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Abstract: Synthetic aperture radar (SAR) images have been extensively used in earthquake mon-
itoring, resource survey, agricultural forecasting, etc. However, it is a challenge to interpret SAR
images with severe speckle noise and geometric deformation due to the nature of radar imaging.
The translation of SAR-to-optical images provides new support for the interpretation of SAR im-
ages. Most of the existing translation networks, which are based on generative adversarial networks
(GANs), are vulnerable to part information loss during the feature reasoning stage, making the
outline of the translated images blurred and semantic information missing. Aiming to solve these
problems, cross-fusion reasoning and wavelet decomposition GAN (CFRWD-GAN) is proposed to
preserve structural details and enhance high-frequency band information. Specifically, the cross-
fusion reasoning (CFR) structure is proposed to preserve high-resolution, detailed features and
low-resolution semantic features in the whole process of feature reasoning. Moreover, the discrete
wavelet decomposition (WD) method is adopted to handle the speckle noise in SAR images and
achieve the translation of high-frequency components. Finally, the WD branch is integrated with the
CFR branch through an adaptive parameter learning method to translate SAR images to optical ones.
Extensive experiments conducted on two publicly available datasets, QXS-SAROPT and SEN1-2,
demonstrate a better translation performance of the proposed CFRWD-GAN compared to five other
state-of-the-art models.

Keywords: SAR-to-optical image translation; generative adversarial networks; cross-fusion reasoning
structure; wavelet decomposition

1. Introduction

For several decades, remote sensing technology has become a very advanced space
exploration technology [1–3]. Among them, synthetic aperture radar (SAR) and optical
remote sensing devices are broadly applied in land planning, disaster prevention, target
detection, and other aspects [4–7]. However, the harsh environment and light changes
cause great interference to the optical remote sensing sensor and seriously affect ground
observation. SAR can provide high-resolution imaging in various weather conditions,
providing supplementary information for optical remote sensing images. Unfortunately,
due to the imaging characteristics of SAR images, their interpretation has been a bottleneck.
First, due to a large amount of speckle noise generated by the coherent interference of the
target scattering radar echo, it is difficult to obtain effective information in SAR images.
Second, the SAR signal wavelength (mm~cm) fails to represent the observable part of the
familiar electromagnetic band perceived by the human eye. The comprehensible features in
the optical images may significantly be confused in SAR images [8]. Figure 1a,b represents
a SAR image taken by the Sentinel-1 satellite and an optical image taken by the Sentinel-2
satellite in the same area, respectively. It can be seen that the middle white river and the
surrounding green vegetation are clearly distinguishable in the optical image, while they are
nonintuitive in the SAR image, with extensive speckle noise. As many orbit radar satellites
obtain abundant radar images, it is urgent to develop an efficient interpretation method.
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Figure 1. A contrast between SAR and optical images taken in the same area around 1 March 2017
to 30 May 2017 [9]. (a) A SAR image taken by Sentinel-1 satellite. (b) An optical image taken by
Sentinel-2 satellite.

Over the past years, the interpretation of SAR images has evolved from manual to semi-
automatic and is currently trending towards automation and intelligence. With the advance
of deep learning (DL) technologies, especially the proposal of GANs [10], it is possible to
learn the translation between images in different domains. GANs are a powerful tool for
generating images under a given condition. In the field of SAR-to-optical image translation
(STOIT), there are many methods based on GANs, such as pix2pix [11] and cycleGAN [12].
In recent years, many scholars have improved GAN-based networks [13]. Nevertheless,
these methods are mainly transferred from general image-to-image translations (ITIT),
which may not be optimal for converting SAR images to optical images and may result in
considerable information loss. Moreover, the speckle noise of SAR images also has a large
impact on the translation performance.

Driven by the fact that detailed information is lost heavily in the feature reasoning
stage, this paper proposes a novel structure of feature reasoning. Unlike the reasoning
structures commonly used in the pix2pix and cycleGAN, the residual blocks and parallel
structures are combined in our work to construct multi-scale branches and thus complete
the reasoning process, where different scale features are linked together by cross-fusion.
Additionally, the wavelet decomposition (WD) branch is designed to decrease the speckle
noise in SAR images and recover high-frequency details. The output from the branch with
CFR structure is fused with the WD branch output through a learnable coefficient. The key
contributions are concluded as follows:

1. A CFR structure is proposed for converting SAR to optical images. Compared with the
U-Net and the cascade of nine residual blocks (CN-ResBlocks) reasoning structures
in the pix2pix and the cycleGAN, the proposed CFR structure can extract and retain
more information.

2. A WD branch is developed to retain the high-frequency information in SAR images
while reducing the speckle noise on high-frequency components, then to recover the
high-frequency details in pseudo-optical images.

3. A CFRWD-GAN (cross-fusion reasoning and wavelet decomposition GAN) is pre-
sented in this work, which contains one generator and one discriminator. There
are two branches in the generator: one with the CFR structure and the other is the
WD branch. Outputs from the two branches are fused by a learnable coefficient.
Moreover, adversarial and high-dimensional feature matching loss are used to train
the CFRWD-GAN.

4. Extensive experiments have been performed on the SEN1-2 and QXS-SAROPT datasets.
The results of experiments display that the pseudo-optical images generated by
CFRWD-GAN be not only similar to the ground truth in visual inspection but also
achieve excellent evaluation metrics, which demonstrates the advantage of our model
over the highly advanced STOIT task.



Remote Sens. 2023, 15, 2547 3 of 24

2. Related Work
2.1. GANs-Based Image-to-Image Translation

One of the most important developments is the GANs, which was put forward by
Goodfellow in 2014. GANs contain two adversarial neural networks, including a generative
network, usually represented as G, and a discriminative network, commonly symbolized
as D. G tries to trick D by generating a nearly real sample, and D attempts to differentiate
between authentic and counterfeit samples. The structures of G and D are not fixed, but G is
required to acquire the distribution of the image statistics, and D can classify the output by
extracting features. GANs are widely utilized in ITIT. Based on the framework of generative
confrontation, Isola et al. put forward a pix2pix method, which successfully realized the
translation of segmentation labels to real scenes, contour map to the real object, etc.; Zhu et al.
proposed the cycleGAN with two generators and two discriminators to perform style trans-
fer, object conversion, and seasonal conversion in an unsupervised way. Furthermore, to
achieve a high-resolution ITIT, Wang et al. [14] suggested the pix2pixHD with a coarse-to-fine
generator. Thereafter, the new unsupervised conditional GAN, named NICEGAN [15], has
been proposed, which achieves perfect effects in ITIT by reusing a discriminator for encoding.
Moreover, many variants [16–18] have been proposed based on the above models.

2.2. SAR-to-Optical Image Translation

The STOIT is a branch of ITIT. Several researchers have migrated the general image
translation methods to the field of SAR and optical conversion. For instance, Enomoto et al. [19]
used the cGAN to complete the conversion of SAR to optical images. Toriya et al. [20]
applied the pix2pix to achieve modal unification of optical and SAR images. Wang et al. [21]
added supervised information to the cycleGAN model to complete the translation of SAR
to optical images. Li et al. [22] applied NICEGAN to convert SAR images to optical
images. Sebastianelli et al. [23] applied the STOIT method to complete the cloud removal.
Additionally, scholars improved the structure of the generator or discriminator. Kento et al.
increased a parallel regional classification network to the generator [24], providing more
feature information. Javier et al. applied the atrous spatial pyramid pooling (ASPP) to the U-
Net structure [25], expanding the receptive field without adding computational complexity.
Guo et al. [26] added a gradient branch to the feature reasoning structure, taking full
advantage of the gradient information in SAR images. The above modifications are all
based on the reasoning structure of the U-Net [27] or CN-ResBlocks [28], and experiments
demonstrate that these improvements improve the quality of the pseudo-optical images in
some ways. However, due to the inherent defects of the U-Net and CN-ResBlocks reasoning
structures, some information is lost when translating SAR features into optical features,
resulting in the blurred outline of images and unclear details. A reasoning structure
different from the U-Net and CN-ResBlocks structures needs to be proposed to solve the
above questions.

2.3. Application of Wavelet Decomposition in Deep Learning

Wavelet decomposition can capture spatial and frequency information in the signal,
which is an efficient method in image processing. With the success of DL, wavelet methods are
embedded in neural networks to complete different tasks, including super-resolution recon-
struction, style transfer, quality augmentation, image demonstration [29], etc. Chan et al. [30]
developed a wavelet autoencoder (WAE) that decomposed the original images into sub-
images of two low-resolution channels and incorporated WAE into classified neural net-
works for joint training. Zhang et al. [31] discussed the problem of low efficiency and high
memory in GANs and proposed to apply WD in GAN, specifically referring to using WD
to extract high-frequency details of images. Zhang et al. [32] proposed a wavelet transform
as a variational auto-encoder to retain structural information during image translation.
Li et al. [33] used the generator to learn the map of SAR images to the wavelet features
and then reconstructed the grayscale images to optimize the content. George et al. [34]
suggested an unsupervised paradigm that utilizes the self-supervised segmentation loss
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and the discrimination based on the whole image wavelet components. Inspired by the
above studies, we combine WD and neural networks to filter out speckle noise from
high-frequency components in SAR images while recovering high-frequency details in
pseudo-optical images.

3. Method

In this section, the CFRWD-GAN model is first introduced, and then the details of
the generator and discriminator are illustrated. Finally, the loss functions are described
in detail.

3.1. CFRWD-GAN

The global architecture of the CFRWD-GAN is displayed in Figure 2. The CFRWD-
GAN contains a generator that generates pseudo-optical images and a discriminator that
identifies the real and the fake ones.
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Figure 2. An overview of our proposed SAR-to-optical translation (STOI) network.

3.1.1. Generator

The customized version of the generator is built on the pix2pix. Specifically, the U-Net
reasoning structure in the pix2pix is replaced with a CFR, and a WD branch is added. The
outputs from the branch with a CFR structure and the WD branch are fused with a learnable
coefficient. We set the initial fuse coefficient to 1 and find an optimal value through the
gradient descent method.

Cross-fusion reasoning: In the realm of ITIT, the U-Net structure and the CN-ResBlocks
structure are two general reasoning structures in the generation model, as shown in Figure 3.
Figure 3a is the U-Net structure used in the pix2pix. In this reasoning structure, feature
maps are encoded first and then decoded, and through the skip connection, feature maps
in the encoder are combined with the feature maps in the decoder. Although the skip
connection retains features in the encoder, the features in the encoder and features in
decoders are different in content, and simply concatenating them is not conducive to the
translation from SAR features to optical features. Figure 3b is the CN-ResBlocks structure
applied in the cycleGAN. The main components in CN-ResBlocks are residual blocks, which
solve the optimization problem of the model to some extent and enhance the performance
of the algorithm by continuously deepening the network without changing the size of the
feature map. However, the feature reasoning is only implemented at the same resolution,
failing to complete the feature translation from different scales and leading to the difficulty
of generating high-quality images.
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HRNet [35], which connects feature maps of different resolutions in parallel, and
adds interaction between feature maps of different resolutions in the meantime, has gained
outstanding results in the area of segmentation, object detection, human pose estimation, etc.
Encouraged by the HRNet, this work draws on the idea of high-resolution detailed feature
preservation and proposes a new reasoning structure, namely, cross-fusion reasoning
structure, to perform the STOIT task. The CFR structure retains high-resolution detail
features and low-resolution semantic features simultaneously in the process of feature
reasoning. It completes the reasoning of SAR features of different scales to optical image
features step by step. In the CFR structure, the whole reasoning process is divided into three
stages; each stage will add a new scale branch. Features between different stages through
cross-fusion complete the feature transfer, and features of different scales are retained in the
reasoning process. CFR effectively solves the problems of information loss and incomplete
reasoning by preserving all scales’ features in the process of reasoning. In the CFR structure,
the horizontal deepening and vertical widening networks are combined to make full use of
features of different sizes and simultaneously process high- and low-resolution features in
the entire feature reasoning process. As a consequence, better translation performance can
be achieved by utilizing the CFR structure.

As shown in Figure 4, there are three stages in the CFR structure, including stage-1,
stage-2, and stage-3. Stage-1 consists of two scale branches, namely N1

1 and N1
2 . Stage-2

contains three scale branches, denoted as N2
1 , N2

2 and N2
2 . Stage-3 contains four scale

branches, namely N3
1 , N3

2 , N3
3 and N3

4 . Each scale branch is formed with three residual
blocks. The input of each branch of the current stage is the result that fully fuses the output
of each branch of the previous stage. As shown in Figure 4, a1 represents the input of
the CFR structure, which size is B × C ×W × H. B, C, W and H denote the batch size,
the number of channels of the feature, feature height, and feature width, respectively.
a2 with the size of B× C×W/2× H/2 is obtained by downsampling a1. Then, a1 and a2
are input into N1

1 and N1
2 , p1 with the size of B× C/4×W × H and p2 with the size of

B× C/2×W/2× H/2 are outputted from stage-1. Next, p1 and p2 are fused with each
other in three scales, and finally, three feature maps, b1 with the size of B× C/8×W × H,
b2 with the size of B×C/4×W/2×H/2 and b3 with the size of B×C/2×W/4×H/4, are
obtained through cross-fusion. The specifical process is expressed by formulas as follows:

b1 = Conv(cat(p1, U(p2))) (1)

b2 = Conv(cat(D(p1), p2)) (2)

b3 = Conv(cat(D(D(p1)), D(p2))) (3)

where the Conv, cat, U, and D represent convolution operation, concatenate operation, up-
sample operation, and downsample operation, respectively; b1, b2, b3, p1, and p2 represent
feature maps in different scales and stages. In the second stage, b1, b2, and b3 are input into
N2

1 , N2
2 , and N2

3 , respectively, to attain q1 with the size of B×C/8×W× H, q2 with the size
of B× C/4×W/2× H/2, and q3 with the size of B× C/2×W/4× H/4. Then, similar
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operations are performed with q1, q2, and q3 to obtain c1 with the size of B×C/16×W×H,
c2 with the size of B× C/8×W/2× H/2, c3 with the size of B× C/4×W/4× H/4, and
c4 with the size of B× C/2×W/8× H/8, respectively. The specifical process is expressed
by formulas as follows:

c1 = Conv(cat(q1, U(q2), U(U(q3)))) (4)

c2 = Conv(cat(D(q1), q2, U(q3))) (5)

c3 = Conv(cat(D(D(q1)), D(q2), q3)) (6)

c4 = Conv(cat(D(D(D(q1))), D(D(q2)), D(q3))) (7)

where the symbols are the same as the above. In the third stage, c1, c2, c3, and c4 are input
into N3

1 , N3
2 , N3

3 , and N3
4 to obtain k1 with the size of B× C/16×W × H, k2 with the size

of B × C/8×W/2× H/2, k3 with the size of B × C/4×W/4× H/4, and k4 with the
size of B× C/2×W/8× H/8, respectively. Finally, k1, k2, k3, and k4 are concatenated in
channel dimension after the feature map size is uniform, and through a 1 × 1 convolution
to integrate channel numbers without changing feature map size. The specifical process is
expressed by the formula as follows:

d = Conv(cat(D(k1), k2, U(k3), U(U(k4)))) (8)

where d represents the output of the CFR structure; other symbols are the same as the above.
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Figure 4. The cross-fusion reasoning (CFR) structure in CFRWD-GAN. Figure 4. The cross-fusion reasoning (CFR) structure in CFRWD-GAN.

From stage-1 to stage-3, the feature information of each scale is preserved, and the
high-resolution, detailed features and low-resolution semantic features exist simultaneously
throughout the process of feature reasoning.

Wavelet decomposition branch: SAR images are heavily scattered with speckle noise,
which has a severe impact on the translation performance from STO images. Wavelet
decomposition enables the separation of an image into different frequency bands, which
makes it possible to independently process different bands. The high-frequency sub-bands
of the wavelet coefficients represent the image’s edges and details, which are crucial for
preserving image structure. The low-frequency bands of the wavelet coefficients refer to
smooth regions of the image that contain most of the energy of the image. By thresholding,
the high-frequency wavelet coefficients and speckle noise can be removed from the image,
while important image details can be preserved. Wavelet decomposition is a common
approach to reduce speckle noise in SAR images, mainly due to its ability to decompose an
image into different frequency bands and identify noise at different scales.

Considering the application of WD in noise reduction, we construct a parallel branch
based on WD to suppress the speckle noise inherent in SAR images. The WD branch
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consists of a WD structure, a high-frequency feature coding and filtering (HFCF) structure,
and a feature decoding structure. The WD structure is designed to decompose the SAR
image into a series of approximate and detailed components, which are then smoothed by
the HFCF structure. The output with detailed contour information is achieved through the
decoding structure. The specific structure of the WD branch is shown in Figure 5.
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Figure 5. The architecture of wavelet decomposition branch. 
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Figure 5. The architecture of wavelet decomposition branch.

The first step of the WD branch is to decompose the SAR image into different frequency
components. In [36], Yu chose the Haar wavelet function as the basis of the WD. Therefore,
the Haar wavelet function is chosen in our paper as the basis of the WD. We set decompose
level as 2. Through the first decomposition, four components are obtained, namely LL1,
LH1, HL1, and HH1, respectively. Next, the second decomposition continues iteratively
on LL1, and produces four sub-components, denoted as LL2, LH2, HL2, and HH2. Finally,
there are seven image components produced in WD. An example of the image decomposi-
tion result is displayed in Figure 6. Given the input X with the size of B× C×W × H, we
obtain LL2 with the size of B× C×W/4× H/4, LH2 with the size of B× C×W/4× H/4,
HL2 with the size of B × C ×W/4 × H/4, HH2 with the size of B × C ×W/4 × H/4,
LH1 with the size of B× C×W/2× H/2, HL1 with the size of B× C×W/2× H/2, and
HH1 with the size of B× C×W/2× H/2. According to frequency, we divide the seven
components into three groups: one group is LL2; the second group is LH2, HL2, and HH2;
and the third group is LH1, HL1, and HH1.
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To tackle the speckle noise in high-frequency image components, the HFCF structure
is proposed to filter noise and recover the optical high-frequency feature in the second and
third groups simultaneously. Considering the wide application of the residual network
in the image processing field, we design the HFCH structure with the blocks used in
ResNet101 and ResNet18. The output of the HFCF structure is the high-frequency optical
feature E, and E is input into the decoding structure to obtain the final output.

3.1.2. Discriminator

PatchGAN [11] is used as the discriminator in the pix2pix, which has been shown to be
effective in improving local detail generation. Therefore, we continue to employ PatchGAN
to identify whether an image in each N × N patch is real or fake in our CFRWD-GAN.
Furthermore, two sub-branches are constructed in the discriminator to help differentiate the
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authenticity of images at various scales. The two sub-branches have an identical structure,
as shown in Figure 2.

3.2. Loss Functions

The loss function of the pix2pix contains the least squares loss function [37], LLSGAN
and the mean absolute loss, L1. LLSGAN is used as an adversarial loss to penalize the
generated image distribution away from the real image distribution and improve the
stability of the generated images. This paper retains the loss function LLSGAN and uses the
high-dimensional feature matching loss LFM to replace the loss function LL1. Comparing to
L1, LFM can stable the training of the network, which can guide the generator to produce
real images from multiple scales [14].

Denote the loss function of our CFRWD-GAN model as L(G, D) especially included
two items LLSGAN and LFM. The loss function can be formulated by solving the following
min-max problem with the function:

min
G

max
D

L(G, D) = LLSGAN + λLFM (9)

where λ is the hyperparameter adjusting the balance between LLSGAN and LFM. In our
experiment, λ is set to 10. LLSGAN is interpreted as follows:

LLSGAN =
1
2

Ey∼Pdata(y)[D(Y)]2 +
1
2

Ex∼Pdata(x)[D(G(X))− 1]2 (10)

where G and D refer to the generator and the discriminator, respectively. X and Y represent
SAR images and optical images, respectively. LFM is defined as follows:

LFM =
M

∑
i=0

1
CiWi Hi

∣∣∣∣Di(Y)− Di(G(X))

∣∣∣∣
1

(11)

where Di(·) represents the i-th feature extractor of the discriminator D, and G represents
the generator; Ci, Wi, and Hi indicate the i-th layer’s channel number, width, and height,
respectively. M is the number of feature extraction layers.

4. Experiments
4.1. Dataset and Evaluation Metrics
4.1.1. Dataset

The QXS-SAROPT [38] and SEN1-2 [9] datasets are employed in this study to evaluate
the proposed CFRWD-GAN and other comparative methods. The above datasets are
mainly used in the field of SAR-to-optical image translation.

QXS-SAROPT dataset is put forward in order to promote the development of deep
learning-based SAR-optical fusion approaches. QXS-SAROPT consists of Gaofen-3 images
and Google Earth multispectral images, often used for SAR-to-optical image translation
and matching. The size of each image is 256 × 256 pixels with a spatial resolution of 1 m.

The SEN1-2 dataset collects image patches from across the globe and throughout all
meteorological seasons, providing a valuable data source for machine learning researchers
working in remote sensing interpretation. The dataset is published by Schmitt et al., which
has 282,384 SAR-optical image pairs attained by the Sentinel-1 and Sentinel-2 satellites,
including various landforms. Referring to the dataset setting method in published pa-
pers [19–21], after removing large areas of sea and images disturbed by clouds, we selected
five landscapes images, including suburbs, dense urban areas, farmland, rivers, and hills
which are well included in folders S5, S45, S52, S84, and S100. Therefore, S5, S45, S52, S84,
and S100 in SEN1-2 are selected in our experiments. Each dataset is divided into a 4:1 ratio
to form the training and testing datasets, respectively.

Detailed information on the SAR images in SEN1-2 and QXS-SAROPT datasets is
presented in Table 1. SAR images in the SEN1-2 dataset are vertically polarized (VV) data
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acquired with the Sentinel-1 satellite, which is equipped with a C-band SAR sensor. The
SAR operation mode is strip map. For SAR images in the QXS-SAROPT dataset, they are
single-polarized data acquired with the Gaofen-3 satellite equipped with a C-band SAR
sensor. The SAR operation mode is spotlight.

Table 1. Detailed information on the SAR images in SEN1-2 and QXS-SAROPT datasets.

Dataset Resolution (m) Polarization Frequency Band Operation Mode

SEN1-2 10 × 10 VV C-band stripmap
QXS-SAROPT 1 × 1 VV/HH C-band spotlight

4.1.2. Evaluation Methods

The effectiveness of STOIT is evaluated based on four metrics, root mean square error
(RMSE) [39], peak signal-to-noise ratio (PSNR) [39], structural similarity index (SSIM) [40],
learned perceptual image patch similarity (LPIPS) [41].

RMSE: The RMSE mainly judges the pixel deviation between the ground truth and
the generated image. The lower the value of RMSE, the higher the similarity between the
two images. The RMSE calculation formula is shown as follows:

RMSE(y, y∗) =

√√√√ 1
WH

W−1

∑
m=0

H−1

∑
n=0

[y(m, n)− y∗(m, n)]2 (12)

where y, y∗, W, and H represent the real optical image, the pseudo-optical image, the image
width, and the image height; (m, n) represents pixel location in the image.

PSNR: The PSNR uses the local mean error to judge the difference between the
two images. Higher PSNR values indicate smaller image distortion and more similarity
between the two images. The PSNR calculation formula is as shown follows:

PSNR(y, y∗) = 10 log
2552

MSE
= 10 log[

2552WH
W−1

∑
m=0

H−1
∑

n=0
[y(m, n)− y∗(m, n)]2

](dB) (13)

where the symbols as the same as above.
SSIM: The SSIM measures the similarity between the two images from three aspects:

brightness, contrast, and structure. The SSIM values range is [0, 1], and the closer the value
is to 1, the higher the similarity between the two images. The calculation formula is as
shown follows:

SSIM(y, y∗) = [a(y, y∗)]α · [b(y, y∗)]β · [c(y, y∗)]γ (14)

where,

a(y, y∗) =
2µyµy∗ + A1

µ2
y + µ2

y∗ + A1
(15)

b(y, y∗) =
2σyσy∗ + A2

σ2
y + σ2

y∗ + A2
(16)

c(y, y∗) =
σyy∗ + A3

σyσy∗ + A3

(17)

where a, b and c refer to brightness comparison, contrast comparison, and structure compar-
ison, respectively; α, β, and γ are generally set to 1; µy, µy∗ , σ2

y , σ2
y∗ and σyy∗ represent the

mean of y, the mean of y∗, the variance of y, the variance of y∗, and the covariance of y and
y∗; A1, A2, and A3 are constants, which are set to 1.
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LPIPS: Contrary to conventional methods, the LPIPS is more in line with human
perception. The lower the LPIPS means, the more similarity between the two images. The
definition of LPIPS is represented as follows:

LPIPS(y, y∗) = ∑
l

1
HlWl

∑
h,w

∣∣∣∣∣∣wl � (al
hw − a∗ l

hw)
∣∣∣|22 (18)

where al
(hw)

and a∗l
(hw)

denote the feature maps of y and y∗, respectively, in the l-th layer
of the assessment network; wl denotes the computation of the cosine distance between
feature maps.

4.2. Training Details

Experiments in this work are conducted in PyTorch and on one single GPU of RTX
2080 Ti. The total epoch and batchsize sizes are set to 200 and 1, respectively. Both the
generator and the discriminator used the Adam solver with β1 = 0.5 and β2 = 0.999. All
networks are trained with a fixed learning rate of λ = 0.0002 for the first 100 epochs and
then linearly decreases to 0 over the following 100 epochs.

4.3. Ablation Study

Wavelet decomposition level: To determine the effect of wavelet decomposition levels
on translation performance, we set different wavelet decomposition levels and explore
their impact on translation performance. Experiments are conducted on the SEN1-2 dataset,
and the results are shown in Table 2.

Table 2. Translation performance of different wavelet factorization series in SEN1-2. The rising arrow
indicates that the higher the value of this item, the better the performance. The down arrow indicates
that the smaller the value of this item, the better the performance.

Dataset Level RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SEN1-2

2 31.9840 18.9681 0.5619 0.3994
3 35.0578 18.5980 0.5588 0.4131
4 33.8520 18.4787 0.5550 0.4019
5 33.1012 18.6235 0.5637 0.4115

With the increase of wavelet decomposition levels, the performance of the network for
SAR-to-optical image translation is not improved. The values of RMSE and LPIPS between
the generated pseudo-optical images and the real optical images increase, while PSNR and
SSIM decrease in value as the number of decomposition levels increases. Additionally,
because the number of decomposition levels increases, the training time of the network
increases accordingly. Therefore, we choose the 2-level wavelet in our CFRWD-GAN model.

Number of discriminator branches: To determine the impact of different numbers
of discriminator branches on translation performance, we set 2, 3, 4, and 5 discriminator
branches in the CFRWD-GAN model, respectively. Experiments are performed on the
SEN1-2 dataset, and the results are shown in Table 3.

Table 3. Translation performance of different numbers of discriminator branches. The rising arrow
indicates that the higher the value of this item, the better the performance. The down arrow indicates
that the smaller the value of this item, the better the performance. The best results are shown
in boldface.

Dataset Number RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SEN1-2

2 31.9840 18.9681 0.5619 0.3994
3 36.9297 18.2731 0.5101 0.4453
4 37.6370 18.4806 0.5095 0.4282
5 34.2404 18.3739 0.4859 0.4364
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As the number of discriminator branches increases, the performance of CFRWD-GAN
for SAR-to-optical image translation does not improve. When the number of discriminator
branches is set to 2, the RMSE and LPIPS between pseudo-optical and real-optical images
are the lowest among different numbers of discriminator branches. As the number of
discriminator branches increases, the values of PSNR and SSIM decrease, which means
that the translation performance becomes worsens. Therefore, we set the number of
discriminator branches to 2 in the CFRWD-GAN model.

To confirm the validity of the CFRWD-GAN, experimentations are conducted with
different conditions set on the S5, S45, S52, S84, and S100 datasets under the SEN1-2
spring folder.

Cross-fusion reasoning structure: In order to translate different scales of SAR features
to optical features, the CFR structure is presented to improve the output of the reasoning
structure. The assessments are displayed in Table 4. Compared with the U-Net reasoning
structure and CN-ResBlocks reasoning structure, CFR provides PSNR of 4.7059, 4.1901, and
1.1917, 0.9898 improvements and achieves RMSE of 35.8079 and 45.5217, PSNR of 17.7668
and 15.2796, SSIM of 0.4083 and 0.2182, the LPIPS of 0.4739 and 0.5679, respectively, on
dataset S5 and S45. The presentation of generated images on SEN1-2 is exhibited in Figure 7.
The particulars are marked with red boxes and magnified for presentation. In Figure 7,
column (a) are SAR images, from column (b) to column (d) are the images generated by the
network with U-Net reasoning structure, the CN-ResBlocks reasoning structure, and the
CFR structure, respectively. Column (e) are real optical images. As depicted in Figure 7,
images generated with the CFR structure have distinct outlines, clearer edges, and more
exact details than images generated by other reasoning structures. In the first row, the
residential area in column (d) is well translated compared with those in column (b) and
column (c) and more similar to the optical image. In the second row, the edge of the lake in
column (d) is clearer than those in column (b) and column (c). Moreover, in the third row,
compared with column (b) and column (c), the road is translated perfectly in column (d).
In the fourth row, from column (b) to column (d), the green part in the red box is gradually
similar to the real one. In order to confirm that the CFR structure retains more feature
information during the feature reasoning stage, we visualize the feature maps output
from the CFR structure and the features inferred in the U-Net reasoning structure and
CN-ResBlock reasoning structure. The visualization is displayed in Figure 8. Figure 8a–e
is the feature maps output from the U-Net structure, the CN-ResBlock structure, and the
CFR structure. According to Figure 8, we can see that more feature information is clearly
preserved in the CFR structure than in the other reasoning structures. In Figure 8b, the
reasoned features suffer many interferences from the encoding stage because of the direct
connection between features in the coding stage and the features in the decoding stage.
Compared with the reasoned features in Figure 8d, the reasoned features in Figure 8c
lost other scale information because the feature reasoning was carried out at one scale.
The reasoned features obtained by the CFR structure do not interfere with the encoding
stage features. Additionally, in the reasoning time, different scale features are fused with
each other avoiding incomplete feature reasoning. From these details, it is noticeable that
the CFR structure can effectively retain more information than the other two reasoning
structures and achieve better translation performance.
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Table 4. Comparisons of various reasoning structures of our network on SEN1-2 spring S5, S45,
S52, and S100 datasets. The rising arrow indicates that the higher the value of this item, the better
the performance. The down arrow indicates that the smaller the value of this item, the better the
performance. The best results are shown in boldface.

SEN1-2 Versions RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

S5
baseline + U-Net 59.2862 13.0609 0.1302 0.5947

baseline + CN-ResBlocks 55.4026 13.5767 0.1570 0.5804

baseline + CFR 35.8079 17.7668 0.4083 0.4739

S45
baseline + U-Net 52.1455 14.0879 0.0969 0.6053

baseline + CN-ResBlocks 51.0880 14.2898 0.1099 0.5968

baseline + CFR 45.5217 15.2796 0.2182 0.5679

S52
baseline + U-Net 53.2916 14.1577 0.1492 0.6296

baseline + CN-ResBlocks 48.4358 14.9321 0.1852 0.6091

baseline + CFR 31.5664 18.8666 0.4038 0.5092

S84
baseline + U-Net 53.6439 13.7390 0.0960 0.5911

baseline + CN-ResBlocks 43.9750 15.4585 0.1372 0.5670

baseline + CFR 34.0315 17.9611 0.3642 0.5130

S100
baseline + U-Net 37.3050 17.1164 0.3216 0.5777

baseline + CN-ResBlocks 34.3218 17.9180 0.3828 0.5399

baseline + CFR 26.6837 20.9478 0.4726 0.5047

Wavelet Decomposition branch: In order to efficiently separate the frequency in-
formation and filter the noise contained in the high-frequency components, the wavelet
decomposition branch is presented to enhance the details of the pseudo-optical image.
The result of the quantitative evaluation is shown in Table 5. Compared with the network
without WD, the WD branch provides RMSE of 2.2659, PSNR of 0.3113, SSIM of 0.0591 and
LPIPS of 0.0101 improvements and achieves RMSE of 33.5420, PSNR of 18.0781, SSIM of
0.4674, and LPIPS of 0.4638 on dataset S5. On dataset S84, the WD branch provides RMSE
of 0.9183, PSNR of 0.2520, SSIM of 0.0473, and LPIPS of 0.0025 improvements and achieves
RMSE of 33.1132, PSNR of 18.2131, SSIM of 0.4115, and LPIPS of 0.5105. It is obvious that
the WD branch can effectively separate SAR images into muti-frequency components and
filter the noise contained in high-frequency components of SAR images, and achieves better
translation performance. The presentation of generated images on SEN1-2 is exhibited in
Figure 9. In Figure 9, column (a) are SAR images, column (b) are images generated with the
CFR structure, column (c) are images generated with the CFR structure and the WD branch,
and column (f) are real optical images. As shown in Figure 9, with the addition of the WD
branch, the faint details in the SAR image translate well to the details in the pseudo-optical
image. For example, in the first row of Figure 9, the white road in the SAR image is covered
with speckle noise and cannot be discerned by human eyes, while the white road is well
translated in column (c). As shown in Figure 9, the WD branch can separate the speckle
noise and help recover the blurred part of SAR images to clear pseudo-optical images.
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Figure 7. The representation of pseudo-optical images generated with different reasoning struc-
tures. The particulars are marked with red boxes and magnified for presentation. (a) SAR images.
(b) Pseudo-optical images generated with U-Net reasoning structure. (c) Pseudo-optical images
generated with CN-ResBlocks reasoning structure. (d) Pseudo-optical images generated with CFR
structure. (e) Optical images.

The output from the WD branch is exhibited in Figure 10. Figure 10a–e are SAR
images, the outputs of the WD branch, the outputs of the branch based on CFR structure,
the fusion results of the WD branch, and the branch based on CFR structure. Figure 10e
is the real optical image. As shown in Figure 10, the high-frequency features in the SAR
images are preserved and translated into optical features by the WD branch. In Figure 10a,
the high-frequency details are disturbed by speckle noise and unclearly present in SAR
images, resulting in vague object edges in Figure 10b. However, the WD branch is able to
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separate high-frequency features from SAR images containing speckle noise. As shown
in Figure 10c, the WD branch outputs distinct object edges. Combining the results of CFR
and WD branches, the pseudo-optical images with clear edges are generated, as shown in
Figure 10d, which are close to real optical images.
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Figure 8. The visualization of feature maps output from different reasoning structures. (a) SAR
images. (b) The feature maps output from the U-Net reasoning structure. (c) The feature maps output
from CN-ResBlock reasoning structure. (d) The feature maps output from CFR. (e) Optical images.

Two sub-branches discriminator: In order to distinguish the images from different
scales, two sub-branches are constructed in the discriminator. The result of the quantitative
metric is shown in Table 5. Compared with single scale discriminator, two sub-branches
discriminator provides RMSE of 0.7298, PSNR of 0.3964, SSIM of 0.0739, and LPIPS of 0.0178
improvements and achieves RMSE of 32.3843, PSNR of 18.6095, SSIM of 0.4854, and LPIPS
of 0.4927 on dataset S84. The assessment of five datasets shows that two sub-branches
discriminator improves the quality of the pseudo-optical images. In Figure 9c, the WD
branch recovers detailed edge information; however, the width of edges is still thick, which
might be caused by the discriminator that only authenticates the image on one scale. After
adding the two sub-branch discriminators, the edges become thinner and close to the edges
in real optical images.
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Figure 9. Examples of results of ablation study. The particulars are marked with red boxes and magnified for
presentation. (a) SAR images. (b) Baseline + CFR. (c) Baseline + CFR + WD. (d) Baseline + CFR + WD + 2D.
(e) Baseline + CFR + WD + 2D + LFM. (f) Optical images.

LFM loss function: In order to guide the generating of images on different scales and
stable the training of the network, LFM loss function is used in CFRWD-GAN to enhance
the output of the network. The result of the quantitative evaluation is displayed in Table 5.
In Table 5, the pseudo-optical images generated with LFM loss have increased SSIM value
and reduced LPIPS value compared without LFM loss. Specifically, compared without LFM
used in training, LFM provides RMSE of 1.2182, PSNR of 0.6336, SSIM of 0.1049, and LPIPS
of 0.0802 improvements and achieves RMSE of 31.1652, PSNR of 19.2431, SSIM of 0.5903,
and LPIPS of 0.4125 on dataset S84. Qualitative representation is displayed in Figure 9. Part
particulars are annotated with red boxes and magnified for a clear presentation. The results
in Figure 9e show that LFM loss works well on the texture restoration of pseudo-optical
images. In Figure 9e, the texture and details in pseudo-optical images are clearer than those
in Figure 9d. LFM loss helps the CFRWD-GAN model generate pseudo-optical images from
different levels of features, and finally, pseudo-optical images are gained with true texture
information and clear edge information.
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Figure 10. The representation of the outputs of the WD branch. The particulars are marked with red
boxes and magnified for presentation. (a) SAR images. (b) The output of the branch based on the
CFR structure. (c) The output of the WD branch. (d) The fusion results of the WD branch and the
branch based on the CFR structure. (e) Optical images.

4.4. Comparison Experiments

To validate the effectiveness of the CFRWD-GAN, comparative experiments with
pix2pix [11], cycleGAN [12], S-cycleGAN [21], NICEGAN [15], and GANILILA [42] are
represented on the QXS-SAROPT and SEN1-2. The quantitative comparison results are
displayed in Tables 6 and 7, and the best results are marked in boldface. In QXS-SAROPT,
the CFRWD-GAN attains the highest values of the PSNR and SSIM among the six models.
Regarding LPIPS, the value is the lowest among the six methods, indicating that the pseudo-
optical images generated by CFRWD-GAN are better and similar to the ground truth.
Regarding SSIM, Our CFR-GAN improved by 30.01%, 27.39%, 17.13%, 34.76%, and 193.60%
compared with pix2pix, cycleGAN, S-cycleGAN, NICEGAN, and GANILLA, respectively.
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Table 5. Comparisons of ablation study of our network on SEN1-2 S5, S45, S52, S84, and S100
datasets. CFR: cross-fusion reasoning structure, WD: wavelet decomposition, 2D: two sub-branches
discriminator, LFM: the high-dimensional feature matching loss. The rising arrow indicates that the
higher the value of this item, the better the performance. The down arrow indicates that the smaller
the value of this item, the better the performance. The best results are shown in boldface.

SEN1-2 CFR WD 2D LFM RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

S5

√
35.8079 17.7668 0.4083 0.4739

√ √
33.5420 18.0781 0.4674 0.4638

√ √ √
33.2064 18.3026 0.5098 0.4891

√ √ √ √
31.9840 18.9681 0.5619 0.3994

S45

√
45.5217 15.2796 0.2182 0.5679

√ √
40.6611 16.8970 0.3791 0.5379

√ √ √
37.3188 17.8494 0.4168 0.5649

√ √ √ √
37.1655 17.7945 0.4884 0.4831

S52

√
31.5664 18.8666 0.4038 0.5092

√ √
31.5834 18.9264 0.4928 0.4928

√ √ √
30.6756 19.0305 0.5196 0.4816

√ √ √ √
29.1952 19.5607 0.5414 0.4450

S84

√
34.0315 17.9611 0.3642 0.5130

√ √
33.1132 18.2131 0.4115 0.5105

√ √ √
32.3843 18.6095 0.4854 0.4927

√ √ √ √
31.1652 19.2431 0.5903 0.4125

S100

√
26.6837 20.9478 0.4726 0.5047

√ √
26.1237 21.5959 0.6157 0.4339

√ √ √
21.6153 22.3971 0.6002 0.4596

√ √ √ √
24.7660 22.2410 0.7168 0.3639

Table 6. IQA (Image Quality Assessment) with different translation methods on QXS-SAROPT. The
rising arrow indicates that the higher the value of this item, the better the performance. The down
arrow indicates that the smaller the value of this item, the better the performance. The best results
are shown in boldface.

Dataset Models/IQA RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

QXS-SAROPT

Pix2pix 31.3971 18.3803 0.3602 0.6473

CycleGAN 37.6152 17.1474 0.3676 0.5753

S-cycleGAN 32.1123 18.1896 0.3998 0.6584

NICEGAN 47.9546 14.6595 0.3475 0.5859

GANILLA 38.9487 16.4145 0.1595 0.6227

CFRWD-GAN 33.7660 19.0178 0.4683 0.5238
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Table 7. IQA with different translation methods on SEN1-2. The rising arrow indicates that the higher
the value of this item, the better the performance. The down arrow indicates that the smaller the
value of this item, the better the performance. The best results are displayed in boldface.

Sen1-2 Models/IQA RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

S5

Pix2pix 59.2862 13.0609 0.1302 0.5947

CycleGAN 58.5405 13.4130 0.1750 0.5563

S-cycleGAN 44.3185 15.5888 0.2306 0.6924

NICEGAN 76.9458 10.9615 0.0960 0.6974

GANILLA 56.8872 13.7428 0.1795 0.5452

CFRWD-GAN 31.9840 18.9681 0.5619 0.3994

S45

Pix2pix 52.1455 14.0879 0.0969 0.6053

CycleGAN 69.3182 11.8628 0.0804 0.6046

S-cycleGAN 40.5645 16.3255 0.1872 0.6855

NICEGAN 66.6370 12.2907 0.0829 0.6021

GANILLA 65.8261 12.3702 0.0672 0.5932

CFRWD-GAN 37.1655 17.7945 0.4884 0.4831

S52

Pix2pix 53.2916 14.1577 0.1492 0.6296

CycleGAN 55.0609 13.7640 0.1551 0.6130

S-cycleGAN 25.2093 20.7661 0.4677 0.6257

NICEGAN 54.1179 13.8628 0.1379 0.6689

GANILLA 53.3846 14.0246 0.1721 0.6356

CFRWD-GAN 29.1952 19.5607 0.5414 0.4450

S84

Pix2pix 37.3050 17.1164 0.3216 0.5777

CycleGAN 39.8048 16.5679 0.3807 0.5491

S-cycleGAN 25.4606 20.3833 0.4558 0.5982

NICEGAN 35.5919 17.3726 0.4059 0.5476

GANILLA 39.5776 16.6620 0.4090 0.5369

CFRWD-GAN 24.7661 22.2410 0.7168 0.3639

S100

Pix2pix 53.6440 13.7390 0.0960 0.5911

CycleGAN 59.8141 12.7815 0.1032 0.5835

S-cycleGAN 46.3288 15.1808 0.2024 0.7375

NICEGAN 56.5410 13.2690 0.1120 0.5736

GANILLA 63.5996 12.3382 0.1198 0.6093

CFRWD-GAN 32.3843 18.6095 0.4854 0.4125

In the SEN1-2 dataset, it is undeniable that not all metrics of CFRWD-GAN are optimal
among the six methods; however, in terms of SSIM and LPIPS, CFRWD-GAN has achieved
the best results, indicating promising translation performance. Our model achieves SSIM
of 0.5619, 0.4884, 0.5414, 0.7168, and 0.4854 on S5, S45, S52, S84, and S100, respectively.

Qualitative experimental results on QXS-SAROPT are shown in Figure 11. From
column (b) to column (h), the image quality is gradually improving. To compare details
of the pseudo-optical images, particulars are marked with red boxes in Figure 11. In the
first row of Figure 11, the images generated by CFRWD-GAN have a clearer white road
than other methods. Moreover, the image generated by CFRWD-GAN in the second row is
almost as clear as the ground truth, and the red house is more distinct than other methods.
By observing images of the third row in Figure 11, we find that the proposed CFR-GAN
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retains color information better and consistently than other methods. Furthermore, in the
fourth row of Figure 11, the texture in the image gained by CFRWD-GAN is clearer than
the other five methods.
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Figure 11. Examples of STOIT with different models. The particulars are marked with red boxes
and magnified for presentation. (a) SAR images. (b) pix2pix. (c) cycleGAN. (d) S-cycleGAN.
(e) NICEGAN. (f) GANILLA. (g) CFRWD-GAN. (h) Optical images (ground truth).

More examples of pseudo-optical images generated in the SEN1-2 dataset are shown
in Figure 12. Some details are marked with red boxes. As shown in Figure 12, our
CFRWD-GAN model can generate higher-quality pseudo-optical images than the alterna-
tive methods.
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Figure 12. More examples of pseudo-optical images generated by different models. The particulars
are marked with red boxes. (a) SAR images. (b) pix2pix. (c) cycleGAN. (d) S-cycleGAN. (e) GANILLA.
(f) NICEGAN. (g) CFRWD-GAN. (h) Optical images (ground truth).

4.5. Evaluation of Efficiency

In addition to assessing the pseudo-optical image quality and visualization outcomes
of various methods, we also measure the computational complexity and model parameters
in terms of millions of parameters (Params) and floating-point operations per second
(FLOPs). All models are computed with an input of 1 × 256 × 256. Table 8 depicts the
outcomes. Compared to the other five translation models, our model’s performance has
significantly improved, despite lacking an advantage in computational complexity. In
future projects, we will concentrate on striking a balance between complexity and accuracy.
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Table 8. Comparison with other networks on FLOPs and Params. G—generator. D—discriminator.

Model FLOPs (G) Params (M)

Pix2pix G 18.152 54.414
D 3.202 2.769

CycleGAN G 113.858 22.766
D 6.304 5.532

S-cycleGAN G 113.858 22.766
D 6.304 5.532

NICEGAN
G 67.537 16.192
D 12.000 93.749

GANILLA
G 18.094 7.228
D 3.149 2.765

CFRWD-GAN
G 48.631 35.800
D 4.671 5.539

5. Discussion

Recently, researchers have modified pix2pix and cycleGAN to perform the STOIT
task. These improvements include modifications in the structure of the generator and the
loss functions.

The commonly used reasoning structures in the generator are the U-Net structure
and CN-ResBlocks structure. However, these reasoning structures cause a large amount of
information loss. Therefore, we consider whether it is possible to simultaneously retain
different levels of features during the reasoning process. Aiming to address the problem of
massive information loss during feature reasoning, the CFR, a multi-scale-based structure,
is proposed in this paper. The CFR structure retains high-resolution detail features and
low-resolution semantic features simultaneously in the process of feature reasoning and
completes the reasoning of SAR features of different scales to optical image features step by
step. In the CFR structure, the whole reasoning process is divided into three stages; each
stage will add a new scale branch. Features between different stages through cross-fusion
complete the feature transfer, and features of different scales are retained in the reasoning
process. CFR effectively solves the problems of information loss and incomplete reasoning
by preserving all scales’ features in the process of reasoning. Visualization of the output
feature maps of the U-Net, CN-ResBlocks, and CFR structures shows that the CFR structure
retains more information than the other two feature reasoning structures.

In addition, to better deal with speckle noise in SAR images and recover high-
frequency details of the images, the WD branch is constructed based on wavelet decompo-
sition. Wavelet decomposition enables the separation of an image into different frequency
bands, which makes it possible to process different frequency bands independently. The
high-frequency sub-bands of the wavelet coefficients represent the edges and details of
images, which are crucial for preserving image structure. The low-frequency band of the
wavelet coefficients refers to the smoothed regions of the image, which contain most of the
image energy. By thresholding the high-frequency wavelet coefficients, speckle noise can
be removed from the image while important image details are preserved. Visualization of
the WD branch shows that it filters the noise in the wavelet domain and more completely
preserves the high-frequency information of the image. Based on the SEN1-2 dataset and
the QXS-SAROPT dataset, the effectiveness of the CFR branch and the WD structure is
verified by ablation experiments. The qualitative and quantitative comparison results show
the superiority of the CFRWD-GAN model.

6. Conclusions

In this paper, we present CFRWD-GAN, a novel architecture for supervised STOIT.
Driven by the characteristic of the SAR images, we make clear the key problem of the
STOIT, including part information loss during the feature stage, making the outline of the
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translated pseudo-optical images blurred and semantic information missing, and severe
speckle noise exists in the SAR images. To address the above questions, we propose
the network specifically to gain better translation results. First, a cross-fusion reasoning
structure, which can preserve both high-resolution, detailed features and low-resolution
semantic features in the whole process of feature reasoning, is designed in the translation
of the SAR image feature to the optical image feature. Second, the wavelet decomposition
branch, which contains a wavelet decomposition structure, HFCF structure, and feature
decoding structure, is proposed to tackle the high-frequency image components. Finally,
the fusion of the WD branch and the branch based on the CFR structure can make the
CFRWD-GAN generate high-quality images. In addition, extensive experiments are carried
out on SEN1-2 and QXS-SAROPT datasets, and the experimental results show that our
method achieves perfect performance in the STOIT task. In the future, we will verify
the effectiveness of STOIT for image registration, image detection, image fusion, and
other tasks.
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