difference between the two residuals
(p > 0.05), it is obvious that the residual error of the object-based model is more con-
centrated than that of the pixel-based model, with a range of −2.5~2.5 Mg. In addition,
the pixel-based RGLM model has a wide fluctuation range (Figure 10), which further
proves that the AGC estimation accuracy can be improved by using object-based multiscale
segmentation techniques.
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5. Conclusions

The study proposes a method for estimating Moso bamboo forest AGC by coupling
an object-based multiscale segmentation method and the RGLM model. With 88.89% and
86.96% of producer’s and user’s accuracy, the result shows that information from the Moso
bamboo forest is accurately extracted by constructing a SPOT-6 multiscale hierarchy with
the 30 scale as the optimal segmentation scale. The RGLM model based on the multiscale
hierarchy can accurately estimate carbon storage of the bamboo forest with a fitting and
test accuracy (R2) of 0.74 and 0.64, respectively. Compared with pixel-based methods using
the RGLM model, our model greatly improved the accuracy of AGC estimation in the
bamboo forest by using the features extracted from multiscale hierarchy. Thus, the object-
based multiscale model performs well for carbon storage estimation, and the estimated
carbon storage of the Moso bamboo forest in Anji County can accurately reflect its spatial
distribution. However, scale is an important factor in the process of image segmentation,
feature extraction, and biomass estimation. Choosing an appropriate segmentation scale
has a significant impact on the accuracy of image segmentation, classification, and biomass
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estimation. Currently, the best segmentation selection methods are based on statistical
analysis of the differences in spectral and other information, which is time-consuming
and not intuitive. Therefore, it is necessary to research more intuitive and simple scale
segmentation selection methods for different applications in the future.
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