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Abstract: Soil salinization is a widespread and important environmental problem. We propose a
high-precision remote sensing identification method for saline-alkaline areas using multi-source data,
a method which is of some significance for improving ecological and environmental problems on a
global scale which have been caused by soil salinization. Its principle is to identify saline-alkaline
areas from remote sensing imagery by a decision tree model combining four spectral indices named
NDSI34 (Normalized Difference Spectral Index of Band 3 and Band 4), NDSI25 (Normalized Difference
Spectral Index of Band 2 and Band 5), NDSI237 (Normalized Difference Spectral Index of Band 3 and
Band 4) and NDSInew (New Normalized Difference Salt Index) that can distinguish saline-alkaline
areas from other features. In this method, the complementary information within the multi-source
data is used to improve classification accuracy. The main steps of the method include multi-source
data acquisition, adaptive feature fusion of multi-source data, feature identification and integrated
expression of the saline-alkaline area from multi-source data, fine classification of the saline-alkaline
area, and accuracy verification. Taking Minqin County, Gansu Province, China as the study area,
we use the method to identify saline-alkaline areas based on GF-2, GF-6/WFV and DEM data. The
results show that the overall accuracy of the method is 88.11%, which is 7.69% higher than that of the
traditional methods, indicating that it could effectively identify the distribution of saline-alkaline
areas, and thus provide a scientific technique for the quick identification of saline-alkaline areas in
large regions.

Keywords: remote sensing; saline-alkali areas; salinization identifying; high precision; multi-
source data

1. Introduction

Soil salinization is a major type of land degradation in arid and semi-arid areas [1,2],
one which causes soil consolidation and crop yield decline, and thus results in huge losses
in agricultural production. In addition, its mutual induction with soil desertification will
cause more significant damage to the ecological environment and even cause serious
geological disasters [3–6]. Soil salinization lasts for a long time, and the land encounters
difficulties when it attempts to repair itself, which makes for a continuous impact on the
human living environment and economic development [7–9]. More than 100 countries and
7% of land area on a global scale are affected by land salinization [10,11]. It has become
a worldwide environmental issue of wide-ranging concern, thus leading many countries
to pay high attention to the amelioration and development of saline-alkaline areas. China
is one of the countries seriously affected by salinization [12]. Therefore, it is important
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to strengthen the dynamic monitoring of saline-alkaline areas to curb the source of land
degradation, and to make rational use of land to improve the ecological environment.

The methods of saline-alkaline area monitoring can be currently divided into two types:
instrument-measured soil data [13,14] and large-scale monitoring with remote sensing.
With the development of spatial information technology, remote sensing has become the
most widely used method in large-scale saline-alkaline area monitoring [5,15–17]. The
methods for monitoring saline-alkaline areas based on remote sensing technology have
mainly changed from visual interpretation to methods using computers to process image
data and extract features [18].

The exploration of saline-alkaline area identification methods based on spectral fea-
tures has been a subject of frequent scholarly discussion. In 1992, Dwivedi [19] performed
experimental research on the best remote sensing bands combination for saline-alkaline
areas monitoring, and concluded that the combination of bands 1, 3, and 5 of Landsat TM
remote sensing images contained the largest amount of information, while the accuracy of
a saline-alkaline area being identified was not proportional to the amount of information
in the remote sensing data. Farifteh [20] found that soil reflectance had a good response
to the salinity of a soil surface layer when using hyperspectral data for soil salinization
classification, and concluded that there was a linear relationship between soil salinization
and its spectral reflectance. By correlating the spectral parameters from MODIS images
with salinization levels, Bouaziz et al. [21] constructed a linear spectral unmixing (LSU)
model to examine the status of soil salinization in semi-arid areas. Xiao Dong [22] et al.
obtained reflectance and salinity data by field sampling to construct an inversion model
and a correction model. Yanhua Fu [23] constructed a model indicating the relationship of
spectral data and salt content, and of organic matter content and PH level.

Research efforts using indirect features are mainly used to verify the saline-alkaline soil
distribution with the help of some other auxiliary information. For example, the growth
condition of vegetation can be affected by salinity; thus, vegetation is a good indirect
indicator of salinity [24]. Some salt-tolerant vegetation can also be one of the salinization
signs. On the ecological scale, soil salinity can adversely limit species diversity and species’
ecological niches [25]. Salinity is especially associated with negative osmotic potential,
which inhibits seed germination and debilitates cell turgidity [26]. R. L. Dehaan et al. [27]
demonstrated that the growth and distribution of vegetation had a strong correlation
with soil salinity. By developing the normalized difference vegetation index–salinity
index (NDVI–SI) feature-space remote sensing model of soil salinization, Wang et al. [28]
successfully monitored the change of saline soil in the Tarim Basin, Xinjiang.

Although these two methods have attained some achievements, how to effectively
identify saline-alkaline areas with high accuracy is still the focus of present research.

Minqin County in Gansu Province, China is located at the junction of the Tengger
Desert and the Badain Jaran Desert [29], where land degrades seriously. Since the middle
of the 20th century, Qingtu Lake, which is located in the deepest part of the two deserts,
has gradually dried up. In the 1970s, Minqin County started to use a large amount of
groundwater, which caused soil salinization. If it continues this seriously, it will eventually
lead to the merger of the Tengger Desert and the Badain Jaran Desert, which will directly
affect the geomorphology, climate, and human environment of the northwest region and
even threaten the survival of local peoples [30].

Although scholars have attained some achievements of quantitative monitoring of
land cover using remote sensing, there is little research on the application of remote sensing
data to the identification and monitoring of saline-alkaline areas at present. Traditional
saline-alkaline area identification methods only rely on the selection of a single feature
parameter, which is difficult to adapt to the optimal classification effect. To solve the
problem of low accuracy of saline-alkaline area identification based on the traditional
spectral indices, taking Minqin County as the study area, we propose a high-precision
method of saline-alkaline area identification using multi-source data. By analyzing the
trends and reasons of changes in saline-alkaline areas in the Minqin oasis, the objective of
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this paper is to provide a reference for the timely monitoring of saline-alkaline areas and
ecological environment construction globally in arid areas.

2. Methodology and Experimental Application
2.1. Methodology
2.1.1. Identification Method of Saline-Alkaline Area

A decision tree [31] is a method for hierarchical processing of remote sensing images
which is suitable for features with blurred boundaries and complex structures. Its main
idea is to gradually mask and separate each feature as a layer from the imagery, avoiding
any impact on the other features’ identification. Therefore, it is possible to integrate
various effective feature quantities, thus improving the identification accuracy of saline-
alkaline areas.

Firstly, we use GF-6/WVF (Chinese satellite GaoFen-6/Wide Field View) image data,
combining GF-2(Chinese satellite GaoFen-2) image and Google Earth high-resolution image
data to select different types of samples, and find the best spectral index of band combi-
nations for saline-alkaline areas. Secondly, the GF-2 image data is used to extract textures.
Elevation and slope from DEM (Digital Elevation Model) data are used as elevation features
to build a decision tree model for saline-alkaline area identification. Finally, the accuracy
of the classification results of the constructed decision tree model are verified in ArcGIS
using the random scattering function combined with visual interpretation. The technical
flowchart is shown in Figure 1.
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2.1.2. Accuracy Evaluation Method

Evaluation of feature classification is an important part of remote sensing monitoring,
attempting to determine whether the results are credible. The most commonly-used
evaluation method is the error matrix method, also called the confusion matrix method [32].

In this paper, the confusion matrix is calculated by comparing each actual measured
image element with the corresponding classified one [33]. Each column of the confusion
matrix represents the actual measured information, and each row of the confusion matrix
represents the classified information of the remote sensing data (Table 1).
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Table 1. Example of confusion matrix.

Classified
Data

Truth Data

Class 1 Class 2 . . . Class n Total

Class 1 X11 X12 · · · X1n Cd1 = ∑n
j=1 X1j

Class 2 X21 X22 · · · X2n Cd2 = ∑n
j=1 X2j

. . . ...
...

. . .
...

...
Class n Xn1 Xn2 · · · Xnn Cdn = ∑n

j=1 Xnj
Total Td1 = ∑n

i=1 Xi1 Td2 = ∑n
i=1 Xi2 · · · Tdn = ∑n

i=1 Xin All = ∑n
i=1,j=1 Xij

Various land type: Class 1, Class 2, . . . , Class n.

User accuracy is the percentage of test points that fall on that category in that sub-
category and are correctly classified as that category on the classification graph.

UA
(
User′s Accuracy

)
=

Xnn

Cdn
(1)

Producer accuracy is the probability that the ground truth reference data for the
category is correctly classified in this classification.

PA(Producer accuracy) =
Xnn

Tdn
(2)

Overall accuracy is the percentage of check points of all correctly-classified land cover
categories relative to the total number of check points.

OA(Overall accuracy) =
∑n

i=1 Xii

All
(3)

The Kappa coefficient is a metric that indicates how much better the classification
result is than random classification. The Kappa coefficient takes into account the difference
between two kinds of consistency; one is the consistency between automatic classification
and reference data, and the other is the consistency between sampling and reference
classification. In general, the Kappa coefficient is between 0 and 1. A higher Kappa
coefficient indicates a higher classification accuracy.

Kappa =
OA− ∑n

i=1 Cdi×Tdi
All

1− ∑n
i=1 Cdi×Tdi

All

(4)

From 5 to 8 March 2023, we collected 143 samples for verification at a depth of 0 to
5 cm from the surface. They were recorded, associated with information such as number,
location, depth, personnel, date, and then brought back to the laboratory.

2.2. Experimental Application
2.2.1. Study Area

Minqin County is located in the downstream region of the Shiyang River Basin in
eastern Gansu Province, China, with an altitude of 1200–1500 m (Figure 2). Tengger Desert
is in the east, and Badain Jaran Desert is in the north [34] (Figure 3).
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As a temperate continental desert climate, the climate of the study area is characterized
by cold winters and hot summers, and is dry, with little precipitation, as well as windy and
sandy [35]. Its average annual temperature is 8.2 ◦C and the average annual precipitation is
115 mm [36]. The total area of oasis in this area is about 1352 km2, which only accounts for
9% of the total area of Minqin County [37]. Due to environmental characteristics such as
high temperatures, low precipitation, and high evaporation, the water resources in Minqin
are lacking, which leads to soil desertification [30].
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The main soil types are Fragic Arenosol, Solonchak, Solonetz, Plaggic Anthrosol, and
Irragric Anthrosol [38], the first of which can be classified as Arenosol with sand content
exceeding one-half [39].

2.2.2. Data

GF-6/WFV images and GF-2/PMS images, as well as DEM, slope, and vector bound-
ary data, are used in this paper (Table 2). In this experiment, seasons of the remote sensing
images were selected as being from June to July, because plants grow more luxuriantly and
there is no snow and ice cover in this period, and thus, it is favorable for the identification
of saline-alkaline areas.

Table 2. Data sources for identification.

Data Date Spatial Resolution Parameter

GF-6/WFV 2022.6.13 16 m Spectra
GF-2/PMS 2022.7.13 1 m(PAN)/4 m(MSS) Texture

SRTM_DEM 30 m
ElevationSlope

Vector boundary 2020 Zone

The GF-6/WFV data were pre-processed for radiometric calibration, atmospheric
correction, orthorectification correction, and vector cropping to obtain eight-band surface
reflectance data for the study area (Figure 4). The atmospheric correction was implemented
by the FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) atmospheric
correction module (Table 3).
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Table 3. Parameters of the FLAASH atmospheric correction module.

Atmospheric
Model Aerosol Model Aerosol

Retrieval Initial Visibility Spectral Response
Function

Mid-Latitude
Summer Rural None 40 km gf6_wfv.sli
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The GF-2/PMS image has MSS (Multispectral) and PAN (Panchromatic) data. They
have been pre-processed for radiometric calibration, atmospheric correction, geometric
correction, image fusion, etc. to obtain a four-band fused image with a spatial resolution of
1 m for the study area (Figure 5).
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which is suitable for processing high spatial resolution images, and can better maintain the
texture and spectral information.

The DEM data was cropped in ArcGIS using vector boundary files and then output
to obtain the elevation data of the study area. Furthermore, slope was obtained from the
cropped DEM in ArcGIS (Figure 7).

2.2.3. Feature Extraction

• Spectral features

The main land cover types in the study area include desert, saline-alkaline area,
vegetation, urban, and water. After pre-processing the GF-6/WFV images, the original
spectral characteristics of each type in the study area were analyzed (Table 4, Figure 8).

Table 4. GF-6/WFV band.

Band Wavelength/µm Name Spatial
Resolution/m Scan Width/km

B01 0.45~0.52 Blue

16 800

B02 0.52~0.59 Green
B03 0.63~0.69 Red
B04 0.77~0.89 NIR
B05 0.69~0.73 Red edge1
B06 0.73~0.77 Red edge2
B07 0.40~0.45 Violet
B08 0.59~0.63 Yellow
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From Figure 8, we can see that some spectral features of a saline-alkaline area and a
desert are easily confused; more spectral indices are needed to improve the saline-alkaline
areas’ classification accuracy.

The NDSI34 (Normalized Difference Spectral Index of Band 3 and Band 4) was con-
structed using band 3 (Red) and band 4 (NIR).

NDSI34 = (NIR − R)/(R + NIR) (5)

The NDSI25 (Normalized Difference Spectral Index of Band 2 and Band 5) was con-
structed using band 2 (Green) and band 5 (Red edge1: Re1).

NDSI25 = (Re1 − G)/(Re1 + G) (6)
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The NDSI 237 (Normalized Difference Spectral Index of Band 2, Band 3 and Band 7)
was constructed using bands 2 (Green), 3 (Red), and 7 (Violet).

NDSI237 = (R + G − V)/(R + G + V) (7)

The final composite salinity index NDSInew (New Normalized Difference Salt Index)
was constructed as:

NDSInew = NDSI25 + NDSI237 − NDSI34 (8)

The spectral indices are mainly selected depending on the spectral characteristics of
each feature. For example, NDSI34 can sufficiently separate the vegetation in the image. The
saline-alkaline area is associated with a large difference between the red edge1 band and the
green band, therefore, NDSI25 can distinguish the saline-alkaline areas from other features.
For reflectance of saline-alkaline soil in the red and green bands, which are significantly
higher than those in the violet band, NDSI237 can sufficiently separate saline-alkaline soil
from other features. Considering the three indices together, we finally construct the com-
prehensive index, NDSInew, by which the saline-alkaline areas can be well distinguished.

• Texture features

When the spectra of the features are relatively similar, the spectral differentiability
decreases and texture information can play an important role in distinguishing the features,
raising the accuracy rates of classification [40].

Among the methods for computing image texture features, GLCM (grey-level co-
occurrence matrix) is one of the most widely used statistical methods [41]. GLCM can
describe the spatial distribution and structural characteristics of the image grayscale, which
is advantageous in improving the classification of geological targets by using texture.
There are eight main feature quantities commonly used for texture identification in remote
sensing images: mean, variance, homogeneity, contrast, dissimilarity, entropy, angular
second moment, and correlation.
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We used the GLCM method to extract textures from GF-2 images and calculated
eight textures on four bands with a 3 × 3 window (Figure 9). After that, we selected mean,
dissimilarity and entropy as the parameters for classification.
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• Elevation features

Height and slope information from DEM are introduced to carry out reclassification in
ArcGIS. As shown in Figure 10, there are some differences in elevation among features. For
example, vegetation and urban types are generally flatter.
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3. Results and Discussion
3.1. Classification and Verification

Based on multi-source data, the results of saline-alkaline area identification map in
the study area using a decision tree classification method combining spectral features
(NDSInew), texture features (mean, dissimilarity and entropy), and elevation features
(height and slope) is shown in Figure 11.
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Through random distribution and considering the accessibility of each site, we trav-
elled to Minqin County for a field survey (Figure 12). The land types of verification points
were investigated and labeled, and 143 verification samples were obtained.
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Table 5. Confusion matrix of saline-alkaline area identification.

Classified Data

Checked Data

Non-Saline-Alkaline
Area

Saline-Alkaline
Area Total UA

Non-saline-alkaline area 64 4 68 94.12%
Saline-alkaline area 13 62 75 82.67%

Total 77 66 143
PA 83.12% 93.94%

OA 88.11%
Kappa 0.76
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The samples were established and verified by confusion matrix, using producer
accuracy, user accuracy, total accuracy and Kappa coefficient. The results are shown in
Table 5, and indicate that the accuracy of the proposed saline-alkaline area identification
method is 88.11%.

Shown in Figure 13, the saline-alkaline area in Minqin County is 3385.17 km2, account-
ing for 20.4% of the total area of Minqin County.

From its spatial distribution in Figure 11, the soil salinization in the northwest is the
most serious, with a large area of saline-alkaline area implicated, followed by the eastern
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region, and finally the Minqin oasis area, where the saline-alkaline area is small, scattered,
and distributed on both sides of the oasis.

3.2. Comparison of the Results of Different Indices

Based on the same data, the traditional salinity index NDSIold = (NIR − R)/(R + NIR)
was used for salinity identification, and its accuracy was verified to be 80.42%. The
comparison of the salinity identification results between these two methods is shown in
Figure 14.
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From these results, we can see that the accuracy of the new salinity index NDSInew is
improved by 7.69% compared with the traditional salinity index NDSIold, indicating the
effectiveness of the new spectral index in the identification of saline-alkaline areas.

3.3. Analysis of Saline-Alkaline Area Change

Three Landsat8 OLI remote sensing images were downloaded from https://www.
gscloud.cn, accessed on 28 December 2022, in July and August (Table 6).

Table 6. Data sources for analysis.

Date Satellite Sensor Number

2010.7.25
Landsat 8 OIL 131/332015.7.22

2020.8.2

https://www.gscloud.cn
https://www.gscloud.cn
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The remote sensing data were pre-processed with ENVI.
The results of the saline-alkaline area identification in 2010, 2015 and 2020 (Figure 15)

were statistically analyzed in ArcGIS to classify the total areas of saline-alkaline land. The
saline-alkaline areas in 2010, 2015 and 2020 were 2276.21 km2, 2186.28 km2 and 1922.93 km2,
respectively (Figure 16). From this, we can see that the saline-alkaline area decreased
353.28 km2 from 2010 to 2020.
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Coupled with the weathering effect of rocks, a large amount of salt is released in the 
soil’s parent material of the northwestern remnant hills, and then carried to the lowlands 
through precipitation, resulting in serious salinization in the northwest [42]. 
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Figure 16. Change of saline-alkaline areas in the Minqin oasis.

There are many natural and human factors affecting the saline-alkaline area changes
in the Minqin oasis:

(1) Climate change has brought many problems to the soil environment, such as a
series of biological changes in the soil’s physical composition (water content), chemical
composition (various salt ion contents), and plant species. Climatic warming can not
only cause microorganisms to rapidly decompose soil organic matter and soil nutrients’
rapid decrement, but it can also cause soil moisture to evaporate, accelerating the upward
movement of salt, and causing soil salinization.

According to the statistics of the Minqin meteorological station, Minqin has little
rainfall but a high level of evaporation (Figure 17). Combined with the temperature rises,
these promote the salinization of the soil.
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Coupled with the weathering effect of rocks, a large amount of salt is released in the
soil’s parent material of the northwestern remnant hills, and then carried to the lowlands
through precipitation, resulting in serious salinization in the northwest [42].

(2) Historically, Minqin has been one of the important salt-producing areas, with many
salt ponds [34]. With the gradual depletion of the Shiyang River, Minqin started to seek
groundwater instead (Figure 18). Due to the adjustment of agricultural structure, water
resources were redistributed spatially, salt was transferred with water, and the overuse of
irrigation water also led to the transformation of some depressions at the edge of the oasis
into saline-alkaline areas [43].
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(3) In 2007, the government implemented the “Key Control Plan of Shiyang River
Basin” and began to transfer water to Minqin County at the lower reaches of the Shiyang
River [44]. The surface water runoff into Minqin County has increased year by year
(Figure 18). Since then, the soil salinization in Minqin has been improved to a certain extent.

Some studies [45–47] on saline-alkaline area identification in Minqin County are shown
in Table 7. However, all only considered salinization as a type of desertification and did
not conduct in-depth research on the fine classification of saline-alkaline areas. From this, it
can be concluded that there are few studies on saline-alkaline area identification in Minqin
County. At the same time, there have been precedents for the decision tree classification
methods for land classification in this region, which proves the applicability of the method
in Minqin.

Table 7. Comparison of studies on the identification of saline-alkaline areas in Minqin County.

Order Number Contents Date Articles

1 Classification of unused land 2016 Yao, A. et al., 2014 [45]

2 Dynamic monitoring of land
desertification 2004–2009 Chen, X. et al., 2014 [46]

3 Analysis of land
desertification characteristics 2012–2013 Ma, J. et al., 2019 [47]

4. Conclusions

We use multi-source data for saline identification in Minqin County and draw the
following conclusions:

(1) The proposed method is effective in saline identification.
Based on multi-source data, we use a decision tree classification method to extract

saline-alkaline areas by constructing three features: spectral indexes, textures, elevations,
and slopes. The results show that the accuracy of saline-alkaline area identification is
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88.11%, which is 7.69% greater than the traditional salinity indices, indicating the effective-
ness of the proposed method.

(2) The multi-source data can help to identify features and improve accuracy.
GF-6 data are beneficial to the improvement of the accuracy of saline-alkaline area

identification. In which, band 3 and band 7 are important to the saline-alkaline area
identification in the study area.

High spatial resolution of GF-2 data can provide rich texture information, thus reduc-
ing the mistakes of distinguishing or misclassifying between features due to “different
features with the same spectrum” or “different features with the same spectrum”.

The height and slope from DEM can quantify the topography of the study area, which
is also helpful for identifying features and improving the classification accuracy.

(3) Monitoring and prevention of unused land in the study area are necessary.
With 20.4% of the land considered to be within a saline-alkaline area, soil salinization

in Minqin County is a serious concern, especially in the northwestern areas. Therefore,
we should strengthen the monitoring and prevention of unused land to prevent further
soil salinization.

In summary, based on the previous studies, we proposed a high-precision saline-
alkaline area identification method based on multi-source data. The results demonstrate
the effectiveness of the method, thus solving the current problem of low accuracy of saline-
alkaline area identification, a solution which may be applied to large-scale saline-alkaline
area monitoring in the future. Meanwhile, it should be noted that, although the decision
tree classification method achieved better classification results in this study, the significance
of selected feature variables and grading criteria need to be further studied and improved
to make the discriminative rules and classification results more realistic. Therefore, the
research on the identification and classification of soil salinization in arid zones needs to be
further developed.
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