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Abstract: Identifying areas susceptible to flash flood hazards is essential to mitigating their negative
impacts, particularly in arid regions. For example, in southeastern Sinai, the Egyptian government
seeks to develop its coastal areas along the Gulf of Aqaba to maximize its national economy while
preserving sustainable development standards. The current study aims to map and predict flash
flood prone areas utilizing a spatial analytic hierarchy process (AHP) that integrates GIS capabilities,
remote sensing datasets, the NASA Giovanni web tool application, and principal component analysis
(PCA). Nineteen flash flood triggering parameters were initially considered for developing the
susceptibility model by conducting a detailed literature review and using our experiences in the flash
food studies. Next, the PCA algorithm was utilized to reduce the subjective nature of the researchers’
judgments in selecting flash flood triggering factors. By reducing the dimensionality of the data, we
eliminated ten explanatory variables, and only nine relatively less correlated factors were retained,
which prevented the creation of an ill-structured model. Finally, the AHP method was utilized to
determine the relative weights of the nine spatial factors based on their significance in triggering
flash floods. The resulting weights were as follows: rainfall (RF = 0.310), slope (S = 0.221), drainage
density (DD = 0.158), geology (G = 0.107), height above nearest drainage network (HAND = 0.074),
landforms (LF = 0.051), Melton ruggedness number (MRN = 0.035), plan curvature (PnC = 0.022), and
stream power index (SPI = 0.022). The current research proved that AHP, among the most dependable
methods for multi-criteria decision-making (MCDM), can effectively classify the degree of flash flood
risk in ungauged arid areas. The study found that 59.2% of the area assessed was at very low and low
risk of a flash flood, 21% was at very high and high risk, and 19.8% was at moderate risk. Using the
area under the receiver operating characteristic curve (AUC ROC) as a statistical evaluation metric,
the GIS-based AHP model developed demonstrated excellent predictive accuracy, achieving a score
of 91.6%.

Keywords: remote sensing; AHP; PCA; NASA Giovanni web tool; Sinai; Egypt

1. Introduction

Flash floods occur when low-lying watersheds inundate rapidly [1], mainly due to
short periods of extreme rainfall that exceed their water-holding capacity [2,3]. In addition
to rainfall, other essential factors include (i) anthropogenic issues, such as unplanned de-
velopment of flash flood prone areas [4]; (ii) hydrometeorological factors (e.g., temperature,
evapotranspiration, runoff, porosity, and permeability); and (iii) geomorphic parameters,
including the physical properties of watersheds [5]. However, the exact combination of
processes and relevant factors that cause or regulate flash floods remains uncertain and
unpredictable [6]. Moreover, unpredictable climate change amplifies the adverse effects
of extreme precipitation events in warming seasons [7], causing severe recurrence of flash
floods, especially in arid regions.

Flash floods are natural hazards that frequently occur worldwide, especially in
arid Middle East regions such as Egypt. In fact, Egypt has recently experienced sev-
eral severe flash floods, resulting in many life and property losses (https://floodlist.
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com/tag/egypt; accessed on 6 February 2023), with the following being notable exam-
ples: (i) The 12 November 2021 event in Southern Egypt (Aswan) resulted in the deaths
of 3 people, the injury of hundreds from scorpion stings, and destruction to around
23 houses impacting at least 60 families, according to the initial governmental estimates
(https://floodlist.com/africa/egypt-aswan-floods-scorpions-november-2021; accessed
on 6 February 2023); (ii) the 13 March 2020 event in the governorates of Qena, New
Valley, Sohag, and Menoufia claimed the lives of 5 people, caused 5 buildings to col-
lapse, damaged drainage and water supply systems, and injured 13 people due to a
train collision (https://floodlist.com/africa/egypt-storm-floods-march-2020; accessed on
6 February 2023); (iii) the 22–24 October 2019 event in the Gharbia, North Sinai, Kafr
El-Sheikh, and Cairo governorates brought about the death of 8 people, flooded ma-
jor streets, damaged airport infrastructure, and entailed flight delays (https://floodlist.
com/africa/egypt-cairo-floods-october-2019; accessed on 6 February 2023); and (iv) the
26–28 October 2016 event in the lowlands across the governates of Red Sea, Assuit, Qena,
Sohag, and South Sinai led to the death of at least 22 people and injured 72 others,
and resulted in the Egyptian government spending $5.6 million in reconstruction efforts
(https://floodlist.com/africa/egypt-deadly-flash-floods-hit-sohag-red-sea; accessed on 6
February 2023). Furthermore, recent climate changes manifest in extreme rainfall patterns
and subsequent flash floods, particularly in arid regions such as Egypt [8,9]. Due to the
problems mentioned above, it is critical to identify areas prone to flash floods to reduce
their negative impacts on people, the economy, and the environment.

By analyzing present and historical dominant flash floods’ causative factors (e.g.,
climatic, hydrologic, and geomorphic characteristics) in a specific location, it is pos-
sible to identify areas that are vulnerable to inundation (i.e., flash flood susceptibility
modeling) [10]. Statistical, machine learning, and multi-criteria decision-making (MCDM)
methods, or a combination of these approaches, can all be used to develop flash flood sus-
ceptibility models, which predict the likelihood and magnitude of future flash floods [11].
These models can categorize the hazard zones into distinct groups [12], and assess the
geographic extent of past and future flash floods [10,13]. In addition, they can provide
valued information for policymakers and governmental authorities to create emergency
plans and mitigation strategies to reduce the loss of life and property.

Massive spatial datasets are mostly needed to monitor and model natural disasters
but obtaining them might be difficult [14]. For example, in arid nations such as Egypt,
field monitoring of rainfall and runoff datasets is often limited or absent [15], making
it challenging and expensive to perform accurate spatiotemporal flash flood modeling
using traditional observational methods [16]. Moreover, point-based field instruments
recording rainfall and runoff can be time- and cost-intensive to collect vast and detailed
geospatial data required to model natural hazards [17]. However, advances in remote
sensing and GIS techniques have made it easier to monitor the spatial dynamics of flash
floods (e.g., [18–23]). As an illustration, Earth observation-based satellites can repeatedly
survey vast and inaccessible regions (e.g., mountainous and swampy areas) at a low or no
cost. The geographic information system (GIS) also enables geospatial capture, storage,
management, analysis, and presentations. In addition, it contains several cutting-edge
algorithms, processes, and techniques that are valuable in flash flood monitoring and
modeling applications (e.g., [5,24]).

Over the past years, several methods have been introduced for modeling flood suscepti-
bility, including statistical approaches (e.g., frequency ratio [25] and weights-of-evidence [26]),
as well as machine learning methods (e.g., artificial neural network (ANN) [27], decision
tree (DT) [28], support vector machine (SVM) [26], and MaxEnt Entropy [29–31]). However,
statistical approaches require testing a set of assumptions before initiating the study [32].
Moreover, machine learning techniques also have limitations when applied to flood suscep-
tibility. ANN is a black box model that requires high computational capacity and extensive
data for training and validation [33,34]. DT models are prone to errors caused by noisy
data and do not allow for multiple output attributes [28]. SVM parameterization can be
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time-consuming and requires many attempts for selecting the appropriate kernel type [35].
Finally, MaxEnt can be susceptible to overfitting the training datasets, leading to weak pre-
dictions (https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-
presence-only-prediction-works.htm; accessed on 6 April 2023).

The term “MCDM” refers to a set of tools and procedures for managing and ranking
decision problems and alternative decisions [36]. One of the significant MCDM approaches
that can efficiently model susceptible areas to flash floods (e.g., [37,38]) is the analytical
hierarchy process (AHP) [39]. In the current study, the AHP was utilized to relatively weigh
flash flood triggering factors and to generate a flash flood susceptibility index map. AHP is
suggested by Saaty et al. [39] as an effective technique to support best decisions by setting
alternative priorities that provide relative weights for multi-criteria problems using pairwise
comparison matrices. Generally, the criteria weights and their alternatives are typically based
on multiple experts’ subjective evaluations and personal experiences (e.g., [40,41]).

The AHP technique has been widely applied in various fields, including environmental
planning, resource management, and hazard modeling (e.g., [41,42]). Some researchers
have employed this method for modeling flash flood susceptibility in arid and semi-arid
areas (e.g., [42–53]) (Table 1). In these studies, the priorities of flash flood triggering factors
were initially assessed based on previous scholars’ judgments through detailed literature
reviews or questionnaires via Google or email. A few studies employed the AHP technique
to model and predict flash flood hazards in Egypt (Table 1). For example, Youssef and
Hegab [38] selected the distance from the drainage network, slope, topographic wetness
index, curvature, lithology, and elevation to identify areas prone to flash floods along
the Ras Gharib area along the Red Sea coast. Other researchers applied the AHP model
to detect flash floods hazards in the Biskra basin, Algeria [44], southeastern Tunisia [45],
Shatt Al-Arab basin, Iraq–Iran transboundary [46], northeast of Tunisia [47], Taguenit,
Morocco [48], Gabes basin, Tunisia [43], Dammam [49], Al-Qurayyat [50], Duhok, Kurdistan
Region of Iraq [51], Wadi Al-Lith [52], Riyadh [53], and Najran [42] in the Kingdom of Saudi
Arabia (Table 1). They commonly employed slope (S), rainfall (RF), elevation (E), drainage
density (DD), distance from Wadis (DfW), land use/land cover (LULC), geology (G), and
soil (So) as flash flood causative factors. Moreover, many of these models did not include a
statistical multicollinearity test to identify correlated flash flood triggering factors, which
may increase the inaccuracy in the developed flash flood susceptibility models (e.g., [42–53]).
In addition, some of these studies did not include the key dynamic flash flood triggering
factor (i.e., rainfall), such as Youssef and Hegab in Ras Gharib, Egypt [38], and Elkhrachy
in Najran, Saudi Arabia [42] (Table 1). Furthermore, other researchers did not consider
rainfall as the primary flash flood triggering factor, given that flash floods cannot occur
without rainfall (e.g., [43–45,47–50,52]). It is worth noting that most of these studies did not
employ statistical validation methods to evaluate the accuracy of their models’ predictions
(e.g., [47,49,53]). Some researchers utilized pre- and post-optical satellite images such
as Terra Moderate Resolution Imaging Spectroradiometer (MODIS)/surface reflectance
MOD09GA [46], the Landsat TM 8 images-derived normalized difference water index
(NDWI), and the normalized difference vegetation index (NDVI) to validate flash flood
maps [43]. However, cloud coverage can limit the effectiveness of this approach [54].

Table 1. Literature review of the causative factors employed in AHP-based flash flood susceptibility
modeling in arid and semi-arid areas.

Location/Authors Factors Weights Comments

Ras Gharib, Egypt
Youssef and Hegab [38]

6 Factors: DfW (0.335), S (0.246),
TWI (0.180), Cur (0.108), G (0.074), E (0.056).

Arid climate, no multicollinearity test, no
rainfall, AUC = 83.3%.

Najran, Saudi Arabia
Elkhrachy [42]

7 Factors: RO (0.355), So (0.240), S (0.159),
SR (0.104), DD (0.068), DfW (0.045),

LULC (0.030).

Arid climate, no multicollinearity test, no
rainfall. For validation, the results were

compared using two different DEMs for the
study area.

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-presence-only-prediction-works.htm
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Table 1. Cont.

Location/Authors Factors Weights Comments

Gabes Basin, Tunisia
Dahri and Abida [43]

6 Factors: LULC (0.3298), G (0.1841),
RF (0.1488), DD (0.147), S (0.1019),

E (0.0883).

Semi-arid climate, no multicollinearity test.
For validation, NDWI and NDVI extracted

from Landsat TM 8 images (3 June 2014)
were used to validate the flood map.

Biskra basin, Algeria
Bouamrane et al. [44]

6 Factors: LULC (0.2775), So (0.217),
RF (0.1599), DfW (0.1509), S (0.1478),

E (0.0468).

Arid climate, no multicollinearity test,
AUC = 93.61%.

Southeastern Tunisia
Dhekra et al. [45]

8 Factors: E (0.225), LULC (0.175), G (0.175),
RF (0.15), DN (0.1), DD (0.1), S (0.05),

GWD (0.025).

Semi-arid climate, no multicollinearity test.
For validation, the flood map was compared
with the inventory map and evaluated using

histograms of susceptibility zones.

Shatt Al-Arab basin, Iraq-Iran
Allafta and Opp [46]

8 Factors: RF (0.1957), DfW (0.1606),
E (0.142), S (0.1199), LULC (0.1107),

DD (0.1057), So (0.0889), G (0.0565%).

Semi-arid climate, no multicollinearity test.
For validation, visual verification using pre-
and post-flood MOD09GA images was used.

North-East of Tunisia
Hammami et al. [47]

8 Factors: LULC (0.23), E (0.18), G (0.18),
RF (0.15), DD (0.10), S (0.08), So (0.05),

GWD (0.03).

No multicollinearity and no
statistical validation.

Taguenit, Morocco
Ikirri et al. [48]

7 Factors: FA (2.73), DfW (2.54), DD (1.43),
RF (0.71), LULC (0.85), S (0.55), P (0.40).

Arid climate, no multicollinearity test.
Validation was carried out using fieldwork

observations of the water level in 2018 and a
survey of the local population.

Dammam, Saudi Arabia
Dano [49]

5 Factors: RF (0.32), LULC (0.19), S (0.18),
E (0.16), So (0.15).

Arid climate, no multicollinearity test, no
statistical validation.

Al-Qurayyat, Saudi Arabia
Abdelkarim et al. [50]

8 Factors: DfW (0.294), FA (0.190), S (0.190),
RF (0.124), DD (0.082), RO (0.055),

LULC (0.038), Hg (0.027).

Arid climate, no multicollinearity test,
AUC = 97.1%.

Duhok, Kurdistan Region of Iraq
Amen et al. [51]

12 Factors: E (0.207), S (0.174), DfW (0.174),
RF (0.134), LULC (0.085), So (0.085),
G (0.0378), TRI (0.037), TWI (0.0229),
A (0.0174), STI (0.0116), SPI (0.0116).

Arid climate, no multicollinearity, the success
rate for validation.

Wadi Al-Lith, Saudi Arabia
Elsebaie et al. [52]

7 Factors: TWI (0.241), E (0.229), S (0.21),
RF (0.103), DD (0.093), LULC (0.063),

S (0.061).

Arid climate, no multicollinearity test. For
validation, flood map was compared with the

flood map of a 100-year return period.

Riyadh, Saudi Arabia
Radwan et al. [53]

4 Factors: RF (0.54), S (0.24), DD (0.14),
CN (0.08).

No multicollinearity and no
statistical validation.

Abbreviations: Distance from Wadis (DfW), slope (S), topographic wetness index (TWI), curvature
(Cur), geology (G), elevation (E), runoff speed (RO), soil (So), surface roughness (SR), drainage density
(DD), landuse/landcover (LULC), rainfall (RF), drainage network (DN), groundwater depth (GWD), flow
accumulation (FA), permeability (P), hydrological soil group (Hg), topographic ruggedness index (TRI), aspect (A),
stream transport index (STI), stream power index (SPI), curve number (CN).

In response to the high occurrence of severe flash floods caused by global climate
change, particularly in arid areas, the Egyptian government has implemented a sustainable
development program for coastal regions to maximize its national economy. Previous
studies on flash floods in southeastern Sinai were limited to geomorphometric analyses of
the drainage networks (e.g., [5]). Integrating the AHP technique in the GIS environment
proved to be a proper approach to modeling flash flood susceptibility. Incorporating expert
judgments is essential in predicting areas prone to flash floods, but having multiple expert
opinions can lead to a more subjective model. To address this issue, the current study
employed the principal component analysis (PCA) algorithm to estimate the principal
components that best describe the variation among the factors responsible for flash floods
and reduce the ambiguity associated with personal judgments. In order to support future
sustainable development plans, the current study’s main aim was to identify and predict
flash flood susceptible zones along the Gulf of Aqaba’s coastal area in southwest Sinai,
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Egypt. This aim was accomplished by employing available remote sensing datasets and
improved PCA- and GIS-based MCMD techniques. The study had several objectives, which
are as follows: (i) conducting a detailed literature review and drawing on the authors’
previous experience to select 19 flash flood triggering factors; (ii) employing the Giovanni
NASA web tool application to process the dynamic rainfall variable; (iii) implementing
the PCA algorithm to identify variables that are relatively less correlated with each other;
(iv) developing a GIS-based AHP model to identify areas susceptible to flash floods; and
(v) evaluating the performance accuracy of the generated susceptibility map by comparing
it with the flash flood inventory map.

2. Materials and Methods
2.1. Area of Study

The Sinai Peninsula occupies the northeastern part of Egypt with an area of 61,000 km2.
It has a triangular shape with an apex, where the Gulfs of Aqaba and Suez meet at the
Ras Mohammed in the south [55]. The coastal zone of the Gulf of Aqaba is a crucial asset
and has many investment opportunities, such as tourism, desalination plants, mineral
exploration, and industrial zones. However, the rugged mountainous area alongside the
Gulf of Aqaba’s narrow coastal plain is susceptible to frequent destructive flash floods.
These floods were mainly associated with incredible flow speed loaded by debris present,
which threatened human life and infrastructure.

Flash floods are commonplace in the Middle East’s arid areas such as the Sinai Peninsula [56].
Although Sinai generally has high evaporation potential, it is prone to extreme flash flood
events because of the spatial heterogeneity of rainfall events with short duration and
high intensity over a limited spatial extent [57]. Furthermore, many infrastructures (e.g.,
buildings and roads) are incorrectly located in the flash floods’ paths [58,59]. Lack of
attention has been given to flash floods in Sinai due to recording long intervals without
extensive flash flood events. This unconsciousness gives residents a false safety message,
thereby increasing their vulnerability to disastrous flood events.

The study area (Figure 1) covers approximately 1035 km2 from south of the city of
Dahab to north of the city of Sharm El-Sheikh along the southeastern coastal zone of the
Gulf of Aqaba between longitudes 34◦00′ and 34◦30′E and latitudes 28◦00′ and 28◦30′N.
The lithological setting of the study area is bounded from the west by basement badlands
(i.e., igneous and metamorphic rocks), with a maximum altitude of 2279 m above the
mean sea level. It slopes gradually and gently in the east direction to form the coalesced
sedimentary alluvial plain along the western coast of the Gulf of Aqaba (Figure 1).
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Wadi Kid is the largest area draining the study watershed area. However, limited
studies (e.g., [5]) have been carried out to quantify the impact of flash floods on it. Though
Wadi Kid remains dry most of the year, it transformed into an overflowing ephemeral
stream after extensive rainfall events. Therefore, it supports vegetation growth due to
surface and near-surface water availability. In addition, the area under scrutiny involves the
Nabq area, declared by the Ministry of Environmental Affairs of Egypt as a multipurpose
natural protectorate by Decree No. 1511 in 1992. It covers an area of 600 km2, with arid
climatic conditions dominated by a long, hot summer and a mild winter. It includes a
unique combination of 134 plant species, migratory birds, coastal mangrove forests, and
coral reefs.

2.2. Data

Ground data collection and monitoring during a disastrous flash flood is challenging,
prohibitive, and sometimes impossible [38].

2.2.1. Flash Flood Inventory Map

A flash flood inventory map generally displays information on the date of occur-
rences, locations, and events that have left noticeable marks of their impact [38]. It was
conventionally generated using fieldwork and aerial photographs of fine spatial details,
but these traditional methods have limitations, as mentioned by Malamud et al. [60] and
Guzzetti et al. [61]. Currently, remote sensing datasets are the primary source of informa-
tion used to generate these maps, with minimal field surveys serving to verify the inventory
maps [62]. Other authors use various sources to map the flash floods’ inventories, such as
in situ data collection, literature reviews, historical reports, satellite spatial images, and
previously developed flash flood maps.

The current research generated the flash flood inventory map based on previous
field data collection and developed a morphometric model for detecting flash flood-prone
areas described in Taha et al. [5]. In addition, this inventory map was visually verified
using the previous literature, Google Earth Pro, and volunteered geographic information.
Despite the unscientific nature of volunteered geographic information (e.g., information
from sources such as the internet, media, newspapers, and local settlers), they can introduce
crucial information for natural hazards studies [63]. Furthermore, integrating this type of
information with conventional data introduces valuable information for mapping the flash
flood extent. Therefore, some researchers have effectively used volunteered datasets to help
detect flash flood inundation [64–70]. Non-flood points were mainly collected by using
Google Earth Pro and generally restricted to the upstream area (i.e., elevated rugged hills
and mountains that are not impacted by the flash flood events) (e.g., [12,71,72]). Figure 2
shows randomly selected flood (n = 100) and non-flood (n = 100) points extracted from the
flash flood total inventory map of Wadi Kid across the drainage network of southeastern
Sinai, Egypt.

2.2.2. Description of the Digital Elevation Model (DEM) Used in the Current Study

Many flash flood causative factors can be directly or indirectly extracted from the
digital elevation model (DEM). DEM is commonly used to demonstrate digital elevation
datasets and present the terrain landscape relief of a given terrain, where the altitude
values are represented as a regular array of Z values, which are georeferenced to a common
world datum [73]. The freely available global ALOS Phased Array type L-band Synthetic
Aperture Radar (PALSAR) DEM with an original spatial resolution of 12.5 m was employed
in our current study to extract different spatial layers due to its high horizontal and vertical
accuracy (i.e., 4.57 m) [74]. The PALSAR DEM was initially developed and processed by
the Alaska Satellite Facility Distributed Active Archive Data Center (ASF DAAC). The
internal side-looking of SAR images was corrected using Gamma software to enhance the
backscattering signals’ estimation and reduce the foreshortening and layover (i.e., geometric
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distortion). For more information on PALSAR DEM generation and characteristics, refer to
Laurencelle et al. [75].
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Figure 2. Validation using randomly selected 100 flood points and 100 non-flood points from the
total flash flood inventory map of Wadi Kid, southeastern Sinai.

2.2.3. Definition of the Flash Flood Triggering Factors

The hydrogeomorphic characteristics of Wadi Kid were thoroughly studied, and
nineteen potential factors that can trigger flash floods were identified based on previous
literature (e.g., [42–53,76–78]) and the fieldwork experience in the area of study. These
geospatial layers (Tables 2 and 3) included elevation (E), vertical flow distance (VFD),
horizontal flow distance (HFD), topographic wetness index (TWI), distance from Wadis
(DfW), flow length in the upstream (FL_UP), relative slope position (RSP), convergence
index (CI), profile curvature (PfC), stream transport index (STI), rainfall (RF), slope (S),
drainage density (DD), landforms (LF), geology (G), height above the nearest drainage
network (HAND), Melton ruggedness number (MRN), plan curvature (PnC), and stream
power index (SPI). Following this, the PCA algorithm was employed to select nine less
correlated variables (i.e., RF, S, DD, LF, G, HAND, MRN, PnC, and SPI) (Table 3 and
Figure 3) and to eliminate multicollinearity between them.

Each factor was resampled to the spatial resolution of 30 m, where the area of the study
grid was bounded by 1431 and 1421 columns and rows, respectively. Most independent
continuous variables were classified using the natural break classification algorithm [79].
This method defines the class breaks and keeps collectively similar values (i.e., lessening
the variance within classes) while increasing the differences between diverse classes.
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2.2.4. Preparation of the Satellite Precipitation Data Using NASA Giovanni Web Tool

The Global Precipitation Measurement (GPM) Mission is a joint project between the
National Aeronautics and Space Administration (NASA) and the Japan Aerospace Explo-
ration Agency (JAXA) to monitor global precipitation. The GPM spacecraft has two key
instruments: a radar and a radiometer, which serve as the standard reference for other
satellites’ precipitation products. The mission aims to measure rainfall and snowfall using
two integrated instruments: the GPM microwave imager (GMI) captures precipitation pat-
terns and strengths, while the dual-frequency precipitation Radar (DPR) produces a three-
dimensional view of precipitating particles [80]. The Integrated Multi-satellite Retrievals
for GPM products (IMERG) were generated by blending the following: (i) satellite passive
microwave precipitation estimates from the GPM constellation, (ii) microwave-calibrated
infrared satellite measurements, (iii) rainfall gauge records, and (iv) other precipitation
products of different sensors [81]. The system runs for every observation several times to
generate products of 0.1◦ and 30-min spatial and temporal resolutions, respectively. IMERG
has three different products with varying accuracy and response time [82,83], from the near
real-time early IMERG to late IMERG runs to the final research-grade IMERG with 4 h,
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12 h, and 3.5 months latency, respectively. The final run has the advantage of including
monthly in situ gauge estimates in the validation step.

Giovanni [84] is a user-friendly online tool developed by NASA scientists for process-
ing, analyzing, and visualizing various big satellite data (e.g., precipitation, temperature,
and evaporation) on the fly without requiring downloads. The user guide delivers addi-
tional information on how to use this web tool (https://giovanni.gsfc.nasa.gov/giovanni/
doc/UsersManualworkingdocument.docx.html#h.k1vpfalyfmci; accessed on 6 February
2023). The Giovanni web tool has successfully processed and evaluated different satellite
precipitation estimates (e.g., [85–87]). In this study, we used the Giovanni web-based
application to process the recurring average of level-3 GPM_3IMERGM v06 in December,
January, and February from 2000 to 2021 over the study area (Figure 3a). The winter season
was selected because it best represents the spatial distribution of the rainfall in mm/month
over the study area.

Table 2. Definitions of initial flash flood causative variables excluded from the final flash flood
susceptibility model based on employing PCA.

Variables’ Definitions

E

• Elevation (m) is the key factor in flash flood modeling, with height playing an
inverse role in flash flood likelihood [26].

• Flash floods are less common at higher elevations, as they are inversely
proportional to elevation [88,89].

• Flat areas or lower elevations are more prone to flash floods.

VFD

• Vertical flow distance (m) is the vertical component of flow distance.
• It determines the distance between each pixel in the given domain and the

pixel(s) on the river or stream where they flow in a downward direction
(https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/
flow-distance-function.htm; accessed on 6 April 2023).

HFD

• Horizontal flow distance (m) calculates the surface flow distance in the
horizontal component.

• It measures the distance between each pixel in the domain and the pixel(s) on the
river or stream where they flow into but only in the horizontal direction
(https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/
flow-distance-function.htm; accessed on 6 April 2023).

TWI

• Topographic wetness is an indicator of soil moisture content and surface
saturation, which can lead to floods in areas with high levels of saturation [90,91].

• As the level of saturation increases, the groundwater table rises, and the zone of
aeration becomes fully saturated, creating favorable conditions for flash floods.
Therefore, areas with higher TWI values are more susceptible to flash floods.

DfW

• Distance from Wadis (m). According to Rahmati et al. (2016), the proximity of a
location to a river is a crucial factor that significantly affects the extent and size
of floods.

• Generally, areas closer to rivers are at a higher risk of floods [92].

FL_UP

• The Flow length_Upstream (m) index calculates the longest upstream (i.e.,
upslope) distance along the flow path for each cell, from the cell to the top of the
drainage divide (https://pro.arcgis.com/en/pro-app/latest/tool-reference/
spatial-analyst/flow-length.htm; accessed on 6 April 2023).

• It often expresses the basin’s concentration time.

RSP • Relative slope position is the relative position of the slope’s altitude to the valley
and ridge elevations [93].

https://giovanni.gsfc.nasa.gov/giovanni/doc/UsersManualworkingdocument.docx.html#h.k1vpfalyfmci
https://giovanni.gsfc.nasa.gov/giovanni/doc/UsersManualworkingdocument.docx.html#h.k1vpfalyfmci
https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/flow-distance-function.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/flow-distance-function.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/flow-distance-function.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/flow-distance-function.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/flow-length.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/flow-length.htm
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Table 2. Cont.

Variables’ Definitions

CI • The convergence index calculates the convergence and divergence values
concerning overland flow [94,95].

PfC

• Profile curvature (1/100 of a z-unit) runs parallel to the slope and shows the
maximum slope’s direction (https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-analyst/how-slope-works.htm; accessed on 6 February 2023).

• It influences the acceleration and deceleration of the overland flow, where
negative areas are at a high risk of flash floods [95].

STI
• The stream transport index (m3/s/km2) represents the erosion and sediment

transport that occurs due to flash flood propagation and can cause
foundation damage [96].

Table 3. Definitions of final flash flood causative variables included in the final flash flood suscepti-
bility model based on employing PCA.

Variables’ Definitions

RF

• The final IMERG v06 (mm/month) is used in the current research to estimate the
recurring rainfall average in the winter (Figure 3a).

• The rainfall datasets were processed using the online Giovanni web-based
application from 2000 to 2021. They are also used in the current study as a proxy
of runoff.

S

• It is the steepness at each cell of the DEM raster grid in degrees
(https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/
how-slope-works.htm; accessed on 6 February 2023).

• It ranged from 0◦ near the coastline to 74◦ in the rugged mountains in the study
area (Figure 3b).

DD
• Drainage density (km/km2) was extracted from PALSAR DEM 30 m.
• It expresses the density of the linear drainage features within the vicinity of each

cell in units of length per unit of area (i.e., km/km2) [97] (Figure 3c).

LF • The study area is classified into five significant landforms (i.e., major valleys,
drainage, open slopes, upper slopes, and ridges) (Figure 3d).

G

• The lithology of the study area (Figure 3e) is composed of a Kid complex (i.e., a
Precambrian metamorphic belt that was intruded by granites and the
gabbro–diorite complex) [5].

• The Plio–Pleistocene fluvio-marine sediments (i.e., intercalations of fluvial sand,
gravels, limestone bands, and shell fragments) of Nabq alluvial plain
unconformably overlay the basement badlands.

HAND

• The height above the nearest drainage (m) (Figure 3f) is a normalized DEM.
• It represents the relative height difference between a specific cell on the DEM

surface and its hydrologically linked gid cell in the channel drainage
network [98,99].

• HAND algorithm and implementation steps can be found in Rosim et al. [100]
and Rahmati et al. [101].

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slope-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slope-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slope-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-slope-works.htm
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Table 3. Cont.

Variables’ Definitions

MRN

• Melton ruggedness number (m/m) (Figure 3g) is linked to the
flow accumulation.

• It is a morphometric index computed per pixel as the difference between the
minimum and maximum altitude divided by the square root of the watershed of
the area under investigation [102–104].

PnC

• Plan curvature (1/100 of a z-unit) (Figure 3h) is perpendicular to the direction of
the maximum slope. It indicates the degree of surface slope distortion.

• A positive planform implies that the surface is laterally convex at that cell, a
negative value means the surface is laterally concave at that cell, and zero
indicates the surface is linear (https://desktop.arcgis.com/en/arcmap/10.3
/manage-data/raster-and-images/curvature-function.htm; accessed on
6 February 2023).

SPI
• The stream power index (Figure 3i) indicates the erosive power of flowing runoff

over a certain watershed area. The surface flow’s power is directly proportional
to the SPI [105].

2.3. Methods

The workflow of the implemented methodology in the current study is exemplified
in Figure 4, and is described as follows: (i) deriving a set of possible explanatory flash
flood triggering factors at a spatial resolution of 30 m, (ii) extracting the drainage network
from AlOS PALSAR DEM (30 m) to prepare the other set of the independent parameters,
(iii) using the NASA Giovanni web tool to extract spatial rainfall distribution, (iv) applying
the principal component analysis (PCA) technique to select less correlated flash flood
causative factors, (v) implementing the AHP method to estimate relative weights of the flash
flood triggering factors, (vi) generating the flash flood susceptibility map, (vii) validating
the developed model, and (viii) comparing flash flood susceptibility classes.

2.3.1. Principle Component Analysis (PCA)

Principle component analysis (PCA) [106] is an exploratory data analysis that was
computed to reduce data dimension by transforming the most correlated factors into a
new coordinate system. This new system allows for the explanation of the total variance
in the data utilizing fewer dimensions than in the original data, with the first component
explaining the highest variance. PCA linearly transforms the datasets into orthogonal
uncorrelated principal components (PCs) while preserving the initial data’s total variance,
which is mathematically represented as follows:

PCj = ∑n
1 aij xi j = 1, n (1)

where PCj are the PCs, aij denotes the scores of the linear transformation, xi represents the
flash flood triggering factors, and n is the number of factors. The principal components are
the eigenvectors of the data correlation matrix, and the associated eigenvalues indicate the
variance in descending order, explained by each eigenvector. The principal components
with eigenvalues less than one contain less information than the initial variables, which
allows for dimensionality reduction of the data.

Carnes and Slade [107] recommend using the PCA algorithm to reduce the dimen-
sionality of any dataset as well as to quantify any interdependence between independent
variables (i.e., eliminate multicollinearity among features [108]). By removing principal
components linked to small eigenvalues, the dimensionality of explanatory factors can
be decreased without impacting the model’s predictive power, indicating that the deleted
components were not critical to explaining changes in the dependent variable.

https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm
https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm
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Figure 4. Methodology flowchart of the GIS-based AHP for determining flash flood prone zones
along the southwestern coast of the Gulf of Aqaba, Sinai, Egypt. The flood triggering factors are
elevation (E) (m), height above nearest drainage network (HAND) (m), vertical flow distance (VFD)
(m), horizontal flow distance (HFD) (m), topographic wetness index (TWI), distance from a drainage
Wadis (DfW) (m), flow length in the upstream (FL_UP) (m), relative slope position (RSP), convergence
index (CI), slope (So), landforms (LF), plan curvature (PnC) (1/100 of a z-unit), profile curvature (PfC)
(1/100 of a z-unit), stream power index (SPI), stream transport index (STI) (m3/s/km2), rainfall (RF)
(mm/month), drainage density (DD) (km/km2), geology (G), and the Melton ruggedness number
(MRN) (m/m).

2.3.2. Analytical Hierarchy Process (AHP)

Multiple-criteria decision-making (MCDM) introduces various methods for solving
different decision problems [36]. AHP was developed by Saaty et al. [39] as an MCDM
technique to solve various types of decision problems based on relative preferences allo-
cated per individual criterion to accomplish a specific purpose. It is a structural technique
for developing a numerical score to rank each decision alternative based on how well
each alternative meets the decision maker’s criteria (i.e., priority) of each factor. In Saaty’s
AHP [39], a pairwise comparison matrix is employed to estimate relative weighting coeffi-
cients for each criterion from the eigenvectors of these factors by applying a ranking scale
between 1 and 9 (Table 4). This matrix is evaluated using a random consistency index [39].
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Table 4. Saaty’s relative importance scale value and Random consistency index value.

Saaty’s Relative Importance Scale Value

Less Important More Important

Extremely Very
Strongly Strongly Moderately Equal Moderately Strongly Very

Strongly Extremely

1/9 1/7 1/5 1/3 1 3 5 7 9

2, 4, 6, and 8 are the intermediary values between the two adjoining judgments in a pairwise comparison matrix

Random Consistency Index Value

Consistency Ratio Table

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

The detailed steps for applying the GIS-based AHP model for flash flood susceptibility
modeling in the current area of study were to (i) define the decision problem (i.e., flash
flood susceptibility) and establish the conceptual framework and the decision hierarchy;
(ii) collect information from expert researchers about flood triggering factors through the
scholarly literature. We also depend on our previous experience studying flash floods in the
current area and similar locations to identify the initial triggering factors. Nineteen flood
causative factors were initially selected, but they were later reduced to nine variables using
PCA, including rainfall (RF) (mm/month), slope (So), drainage density (DD) (km/km2),
geology (G), height above nearest drainage network (HAND) (m), landforms (LF), Melton
ruggedness number (MRN) (m/m), plan curvature (PnC) (1/100 of a z-unit), and stream
power index (SPI); (iii) employ a pairwise comparison matrix between flash flood triggering
factors based on a ranking scale range from 1 to 9 (Table 4) [39]. A value of 1 indicates that
the two variables being assessed are of equal priority (i.e., importance), while a value of
9 signifies that the variable in the row is much more significant for the decision problem
than the variable in the column. The number of comparisons depends on the number of
flash flood conditioning factors. The current study used a 9 by 9 reciprocal matrix from
the paired comparison. Then, we normalized relative weights and estimated the principal
eigenvector (i.e., priority vector) to determine the priority of the included factors to flash
flood occurrence. Priority vector displays relative weights among the comparable factors
(i.e., rank); and (iv) calculate consistency ratio (CR) (Equation (3)) (i.e., the ratio between
consistency index (CI) (Equation (4)) and random consistency index (RI)). The RI (Table 4)
changed per the number of variables or different matrix orders [109]. Once judgments
have been entered into the pairwise comparison matrix, it is necessary to check if they are
consistent. Since the numeric values were derived based on the expertise of the previous
researchers, it is impossible to avoid some inconsistencies in the final judgment matrix.
The CR should be less than 10% in the AHP analysis, and the weightage of the pairwise
comparison matrix should be recomputed if the CR is higher than 0.1.

CR =
CI
RI

(2)

CI =
λmax−n

n− 1
(3)

where CR, CI, λmax, n, and RI denote the consistency ratio, consistency index, maximum
eigenvalue, number of criteria or factors being compared, and random consistency index,
respectively. Finally, once the CR is acceptable for a pairwise comparison matrix, the factors
can be finalized based on their relative weights in relation to flash flood occurrences.
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2.3.3. Flood Susceptibility Zonation

To determine the susceptibility zonation in the Wadi Kid watershed, the relative
weights of flash flood triggering factors were used to calculate the flood risk index at a 30
× 30 m spatial resolution. The GIS-based AHP was estimated based on the significance
priority of the factors using Equations (4) and (5), which are represented below:

FFHI = ∑n
i=1 WiXi (4)

where FFHI is the flash flood susceptibility zonation and Wi denotes the weight of each
factor; Xi corresponds to the rating of each sub-factor, and n is equal to the number
of causative factors. Equation (4) can also be expressed in a more detailed form using
Equation (5):

FFHI = WRFXRF + WSXS + WDDXDD + WGXG + WHANDXHAND + WLFXLF + WMRNXMRN + WPnCXPnC + WSPIXSPI (5)

where W refers to the weight of each flood curative factor (i.e., rainfall (RF) (mm/month),
slope (So), drainage density (DD) (km/km2), geology (G), height above nearest drainage
network (HAND) (m), landforms (LF), Melton ruggedness number (MRN) (m/m), plan
curvature (PnC) (1/100 of a z-unit), and stream power index (SPI)), while X denotes each
sub-factor rating.

2.3.4. Accuracy Assessment of the Susceptibility Model

The area under the receiver operating characteristic (AUC ROC) evaluation metric is
employed to estimate the developed model’s prediction. The introduced model cannot
explain the flash flood variability if the AUC is equal to or less than 0.5. Conversely, if the
AUC value is closer to one, the developed model is excellent in predicting flash flood prone
areas. In the present study, the AUC ROC was used to evaluate the prediction accuracy
of the developed flash flood susceptibility outputs. This method has been successfully
employed in several studies (e.g., [37,44]) to assess the performance of the GIS-based
AHP models for flash flood susceptibility. The AUC value ranges from 0.00 to 1.00 and
is classified into five categories: low, moderate, good, very good, and excellent accuracy,
corresponding to 0.50 to 0.60, 0.61 to 0.70, 0.71 to 0.80, 0.81 to 0.90, and 0.91 to 1.00,
respectively. The developed FFHI model was validated using the random flood and
non-flood points (Figure 2) extracted from the total flood inventory map of the study area.

The two-dimensional AUC ROC graph illustrates the trade-off between the false
positive rate (FPR) (i.e., 1− specificity) on the X-axis and the Y-axis and the true positive rate
(TPR) (i.e., sensitivity) on the Y-axis [110]. These are represented in Equations (6) and (7),
which are as follows:

X = 1− Speci f icity = 1−
[

TN
TN + FP

]
(6)

Y = Sensitivity =

[
TP

TP + FN

]
(7)

TN, FP, TP, and FN represent true negative, false positive, true positive, and false
negative, respectively [111].

3. Results
3.1. Principal Component Analysis (PCA)

Tables 5 and 6 display the results of the PCA conducted on the nineteen flash flood
triggering factors. Table 5 shows the loading values of each factor in the nineteen principal
components estimated by employing the PCA method (i.e., PC1, PC2, PC3, . . . . . . PC19).
For example, the factor responsible for the highest loading might signify a specific PC of
interest [112]. The loading values of each factor are classified into three categories (i.e.,
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strong > 0.75, 0.75 > moderate > 0.5, and 0.5 > weak > 0.4) [113,114], with loading values less
than 0.50 not considered significant. Table 6 lists the eigenvalues, variance, and cumulative
variance explained by each principal component of the flash flood triggering factors, and
significant values were indicated in bold. Only the first six principal components have
eigenvalues greater than one (e.g., [112,115,116]), and are considered the main components
that captured 72.838% of the variability in the data. Despite the eigenvalues from seven
to ten being lower than one, the first ten PCs, accounting for 88.767% of the variation in
the dataset, were considered for selecting the final flash flood triggering factors. Based
on the PCA analysis (Tables 5 and 6), we reduced the dimensionality and eliminated the
multicollinearity among datasets. For developing our flash flood susceptibility model, we
selected HAND, S, SPI, RF, PnC, G, DD, MRN, and LF, as they are a set of factors with
relatively low correlation.

3.2. Assignment of Weight and Rank to Each Flash Flood Triggering Factor

The current study applied the AHP method to weigh each flash flood triggering
factor and its corresponding classes. Table 7 shows an example of a reciprocal pairwise
comparison matrix for flash flood causative factors. To execute this technique, evaluating
and rating each variable against every other variable is essential using Saaty’s 9-point
rating scale [39]. Then, the normalized relative weights and the priority vectors for each
factor and its classes were estimated (Table 8) to ensure that the weights are normalized
and that the sum of all weights is equal to 1 as well as to estimate the priorities of the flash
triggering factors and their corresponding classes. A higher priority value indicates that a
factor is more significant than others in triggering flash floods. It is impossible to entirely
avoid inconsistencies in the final matrix of judgment. Therefore, inconsistency of less than
10% is allowed in the AHP analysis; otherwise, the weightage of the pairwise comparison
matrix should be recomputed. The overall consistency ratio in the developed model was
equal to 0.025037 (i.e., the consistency ratio was equal to 3%), which indicated that the
weightage suggested for the flash flood causative factors in the pairwise comparison matrix
is acceptable. The CRs % were approximately equal to 2% (RF), 8% (S), 4% (DD), 6% (G),
2% (HAND), 4% (LF), 6% (MRN), 2% (PnC), and 7% (SPI). Table 9 shows the weights of each
flash flood causative factor and its subclasses based on implementing the AHP method. The
weights of each variable were ranked in descending order (Table 9), with rainfall (RF = 0.310)
having the highest weight, followed by slope (S = 0.221), drainage density (DD = 0.158),
geology (G = 0.107), height above nearest drainage network (HAND = 0.074), landforms
(LF = 0.051), Melton ruggedness number (MRN = 0.035), plan curvature (PnC = 0.022), and
stream power index (SPI = 0.022).

3.3. Mapping of Flash Flood Susceptibility Zonation Using AHP Model Outputs

The main goal of this research is to develop the flash flood susceptibility zonation
based on the relative priority of nine hydrogeomorphic parameters using AHP weights. The
findings showed that RF and S were the most influential factors in determining flash flood
zonation in Wadi Kid (Table 9), while MRN, PnC, and SPI were the less significant variables
(Table 9). First, the relative weight of each flash flood triggering factor was integrated by
the rating of each corresponding sub-criteria. Then, by integrating the relative weighting
sum of all causative parameters, as well as the rating for each sub-criteria, the final flash
flood susceptibility map (Figure 5) was generated with an overall CR value of less than 3%
(<10%, validated model).
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Table 5. The loading values of each flash flood triggering factor in the nineteen principal components were estimated using the PCA algorithm (significant values
are indicated in bold).

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19

HAND 0.84 0.13 0.15 0.32 −0.07 0.08 0.09 0.07 0.07 −0.12 0.18 0.00 −0.10 −0.12 0.01 −0.06 0.10 0.01 0.15
VFD 0.83 0.16 0.14 0.35 −0.08 0.02 0.09 0.06 0.10 −0.12 0.20 −0.01 −0.10 −0.09 0.01 −0.05 0.08 −0.02 −0.15
HFD 0.76 −0.12 0.23 0.12 0.06 0.40 0.18 0.19 −0.13 −0.07 0.01 0.03 −0.01 0.02 −0.03 0.05 −0.29 0.01 0.00
DfW 0.76 −0.10 0.19 0.02 0.08 0.36 0.12 0.13 −0.21 0.08 −0.21 −0.04 0.21 0.17 0.04 0.12 0.19 −0.01 0.00
TWI −0.73 −0.31 0.02 0.01 0.07 0.09 0.10 0.14 −0.01 −0.41 0.20 −0.14 −0.04 0.26 −0.18 −0.01 0.04 0.01 0.00

FL_US −0.67 −0.02 0.52 0.19 −0.18 −0.08 −0.03 0.08 0.00 −0.25 0.05 0.05 0.14 0.03 0.34 0.02 −0.03 −0.05 0.01
RSP 0.64 0.22 0.04 0.34 −0.17 −0.39 −0.20 −0.07 0.14 0.06 0.05 0.25 0.09 0.31 −0.08 0.01 −0.04 0.00 0.01

DEM −0.56 0.17 −0.18 0.55 0.41 0.06 −0.13 −0.01 0.03 0.02 0.07 0.05 −0.04 −0.08 −0.01 0.34 0.01 0.03 0.00
CI 0.48 −0.01 0.43 −0.33 0.45 −0.17 −0.25 0.07 0.00 0.07 −0.01 −0.11 −0.35 0.15 0.13 0.04 0.00 0.00 0.00
S 0.26 0.80 −0.09 −0.13 0.01 −0.03 −0.05 −0.16 −0.06 0.08 0.24 −0.36 0.20 0.05 0.03 0.04 −0.05 0.00 0.01

LF −0.15 −0.74 0.07 −0.04 0.00 0.12 −0.08 0.23 0.20 0.44 0.34 −0.02 0.10 0.01 0.03 −0.01 0.01 −0.01 0.00
PfC −0.34 0.55 0.01 −0.43 0.21 0.28 0.12 −0.04 −0.23 0.05 0.26 0.34 −0.03 0.04 0.03 −0.04 0.04 0.01 −0.01
SPI −0.49 0.19 0.76 0.15 −0.26 −0.01 0.01 0.03 −0.08 0.13 −0.04 −0.05 −0.01 −0.01 −0.04 −0.04 0.02 0.16 −0.02
STI −0.53 0.32 0.68 0.14 −0.15 0.04 0.04 0.00 −0.05 0.20 −0.05 −0.02 −0.09 −0.03 −0.19 0.02 0.00 −0.13 0.01
RF −0.36 0.08 −0.13 0.61 0.51 0.25 −0.20 −0.09 −0.09 0.10 −0.08 −0.04 0.02 0.07 0.04 −0.28 −0.01 −0.01 0.00

PnC 0.32 −0.16 0.49 −0.23 0.53 −0.24 −0.29 0.07 −0.04 −0.19 0.03 0.06 0.26 −0.18 −0.14 −0.03 0.00 0.00 0.00
DD −0.02 −0.13 0.18 0.10 0.45 −0.37 0.73 −0.22 0.09 0.10 0.00 −0.01 0.04 0.03 0.03 −0.01 −0.01 0.00 0.00
G 0.16 −0.29 0.32 −0.11 −0.03 0.41 −0.12 −0.71 0.28 −0.08 0.02 0.02 0.00 0.02 0.00 0.04 0.00 0.00 0.00

MRN −0.20 0.56 0.03 −0.19 0.17 0.23 0.07 0.32 0.63 −0.04 −0.15 0.02 0.05 0.03 0.00 −0.03 0.00 0.01 0.00
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Table 6. Eigenvalues, percentage of variance, and cumulative variance that are explained by each
principal component.

Initial Eigenvalues Extraction Sums of Squared Loadings
Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.507 28.983 28.983 5.507 28.983 28.983
2 2.302 12.118 41.102 2.302 12.118 41.102
3 2.054 10.810 51.912 2.054 10.810 51.912
4 1.540 8.104 60.015 1.540 8.104 60.015
5 1.359 7.155 67.171 1.359 7.155 67.171
6 1.077 5.667 72.838 1.077 5.667 72.838
7 0.891 4.692 77.530 0.891 4.692 77.530
8 0.849 4.469 81.999 0.849 4.469 81.999
9 0.691 3.637 85.636 0.691 3.637 85.636

10 0.595 3.131 88.767 0.595 3.131 88.767
11 0.439 2.308 91.076 0.439 2.308 91.076
12 0.356 1.872 92.948 0.356 1.872 92.948
13 0.350 1.843 94.791 0.350 1.843 94.791
14 0.291 1.529 96.320 0.291 1.529 96.320
15 0.238 1.254 97.574 0.238 1.254 97.574
16 0.224 1.177 98.751 0.224 1.177 98.751
17 0.145 0.762 99.514 0.145 0.762 99.514
18 0.048 0.250 99.764 0.048 0.250 99.764
19 0.045 0.236 100.000 0.045 0.236 100.000

Table 7. Pairwise comparison matrix for the nine flash flood triggering factors using Saaty’s
AHP method.

RF S DD G HAND LF MRN PnC SPI
RF 1.00 2.00 3.00 4.00 5.00 6.00 7.00 9.00 9.00
S 0.500 1.00 2.00 3.00 4.00 5.00 6.00 8.00 8.00

DD 0.333 0.500 1.00 2.00 3.00 4.00 5.00 7.00 7.00
G 0.250 0.333 0.500 1.00 2.00 3.00 4.00 5.00 5.00

HAND 0.200 0.250 0.333 0.500 1.00 2.00 3.00 4.00 4.00
LF 0.167 0.200 0.250 0.333 0.500 1.00 2.00 3.00 3.00

MRN 0.143 0.167 0.200 0.250 0.333 0.500 1.00 2.00 2.00
PnC 0.111 0.125 0.143 0.200 0.250 0.333 0.500 1.00 1.00
SPI 0.111 0.125 0.143 0.200 0.250 0.333 0.500 1.000 1.00

Table 8. Normalized weights of the flash flood triggering factors.

RF S DD G HAND LF MRN PnC SPI Priority
Vector

RF 0.355 0.426 0.396 0.348 0.306 0.271 0.241 0.225 0.225 0.310
S 0.178 0.213 0.264 0.261 0.245 0.226 0.207 0.200 0.200 0.221

DD 0.118 0.106 0.132 0.174 0.184 0.180 0.172 0.175 0.175 0.158
G 0.089 0.071 0.066 0.087 0.122 0.135 0.138 0.125 0.125 0.107

HAND 0.071 0.053 0.044 0.044 0.061 0.090 0.103 0.100 0.100 0.074
LF 0.059 0.043 0.033 0.029 0.031 0.045 0.069 0.075 0.075 0.051

MRN 0.051 0.035 0.026 0.022 0.020 0.023 0.034 0.050 0.050 0.035
PnC 0.039 0.027 0.019 0.017 0.015 0.015 0.017 0.025 0.025 0.022
SPI 0.039 0.027 0.019 0.017 0.015 0.015 0.017 0.025 0.025 0.022
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Table 9. Sub-criteria of each parameter and the pairwise comparison matrix and their weights. AHP
rating of sub-criteria for flood susceptibility analysis. VL, L, M, H, and VH denote very low, low,
moderate, high, and very high flash flood risk classes, respectively.

V Reclass
Code

AHP
Weight Range Flood

Level Area km2 Area % Rating CR

1 2.86–2.97 VH 150.971 14.582 0.416
2 2.98–3.06 H 50.357 4.864 0.262

RF 3 0.310 3.07–3.57 M 473.942 45.779 0.161 0.015
4 3.58–5.27 L 273.779 26.445 0.099
5 5.28–8.51 VL 86.234 8.33 0.062
1 0–9.85 VH 188.715 18.335 0.460
2 9.86–19.42 H 246.413 23.94 0.260

S 3 0.221 19.43–27.82 M 284.936 27.683 0.152 0.079
4 27.83–37.09 L 218.939 21.271 0.089
5 37.10–73.90 VL 90.274 8.771 0.039
1 0.00–0.22 VL 221.493 21.394 0.048
2 0.23–0.48 L 239.81 23.163 0.075

DD 3 0.158 0.49–0.73 M 262.139 25.32 0.118 0.044
4 0.74–1.01 H 210.21 20.304 0.239
5 1.02–1.82 VH 101.65 9.819 0.520
1 Fan VH 18.24 1.763 0.534

G 2 0.107 Alluvial Deposits H 72.925 7.050 0.282
4 Igneous Rocks L 467.77 45.22 0.108 0.059
5 Metamorphic Rocks VL 475.502 45.967 0.075
1 0.00–55.00 VH 401.825 39.47 0.505
2 55.01–130.00 H 265.577 26.087 0.254

HAND 3 0.074 130.01–219.00 M 194.994 19.153 0.123 0.024
4 219.01–337.00 L 116.51 11.444 0.072
5 337.01–834.00 VL 39.153 3.846 0.047
1 Major Valleys VH 152.4276 14.72293 0.478
2 Drainage Network H 148.2786 14.32218 0.277

LF 3 0.051 Open Slopes M 496.1889 47.9267 0.129 0.036
4 Upper Slopes L 68.4288 6.609513 0.075
5 Ridges VL 169.9839 16.41868 0.041
1 0.00–1.29 VH 372.2454 35.955 0.606582
2 1.30–3.62 H 260.2377 25.136 0.15414

MRN 3 0.035 3.63–5.95 M 225.8541 21.815 0.130443 0.056
4 5.96–8.97 L 134.4015 12.982 0.064593
5 8.98–21.99 VL 42.5691 4.112 0.044243
1 −0.020772–0.000611 H 167.7762 16.20544 0.239488

PnC 2 0.022 −0.000611–0.00005 VH 344.4903 33.27419 0.623225 0.016
3 0.00005–0.018805 L 523.0413 50.52037 0.137288
1 0.000 VH 274.1265 26.478 0.445213
2 0.001–702 H 753.4431 72.775 0.299367

SPI 3 0.022 703–2100 M 3.6423 0.352 0.148973 0.070
4 2110–7020 L 2.3238 0.224 0.063601
5 7030–179,000 VL 1.7721 0.171 0.042847
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Overall, the very low, low, moderate, high, and very high flash flood vulnerable areas
cover approximately 28.3%, 30.9%, 19.8%, 12.8%, and 8.2% of the study area, respectively
(Figure 5). The natural breaks algorithm classified the flash flood prone areas into five
categories (Figure 5). The very high and high flash flood probability zones (Figure 5)
were mainly located in the major Wadis and downstream areas until reaching the Wadi
Kid alluvial fan. In comparison, the low and very low flash flood probability zones were
mainly found in the upstream area and in rugged elevated badlands across the study
area (Figure 5).

3.4. Accuracy Assessment of the GIS-Based AHP Flash Flood Susceptibility Model

Model validation is a mandatory step to ensure the accuracy of the developed flash
flood susceptibility map. The current study applied the AUC metric to verify the flood
susceptibility index map. The accuracy of the flash flood susceptibility map was validated
by comparing it with random flood and non-flood points, and the AUC represented
the map prediction accuracy. The ArcSDM tool in the ArcGIS environment exhibits an
AUC with an accuracy rate greater than 0.9 (Figure 6). The observed accuracy of the
GIS-based AHP model for determining flash flood prone areas is 0.916 (91.60%) (Figure 6).
Therefore, the developed model successfully generated an accurate flash flood susceptibility
map (Figure 5).
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4. Discussion

Identifying areas at risk of flash floods is fundamental in implementing effective
measures to mitigate and reduce flood hazards in highly vulnerable ungauged regions.
Therefore, the final flash flood susceptibility map was categorized into distinct classes using
a natural break classification approach, as depicted in Figure 5. This approach detects class
breaks, and subsequently groups similar values together, thus minimizing variance within
classes while maximizing differences between them [79].

4.1. Comparison of the Current Findings with the Prior Studies

There is no agreement on the optimal number of triggering factors required to de-
velop a realistic flash flood susceptibility map. The current study selected nine causative
parameters for susceptibility modeling, while Tehrany et al. [117] utilized thirteen vari-
ables. Bui et al. [12] and Khosravi et al. [118] used ten variables. Table 1 shows that
different authors used 6 factors (e.g., [38,43,44]) and 8 factors (e.g., [45–47,50]) to develop
their AHP-based flash flood susceptibility models, while Radwan et al. [53], Dano [49],
and M Amen et al. [51] used 5, 4, and 12 factors, respectively. Mahmoud and Gan [119]
suggested using more than six variables to avoid predicting erroneous flash flood prone
areas that may be influenced by a single weight of a particular factor.

In fact, there is no flash flood in the arid areas without rainfall occurrences. In the
current study, the RF was the most critical factor (Table 9) in initiating the flash flood,
and had the highest weight among other flash flood triggering factors compared to other
studies. This finding was consistent with other studies conducted in the Shatt Al-Arab basin,
Iraq–Iran [46], Dammam [49], and Riyadh, Saudi Arabia [53] (Table 1), where RF ranked
first among other flash flood triggering factors. Other studies did not include rainfall in
their developed susceptibility model, such as Youssef and Hegab in Ras Gharib, Egypt [38],
and Elkhrachy in Najran, Saudi Arabia [42] (Table 1). The rainfall came in the third rank
(e.g., [43,44]) and fourth rank (e.g., [45,50]), among other flash flood causative factors.

For validation purposes, many authors did not use a statistical evaluation metric to
assess the performance of their developed flash flood susceptibility models (e.g., [47,49,53]).
Some studies employed pre- and post-optical Landsat TM 8-derived NDWI and NDVI to
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validate the flash flood risk map [43] and Terra MODIS/surface reflectance MOD09GA [46].
However, the effectiveness of this approach may be limited by cloud coverage, as mentioned
in [54]. The proposed model scored 91.6% prediction accuracy based on the AUC evaluation
metric, while Youssef and Hegab [38], Bouamrane et al. [44], and Abdelkarim et al. [50]
achieved 83% (Ras Gharib, Egypt), 93.61% (Biskra basin, Algeria), and 97.1% (Al-Qurayyat,
Saudi Arabia) accuracies, respectively.

4.2. Significance of the Selected Flash Flood Triggering Factors in the Current Study

The current study identified the most influential flash flood triggering factors, with
RF, S, DD, G, and HAND having the highest relative weights in initiating and accelerating
flash floods in the study area. HAND and LF were also significant, while MRN, PnC, and
SPI were less significant. The current findings were generally in agreement with some
previous studies carried out in Egypt (e.g., [37,38]) and other arid and semi-arid areas (e.g.,
Algeria [44], Kingdom of Saudi Arabia [42], and Tunisia [47]).

Most major valleys and downstream regions lie in zones with gentle slopes, which
receive the accumulated runoff from the upper and moderate stream zones (Figure 3b).
As illustrated in Figure 3c, areas with a higher density of drainage networks are more
susceptible to flooding [120]. Lithologic units in the study area (Figure 3e) play an essential
role in determining the flash flood risk degree associated with rocks’ permeability. The flash
flood hazard degree is increased in the areas dominated by major valleys (i.e., sedimentary
rocks) that cut across the highly elevated and steep-sloped basement rocks (i.e., igneous
and metamorphic rocks) (Figure 3e).

In addition, the alluvial fan at the lower part of the downstream constitutes a very
high flash flood zone, where most of the surface water reaches the lower lands (Figure 3e).
According to the present study, HAND was identified as a significant factor contributing to
flash floods, and its relative weight highlighted its importance (Table 9 and Figure 3h).

The zone with saturation excess overland flow, which experienced waterlogging due
to low draining potential and proximity to the groundwater table, was dominated by low
HAND values [121,122]. Moreover, the current study introduced geomorphic landforms as
a crucial factor in identifying areas prone to flash floods. For example, ridges (Figure 3d),
typically associated with the summits of mountains and considered to be very low or low
flood zones, were found to have a low likelihood of significant surface runoff due to the
limited rainfall accumulation.

4.3. Pros and Cons of the Developed AHP-Based Flash Flood Susceptibility Model

The pros of AHP [123] involve the direct integration of consistent experts’ judgments,
the intuitive hierarchical modeling of the problem (i.e., hierarchy structure that can easily
adjust to fit many sized problems [124]), automated computation of priorities and inconsis-
tency ratios, various techniques to handle the sensitivity analyses, and the possibility of
integrating GIS techniques. In contrast, the cons include the complexity of handling many
pairwise comparisons and gathering information from different experts [123].

It is worth mentioning that the proposed model in the current study was able to
overcome three limitations of the AHP method: (i) rank reversal [125] (i.e., aggregation of
judgments and preferences transposed from units of different scales), where flash flood
triggering factors were classified into five categories using nature breaks method based
on the contribution of each sub-criteria to the flash flood occurrences; (ii) criteria indepen-
dence [123] was solved through involving the collinearity diagnosis using PCA prior to
pairwise comparisons to exclude highly correlated variables; and (iii) the selected flash
flood triggering factors depend on a detailed literature review and our previous experience
in studying flash floods in the study area and other similar regions, which eliminated the
disadvantages associated with the criteria vagueness.
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4.4. Mitigation of Flash Floods’ Impact

Various possible strategies could be adopted to mitigate the impact of future flash
floods [126–128]. Firstly, appropriate land use planning should be undertaken to avoid
urban development in flash floodways, and new buildings should be constructed at an ap-
propriate elevation while ensuring the maintenance of natural drainage systems. Secondly,
structural measures including dikes, dams, embankment weirs, walls, levees, and other
physical barriers could be prepared to protect against flash floods. In addition, constructing
high-elevated roads and bridges can also help reduce flash flood damage. Thirdly, natural
measures, such as restoring wetlands, floodplains, and other natural landforms can absorb
runoff and reduce flash floods’ impacts. Fourthly, education and outreach programs can
be introduced to increase awareness of flash flood risks and provide information on how
to prepare for and respond to flash floods for the local community. These programs may
involve social media, public campaigns, and training programs for emergency responders.
Finally, installing effective flash flood warning systems (e.g., weather forecasts, runoff mon-
itoring, and rainfall measurements) can provide early warnings to affected area residents.
It is worth noting that no single mitigation strategy can entirely reduce the impact of flash
floods, but integrating different strategies can help mitigate the impact of future flash floods
on communities and enhance their resilience to hazards.

4.5. Potential Applications of the Introduced Model

Due to the rapid social and economic development and the increased strategic impor-
tance of southern Sinai, it has become imperative to implement effective flash flood risk
management. The developed flash flood susceptibility model in this study can potentially
be applied to other rugged, mountainous regions in arid areas such as Egypt, Sultanate of
Oman, the Kingdom of Saudi Arabia, United Arab Emirates, Yemen, Qatar, Libya, Iraq, and
Kuwait, as well as semi-arid areas including Algeria, Tunisia, and Iran. Furthermore, it can
be applied to monitor and predict flood zonation worldwide by modifying (i.e., adding,
removing, and changing) the triggering factors based on the climatic and hydrological
conditions of the area under study.

Incorporating the PCA algorithm improved the model efficiency by reducing the
dimensionality of the initially selected nineteen flash flood triggering factors into nine,
eliminating multicollinearity between these factors and reducing the subjectivity of experts’
judgments. The introduced model also incorporates satellite precipitation data (i.e., GPM-
IMERG V06) that was processed and downloaded through the NASA Giovanni web tool.
Spatial rainfall distribution can be updated easily using the NASA Giovanni web tool to
incorporate any future anomalies in dynamic rainfall over the arid study area. Furthermore,
this user-friendly web tool provides direct access to process and download many large
hydrological and meteorological datasets, which can suggest additional dynamic flash
flood triggering factors that can be explored by different researchers worldwide.

To the best of our knowledge, the current study introduced nineteen initial triggering
factors that have not been previously used in any other research related to flash flood
susceptibility modeling. Therefore, the significance of these variables can be explored by
other researchers in their models, providing additional insights into mapping and predict-
ing areas susceptible to flash floods. Moreover, the final nine factors that were selected
to develop the current model included new effective geospatial layers (e.g., HAND and
landforms) that can be used by different authors in other flash flood susceptibility studies.

The AHP-based flood susceptibility model was spatially presented in the GIS environ-
ment. The findings obtained from the developed model align well with the existing flash
flood inventory records (Figure 2). Therefore, these results can serve as a valuable source
of information for governmental agencies to formulate effective flash flood prevention.
Additionally, the spatial distribution characteristics of flash flood zones in mountainous
areas can be better analyzed, visualized, and understood using GIS technology, offering a
visual advantage in preparing accurate flood control measures.
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It is worth mentioning that integrating AHP with different statistical and machine
learning methods to predict areas prone to flooding worldwide can provide a real solution to
convert categorical to numerical flood triggering variables. One-hot encoding algorithm is
usually applied to convert categorical data into dummy variables, representing all discrete
classes within the categorical layers. However, in most cases, these dummy variables
are highly correlated [129], which increases the multicollinearity effects, leading to the
development of models with low or no good performance.

Finally, the introduced approach can be a practical, efficient, flexible, and stepwise
approach to studying other complex environmental problems, such as landslides, gully
erosions, droughts, forest fires, groundwater potential, oil spills, crop suitability, and
economic ores availability, among others, in a GIS-based MCDM environment.

5. Conclusions

The developed GIS-based AHP model has demonstrated its effectiveness in detecting
and predicting difference risk classes of flash floods in the arid ungauged area of southeast-
ern Sinai, Egypt, with a prediction accuracy of 91.6% based on the AUC metric. The CR
has been computed in the proposed model to evaluate the inconsistency of the scholars’
judgment, and the overall CR was equal to 0.025037 (i.e., <0.1), indicating that the estimated
weights of the flash flood triggering factors were acceptable. The flash flood triggering
factors were ranked in descending order based on their relative importance to flash flood
susceptibility as follows: RF, S, DD, G, HAND, LF, MRN, PnC, and SPI. The results showed
that high and very high flash flood risk zone covers 21% of the total area.

The major limitations to using the AHP method for flash flood susceptibility include
(i) the variability in classifying the risk zones based on the considered factors, and (ii) the
model findings may be affected by the scarcity of detailed dynamic rainfall, stream flow
gauges, and soil moisture measurements; however, the use of the NASA Giovanni web tool
can partially overcome this concern.

The proposed method can be applied in arid ungauged catchments for which insuf-
ficient information is available for flash flood susceptibility. Notwithstanding that the
developed flash flood susceptibility zonation was validated using an inventory map of
the study area, it is recommended to keep this map verified against future flash flood
events to minimize the error margins. In addition, it is recommended to use verified
volunteered geographic information for updating the flash flood inventory map. We also
recommend comparing the developed model’s outputs with the findings of other flash
flood susceptibility methods, such as machine learning techniques (e.g., ANN, SVM, DT,
and MaxEnt) or integrated AHP-machine learning methods for further validation of the
current model outputs.

Finally, the proposed model can help many governmental agencies, such as emergency
and disaster response services and urban planners, to mitigate flash flood impacts and
better plan early warning systems in southeastern Sinai and other areas of similar climatic
and topographic conditions worldwide. In addition, it is worth noting that the proposed ap-
proach can be adapted in other geographic areas of different climatic and hydrogeomorphic
conditions by customizing decision elements to fit the characteristics of a particular area.
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