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Abstract: With the exponential growth in the speed and volume of remote sensing data, deep
learning models are expected to adapt and continually learn over time. Unfortunately, the domain
shift between multi-source remote sensing data from various sensors and regions poses a significant
challenge. Segmentation models face difficulty in adapting to incremental domains due to catastrophic
forgetting, which can be addressed via incremental learning methods. However, current incremental
learning methods mainly focus on class-incremental learning, wherein classes belong to the same
remote sensing domain, and neglect investigations into incremental domains in remote sensing. To
solve this problem, we propose a domain-incremental learning method for semantic segmentation in
multi-source remote sensing data. Specifically, our model aims to incrementally learn a new domain
while preserving its performance on previous domains without accessing previous domain data.
To achieve this, our model has a unique parameter learning structure that reparametrizes domain-
agnostic and domain-specific parameters. We use different optimization strategies to adapt to domain
shift in incremental domain learning. Additionally, we adopt multi-level knowledge distillation
loss to mitigate the impact of label space shift among domains. The experiments demonstrate that
our method achieves excellent performance in domain-incremental settings, outperforming existing
methods with only a few parameters.

Keywords: incremental learning; multi-source remote sensing; semantic segmentation; catastrophic
forgetting

1. Introduction

The deployment of deep learning models on edge devices is emerging as a significant
trend for future interpretation of Earth intelligence [1]. By locally processing real-time data,
this approach eliminates the need for data transfer to cloud devices, saving significant
processing time, data transmission, and resource consumption. This technique has matured
in the field of autonomous driving [2,3]. Subsequently, the faster and more abundant
acquisition of remote sensing data has created new standards and requirements for deep
learning models, making it essential for these models to adapt and learn continuously over
time. However, most existing deep learning models for semantic segmentation tasks [4,5]
are trained offline and statically deployed [6,7]. These models require large amounts of
data for long-term training and can only be applied to a specific domain, with no provision
for adapting or expanding over time. When new domain data becomes available, the
models cannot maintain their performance requirements for the original domain, leading
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to catastrophic forgetting [8,9] problems. As illustrated in Figure 1, we show an example
of catastrophic forgetting, when semantic segmentation models are applied in continual
remote sensing domains. Therefore, it is critical to develop deep learning models [10,11]
that can adapt to changing data and continuously learn to keep up with the evolving
requirements of Earth intelligence interpretation.

Figure 1. An example of catastrophic forgetting in a continual domain sequence. We deploy two seg-
mentation models statically, where pre-trained models are sequentially fine-tuned (FT) [12] on five
different domains (D1–D5) in the field of continual remote sensing. This domain sequence closely
simulates the data collected by edge devices, such as satellite and aerial sensors capturing the images
of urban and rural regions. The performance of the models is evaluated from two perspectives. Firstly,
a bar chart demonstrates the performance of the DeepLabV3+ model when fine-tuned on D1–D5
(i.e., GID [13], BDCI2020 [14], deepglobe [15], LoveDA-urban [16], and LoveDA-rural [16]). The
chart reveals a degradation in performance for the previous domains. Secondly, two line diagrams
illustrate the performance of the GID domain on different tasks for the DeepLabV3+ [4] and Erfnet [5]
models. The results show that models trained on new domains achieve good performance, while the
performance of the models on previous domains gradually decreases. For a more detailed description,
please see Section 4.4.

The existing training schemes to solve the challenge of deep learning models in con-
tinual domains can be summarized as follows [17]: (a) separate training in a single domain,
storing each model, and then flexibly switching between different domains; (b) storing
each domain data, then joint training with multiple domains when deploying on a specific
domain; (c) sequential training with incremental domains, adopting the domain adaption
method to improve the performance in the target domain. However, deploying deep
learning models on edge devices requires the consideration of the operation rate, storage
pressure, and data privacy problems. Obviously, the aforementioned methods do not meet
these requirements. Instead, an extensible lightweight model with an incremental learning
ability that can maintain good performance among all cumulative domains is more suitable
for applications. Therefore, incremental learning (also known as continual learning) [8,9]
is proposed.

The study of incremental learning in remote sensing is still in its early stages and
is primarily focused on task-incremental learning or class-incremental learning, as evi-
denced by the works of [18–22]. However, domain-incremental learning is more relevant in
practical applications, since deep learning models are expected to learn continual remote
sensing domains when deployed on the edge devices. Despite the importance of domain-
incremental learning, it has received relatively little attention. In this regard, our objective is
to address this gap and explore methods for domain-incremental learning that can improve
performance in continual domains. Additionally, we choose semantic segmentation as our
downstream task.

In the domain-incremental setting, catastrophic forgetting can be attributed to two
main factors: domain shift and label space shift. Figure 2 illustrates the properties of con-
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tinual remote sensing domains, including: (1) inconsistent class distributions of different
regions; and (2) spatial resolutions and spectral divergence of the specific object category in
different sensors. Due to the diversity in sensors and regions, domain shift can occur as the
image capture conditions change, such as variations in object scales, complex background,
spatial resolution, spectral divergence, and weather conditions. Furthermore, previously
unseen classes in new geographical regions and inconsistent class distributions can both con-
tribute to label space shift. As a result, addressing domain shift and label space shift is crucial
to achieving optimal segmentation model performance in domain-incremental learning.
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Figure 2. A brief illustration of the multi-source remote sensing data, including samples from multi-
sensor (satellite and aerial sensors) and multi-region (urban and rural regions) data. Taking the
category of building and agriculture for example, the upper half of the graph shows the visual
difference in the sensor of different spatial resolutions, reflected in object scales and styles. The
second half shows the spectral divergence of the building and agriculture in a series of images from
different domains, by the mean and standard deviation in red, green, and blue wavelengths. We
simplify our research and regard the remote sensing domains as images from multiple sensors and
regions in our research.
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Therefore, we propose the domain-incremental learning for the remote sensing frame-
work (DILRS) as a solution in continual domains. Drawing inspiration from the effective-
ness of the universal parametrization in multi-domain learning [23,24], we find that model
parameters can be divided into those that learn domain-specific features and those that rep-
resent shared features. In domain-incremental learning settings, retaining domain-agnostic
parameters and switching domain-specific parameters can be an effective approach to main-
taining performance in current and previous domains with fewer parameters. To handle
the label space shift problem during model updates in domains with non-overlapping new
classes, we propose a multi-level knowledge distillation loss, which refers to knowledge
distillation strategies [25–27]. Our main contributions can be summarized as follows:

(1) We define the problem of domain-incremental learning for remote sensing and propose
a dynamic framework specific for this problem without using previous training data
and labels. Experimental results demonstrate the excellent performance of our method
with fewer parameters.

(2) To alleviate the domain shift among incremental domains, we adapt domain residual
adapter modules in the structure, using different optimization strategies towards
domain-specific and domain-agnostic parameters.

(3) Consider different label space shift, class-specific knowledge distillation loss is ap-
plied to distil the common class knowledge between domains, and we also use the
distillation loss at intermediate feature space to avoid background class interference.

2. Related Work

While remote sensing visual perception models such as image scene classification
and segmentation models have been thoroughly studied, incremental learning in remote
sensing is still in its early stages. This section aims to provide an overview of incremental
learning, followed by a focus on domain-incremental learning and incremental learning
for semantic segmentation. In particular, we will briefly review the relevant research in
remote sensing.

2.1. Incremental Learning

Incremental learning [8,9], aiming to tackle catastrophic forgetting during model
learning and extending, can be divided into three scenarios: task-incremental learning,
class-incremental learning, and domain-incremental learning. Three categories of incremen-
tal learning technologies have been proposed, including replay-based, regularization-based,
and parameter isolation-based strategies. Replay-based methods [28] involve storing a
portion of old data or training additional generators to produce pseudodata for replay,
followed by joint training with new data. However, this approach may raise data privacy
concerns and create storage pressures. To address the forgetting of previous knowledge,
regularization-based strategies [12,29] typically employ knowledge distillation or regular-
ization terms in loss functions. Compared with replay-based strategies, regularization-
based strategies do not require the storage of previous data. However, the model is
optimized based on the previous task, which could lead to the final model not converg-
ing towards the globally optimal solution and unsatisfactory performance. Parameter
isolation-based strategies [30,31], on the other hand, typically isolate or freeze important
model parameters from previous tasks and allow models to introduce new parameters
to prevent forgetting in the new task. Given that remote sensing data storage is imprac-
tical, and we aim to maximize effectiveness, parameter isolation-based methods are the
most suitable approach for our task [19]. Our proposed model is based on parameter
isolation-based methods.

2.2. Domain-Incremental Learning

Domain-incremental learning refers to model learning from continual domains of
changing distribution, where nonstationarity is reflected in background, blur, noise, and
other factors [8,9]. However, there is a gap between this definition and real-world applica-
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tions. A relevant example of domain-incremental learning in the real world is an agent that
needs to learn to survive in different environments. Classic scenes include autonomous
driving [23,32], person ReID [33], and crowd counting [34], among others [35]. For instance,
Garg et al. [23] proposed a dynamic semantic segmentation model, which is effective in
three driving scenes from visually disparate geographical regions. Mirza et al. [32] pre-
sented a robust object detection method for autonomous driving that learns incrementally
across varying weather conditions. In fact, the research setting of domain-incremental
learning is also applicable to remote sensing. Multi-source remote sensing data collected by
revisiting multiple satellites implies that remote sensing intelligent interpretation models
will require higher domain-incremental learning capabilities. To the best of our knowledge,
there is no related research on domain-incremental learning for remote sensing.

Additionally, domain adaptation [36] and multi-domain learning [24,37] are closely
related to our research. Multi-domain learning, with access to all domains’ data, aims to
retain good performance in all domains. Domain adaptation utilizes labeled data in the
source domain to maximize performance in the target domain. The difference with our
work is reflected in the model’s goal, the availability of different domains, and the diversity
in the label space.

2.3. Incremental Learning for Semantic Segmentation

Recently, the limitation of an offline setting used in semantic segmentation models is
cause for concern. Incremental learning strategies for semantic segmentation have been
proposed [25–27]. These studies are based on the assumption that models update for new,
unseen categories in the class-incremental setting, where the background class or semantic
shift is the primary challenge. Cermelli et al. [27] highlighted that the semantic distribution
shift exists in the non-overlapping new classes of each learning step and proposed a
distillation-based framework specific to solve this issue. Klingner et al. [26] introduced a
knowledge distillation loss without relying on previous data in class-incremental learning
for semantic segmentation.

However, compared with natural images, continual semantic segmentation in remote
sensing is a relatively new field with few papers [20–22,38–41] studying the problem.
Tasar et al. [22] were the first to study the incremental learning scenario of remote sensing
segmentation, while Shan et al. [38] proposed two effective modules embedded in the
proposed class-incremental segmentation framework without access to previous data.
However, these experimental settings considered only a class-incremental semantic shift
in the same domain. In reality, the semantic shift and domain shift may coexist in remote
sensing applications, which motivates us to study semantic segmentation in the domain-
incremental learning setting.

3. Method

This section provides an overview of our work, DILRS, which focuses on domain-
incremental learning for remote sensing. Firstly, we present the problem formulation of
domain-incremental learning that we use in our work. Next, we introduce the overall
framework, DILRS, and provided a detailed description of its key component, the do-
main residual adapter module. Finally, we discuss the proposed loss function and the
optimization strategy that we developed.

3.1. Problem Formulation

The domain incremental learning setting assumes the presentation of N tasks, each
corresponding to n training domains Dk = {(xk, yk)}n

k=1, where xk and yk represent a
data sample and its corresponding label, respectively. In contrast to current incremental
semantic segmentation research [40], where only a semantic shift exists at each step, our
experiments consider the coexistence of domain shift and label shift between Dk and Dk−1.
Additionally, yk may contain overlapping classes and new classes compared to yk−1, and
vice versa. We used the original dataset labels as domain labels and a multi-head decoder
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structure to prevent semantic shifts in the background class. The classifier in each decoder
predicts the category of pixels in different domains independently.

The overall training process of the domain-incremental semantic segmentation model
is illustrated in Figure 3. The segmentation model is trained incrementally on the domain
sequence. At step k of training, we train modelMk(xk, k) on domain Dk = (xk, yk). We
assume that the old data samples ∑ i = 1k−1Di become unavailable while Dk is provided.
Our model aims to adapt to each new domain without degrading its performance on
previous ones. During the inference phase, we have access to the ID of each domain,
similarly to task-incremental learning. We evaluated the performance of the model at the
end of the training sequence for the current and previous domains ∑k

i=1 Di. To simplify the
introduction, we refer to the domain, dataset, and task at step k as Dk.

Domain 1
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Domain k

Proposed 
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Domain n
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Algorithm
Model Model Model...

Final

Model

Training 

Phase

Domain 1 Domain nTesting 

Phase
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Continual learning across 

sequential domains

...

Figure 3. The DILRS framework for domain-incremental learning in remote sensing involves a
process where, at each step, only the current domain is available. Our proposed model incrementally
trains on the current domain while simultaneously testing on all previous domains.

3.2. Proposed Framework

The DILRS architecture consists of two components: a shared encoder E and K parat-
actic domain-specific decoders Ck, as depicted in detail in Figure 4. The shared encoder
is based on the lightweight efficient residual factorized network (Erfnet) [5], which in-
corporates domain residual adapter (DRA) modules. These DRA modules learn both
domain-specific features and domain-agnostic features. For the domain Dk = (xk, yk), our
framework learns a mapping,

yk = Mk(xk, k;Wk,Ws) = Ck(E(xk, k; αk,Ws)), (1)

where yk represents the predictions of the model, Wk = {αk, Ck} and Ws are domain-
specific parameters and domain-agnostic parameters in the model, respectively; αk are
domain-specific parameters in encoder E .

3.3. Domain Residual Adapter Module

The domain residual adapter (DRA) module is a critical component in the DILRS
architecture, as it is responsible for reparametrizing the network into domain-specific and
domain-agnostic parameters. As shown in Figure 5, the features in the jth module are
denoted as uj

k, which consist of the features ûj−1
k introduced by the DRA module with a

skip connection of the features uj−1
k from the previous module:

uj
k = uj−1

k + ûj−1
k , j ≥ 2. (2)

Specifically, ûj−1
k is formed by a concatenation of the domain-agnostic part gj(·) and

domain-specific part hj
k(·):

ûj−1
k = f j

k

(
hj

k

(
uj−1

k

)
; gj

(
uj−1

k

))
, j ≥ 2, (3)
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where gj is a domain-agnostic structure across all domains, and f j
k and hj

k constitute a
parallel domain-specific residual adapter structure for each domain. Among them, gj

is composed of [3 × 1] and [1 × 3] convolutional layers, followed by a ReLU activation
function. As for the domain-specific structure, hj

k is a [1 × 1] convolutional layer denoted

as a domain-specific layer of the domain k in parallel. Additionally, f j
k represents the batch

normalization layers, which are also domain-specific structures in parallel. The setting of
the DRA fellows the residual adapter module in [23,24,42].

Decoder

Decoder 

Decoder 

DRA

Domain-agnostic Path

Domain-specific path of previous domains 
Domain-specific path of domain k

Frozen

Step:  Domain k-1

Step:  Domain k

LF

LCE

kx

ky

1kx
1ky

ky

kc

1kc

1kc

Encoder 

Encoder 

1k

k

1k

sw

sw

Figure 4. Our proposed approach is composed of a shared encoder and domain-specific decoders.
The encoder is made up of several domain residual adapter (DRA) modules, as illustrated in detail in
Figure 5. At each step, denoted by k, the domain-specific paths for the previous domains are frozen,
as indicated by the yellow dotted line in the figure. The model then trains on the domain-agnostic
path (in blue) and the current domain-specific path (in green).
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Figure 5. The detailed structure of the domain residual adapter module (DRA). Parameters of the
domain-specific and domain-agnostic part in DRA are shown in different colors.

3.4. Loss

As mentioned above, the domain shift is the primary challenge when the model
adapts to continual domains. Additionally, the label space shift between these domains is
another factor that needs to be considered. Recent studies [26,27] of incremental learning
for semantic segmentation have focused on the semantic shift of the background class,
where the old classes of the previous step are divided into the background class at each step,
and all classes belong to the same domain in their setting. Although there is no domain
shift in this research, the methods that adapt knowledge distillation strategies to solve the
semantic shift are worth referencing, as they are a common strategy to transfer knowledge
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from the old model into the new one. However, in the DILRS setting, a naive application of
previous knowledge distillation loss functions would not suffice.

Considering the fact that domain shift coexists with label space shift in DILRS, we
revisit the classical knowledge distillation and optimization strategies by introducing a
multi-level class-specific knowledge distillation function and different optimization for
domain-specific and domain-agnostic parameters.

(1) Class-specific knowledge distillation function. To optimize the domain-agnostic
parameters’ cross-domain sequence, we adopt the knowledge distillation loss. At step k, we
initialize the domain-agnostic parameters from Ws of Mk−1 and then distill the predictions
of the new and old models’ output. Considering the fact that we only have data of domain
Dk = (xk, yk), we input xk into both the current model Mk and the previous model Mk−1
for the previous task i, 0 < i < k:

qnew
i = Mk(xk, k− 1; Ws, Wk−1),

qold
i = Mk−1(xk, k− 1; Ws, Wk−1),

LD =
k−1

∑
i=1

J
(

qnew
i , qold

i , µk

)
,

(4)

where qnew
i and qold

i represent the output probabilities of the current model Mk and the
previous model Mk−1, respectively. We define the class-specific knowledge distillation loss
as J, which is computed over all previous tasks. The detailed diagram of J can be seen in
Figure 6. We design the class-specific knowledge distillation strategy on both spatial and
channel dimensions to further mitigate the influence of the label space shift. Since we use
the current domain Dk to replace all previous domains ∑ i = 1k−1Di, we empirically found
that the data shift in the background class and non-overlapping classes leads to worse
distillation results. Hence, we only distill knowledge in the overlapping classes between
the current domain Dk and the previous domain Di, 0 < i < k separately. Specifically, we
define the class-specific knowledge distillation loss as follows:

J(qnew
i , qold

i , µk) = −
1

Nk
∑

xk∈Dk

Cµ

∑
c=1

µkqold
i log(qnew

i ). (5)

Output of current model Mk

one-hot encoded

label

spatial-dimension 

Output of previous model Mk-1 Overlapping class

channel-dimension 

mask

new

iq

old

iq

k

ky

CC

DL

Figure 6. The detailed diagram of class-specific knowledge distillation loss J which can be divided
into the spatial and channel dimension parts.
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Here, µk ∈ {0, 1}C×H×W denotes the pixel-wise elements of a binary mask, getting
from one-hot encoded label yk. Cµ represents the overlapping classes between the current
domain Dk and the previous domain Di, 0 < i < k, respectively. Nk is the set domain Dk of
all pixels contributing to the loss.

(2) Knowledge distillation function in feature space. Our model can be decomposed
by one shared encoder E and multi-head decoder Ck. As mentioned above, the parameters
of the decoder Ck are separate domain-specific parameters, while the parameters of the
encoder mix domain-specific parameters αk and domain-agnostic parametersWs. Inspired
by [25,38], we try to preserve knowledge by keeping the encoder E of model Mk and Mk−1
having a similar representation capability at feature space. We compute this by

pnew
i = E(xk, k− 1; Ws, αk−1),

pold
i = E(xk, k− 1; Ws, αk−1),

LF = − 1
Nk

k−1

∑
i=1

∑
xk∈Dk

‖pnew
i − pold

i ‖2

(6)

where pnew
i and pold

i represent the intermediate features of the current model Mk and the
previous model Mk−1 before the decoding stage, and ‖ · ‖ denotes L2− norm.

(3) Overall loss. Additionally, during the incremental step k, we used cross-entropy
loss to train model Mk, defined by

LCE = − 1
Nk

∑
xk∈Dk

ψk(yk, yk) , (7)

where yk denotes the prediction output of Mk. ψk is the SoftMax cross-entropy loss, and we
set the class weights of each category to better solve the category imbalance problem.

The total loss is defined as a weighted sum of these three kinds of loss

Ltotal = λ1 · LCE + λ2 · LD + λ3 · LF, (8)

where λ1, λ2 and λ3 are the weights of cross-entropy loss LCE, class-specific knowledge
distillation function LD, and knowledge distillation function in feature space LF. The details
of the parameter setting λ1, λ2 and λ3 can be seen in Section 4.5.

(4) Optimization strategy. At step k of our work, we take a different optimization
strategy on domain-specific parametersWk = {αk, Ck} and domain-agnostic parameters
Ws. We initialize theWk based onWk−1, while the output classification layer is randomly
initialized considering the label space shift between yk and yk−1. Additionally, all previous
domain-specific parameters ∑k−1

i=1 Wi are frozen at step k. Similarly, domain-agnostic pa-
rametersWs initialize the model Mk−1, which are shared with all domains. Knowledge
distillation on feature space and class-specific output prediction makes the current model
preserve previous domain knowledge by domain-agnostic weightsWs as much as possible.
In contrast, the cross-entropy loss trained on each domain improves the domain-specific
performance. In addition, the domain-specific paths corresponding to the multi-domain
intertwine with domain-agnostic parameters. For each evaluation of each domain, only the
corresponding domain-specific path within domain-agnostic parameters is activated in the
forward pass. Overall, the process of training can be described as fellows Algorithm 1.
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Algorithm 1: Process of learning a new domain of kth step in DILRS
Require:

Dk: new domain (dataset) of current step k
Mk−1: model of previous step k− 1

1: Initialization:Mk ← add new domain-specific structure to Mk−1
initWk: Wk in Mk ←Wk−1 in Mk−1

2: Freeze: domain-specific weights of all previous domains: ∑k−1
i=1 Wi

3: for epochs do
4: Forward pass Mk(xk, k) via Wk
5: Compute cross-entropy loss LCE for Dk
6: Forward pass Mk(xk, k− 1) via Wk−1
7: Forward pass Mk−1(xk, k− 1) via Wk−1
8: Compute knowledge distillation loss LD, LF
9: Compute loss Ltotal

10: Update: Mk and Ms at learning rate lr
11: end for

4. Experiments

In this section, we first introduce the overview of the datasets, and then we show
the implementation details and evaluation metrics. Finally, we briefly introduce the com-
pared methods and show the experimental results from different perspectives in detail,
respectively.

4.1. Datasets

In the remote sensing field, there is currently no clear definition of what constitutes a
‘domain’, despite extensive research on domain adaptation [36]. For the purposes of our
research, we have chosen several representative datasets [13–16] to form an experimental
domain sequence. Table 1 presents the statistics of our chosen domain sequence, with all
datasets resized to 256 × 256. The domains are incrementally ordered based on an increasing
sensor resolution (D1–D5), and include a range of satellite (GF-2, GF-1/6, WorldView-2) and
airborne sensors, covering various complex scenarios in different regions and countries. Given
the regional diversity, we further divided the rural and urban areas of LoveDA [16] into
two independent domains. Additionally, our domain sequence has non-overlapping categories,
which are detailed in Table 1. The class distribution is shown in Figure 7, which highlights the
differences and challenges posed by the domain incremental learning setting. Our experimental
setting involves simultaneous domain shift and label space shift. We will make our dataset
available on our website at http://complex.ustc.edu.cn/, accessed on 11 May 2023.

Figure 7. The class distribution of our datasets.

http://complex.ustc.edu.cn/
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Table 1. Comparison and statistics among datasets.

Dataset Sensor Resolution
(m)

Image
Width Images Classes

GID [13] GF-2 4 256 109,201 6 (Water/Building/Agricultural/Forest/Grassland/Background)

BDCI2020 [14] GF-1/6 2 256 145,982 7 (Water/Building/Agricultural/Forest/Grassland/Road/Background)

deepglobe [15] WorldView-2 0.5 256 65,044 7 (Water/Building/Agricultural/Forest/Grassland/Barren/Background)

LoveDA-urban [16] Airborne 0.3 256 29,328 7 (Water/Building/Agricultural/Forest/Road/Barren/Background)

LoveDA-rural [16] Airborne 0.3 256 37,728 7 (Water/Building/Agricultural/Forest/Road/Barren/Background)

4.2. Implementation Details

We utilize the Erfnet [5] as our model’s backbone, with the integration of our domain’s
residual adapter module. Specifically, the encoder embeds with our domain residual
adapter module, while each head of the multi-head decoder seamlessly follows the Erfnet
structure. We use the Adam optimizer and set the batch size to 36. In light of the data imbal-
ance in LoveDA compared to the other datasets, we adopted data augmentation strategies
such as random horizontal flip and rotation for LoveDA-rural and LoveDA-urban.

Considering the stability-plasticity trade-off problem in incremental learning, we use
a different learning rate for domain-specificWk and domain-agnostic parametersWs. In
particular,Wk is related to the plasticity of a new domain, whileWs is close to the stability
of previous domains. There is an imbalance between the representation learning on a
new domain and representation maintenance on a previous domain when using the same

learning rate forWk andWs. Experiments indicate that
LRWk
LRW∫

valued as 100 obtains a good

stability–plasticity trade-off. The learning rate of theWk andWs are set to 5 ×10−4 and
5 ×10−6, respectively. Our experiments are implemented using Pytorch, and we use an
NVIDIA Tesla V100 GPU.

In accordance with the evaluation metrics used in studies such as [19,23,34,43], we
utilize ∆m and BWT to evaluate the performance of our incremental learning model, DILRS.
Specifically, ∆m measures the average performance degradation compared to the single-task
baseline b:

∆m =
1
T

T

∑
t=1

mIoUT,t −mIoUb,t

mIoUb,t
. (9)

Here, the mean intersection over union mIoUT,t denotes the evaluation accuracy of
the incremental-learning segmentation model on task t, which can also be considered a
domain. On the other hand, mIoUb,t represents the evaluation accuracy of the single-task
baseline for task t, and T denotes the total number of tasks. If ∆m < 0, it indicates that the
performance of the incremental-learning task is worse than the single-task baseline for each
domain, while ∆m > 0 indicates a better performance.

The backward transfer BWT metric measures the forgetting of the model on old tasks
after training on a new task, which is particularly relevant for evaluating incremental
learning methods. Theoretically, if BWT < 0, this means that the model learning a new task
will improve the performance of the model on the previous tasks. In contrast, if BWT > 0, it
denotes that the performance of previous tasks decreases when learning a new task, which
is also known as catastrophic forgetting.

BWT =
1

T − 1

T−1

∑
t=1

(mIoUt,t −mIoUT,t), (10)

where mIoUT,t represents the accuracy on task t after learning task T.

4.3. Compared Methods

When training multiple domains, several choices of training paradigms are optional,
including disjoint, joint-training, and fine-tuning. We compare our proposed methods
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with these baseline methods. Additionally, the three latest incremental learning methods
are compared, including EwC [29], LwF [12], and ILTSS [25]. Note that all the compared
methods are based on the Erfnet model.

(1) Benchmark Methods for Comparison. Disjoint (single-task) trains a separate model
independently for each domain, which aligns with the i.i.d. (independent identically
distributed) assumption of model training. Joint-training (multi-task) trains a unified
model by combining all domain data. Both disjoint and joint-training belong to the offline
setting, and we record results when training until convergence on each new task. We
use a multi-head decoder to train all accumulated datasets. Fine-tuning (FT) trains each
domain incrementally by fine-tuning the pre-trained model on the new domain until
convergence. Fine-tuning is a standard baseline in incremental learning, while nothing has
been implemented to avoid forgetting. We used a single-head decoder in our experimental
setting. Feature extraction (FE) freezes the weights of previous domains, which theoretically
preserves the model’s performance over the previous domains as much as possible. We fix
all encoder weights and only train the new domain’s decoder weights.

(2) Latest Incremental Learning Methods. There are only a few methods explicitly
designed for domain-incremental learning. Given the similarity between our experimental
setting and incremental learning for semantic segmentation, we compare our method with
the three latest incremental learning methods, namely EwC [29], LwF [12], and ILTSS [25].
Since the data of the previous domain are not available in our setting, we do not consider
replay-based incremental learning as a compared method. EWC [29] ranks the weights
of the old task and then optimizes them differently depending on their importance. It
does this by introducing the Fisher information matrix based on the analysis of sequential
Bayesian estimation. LwF [12] was the first method to use knowledge distillation to
prevent catastrophic forgetting when learning new tasks or classes. On the other hand,
ILTSS [25] extends the knowledge distillation strategy in segmentation by adopting a
feature-space loss.

4.4. Experimental Results

(1) Multi-source domain-incremental learning scenario. As mentioned previously,
our incremental learning approach follows the domain sequence (D1–D5): GID [13];
BDCI2020 [14]; deepglobe [15]; LoveDA-urban [16]; and LoveDA-rural [16]. We begin
by training a model on GID in step 1 and then incrementally learning the same model on
BDCI2020 in step 2, followed by the remaining domains in steps 3–5. Table 2 presents the
performance evolution of different methods in the domain-incremental learning setting,
with all domain test results recorded when the model achieves its best results on the new
domain. Our results show that our method outperforms multi-task learning. While multi-
task training can access all training data and is typically considered an upper bound, the
differences in data distribution among the multiple domains in our experiment may affect
each task’s ability to achieve optimal results. As anticipated, fine-tuning (FT) performs
poorly on the previous domains, indicating that the model entirely forgets the knowledge
of old domains. Feature extraction (FE) cannot achieve satisfactory results in the new
domain, demonstrating that freezing the encoder weights leads to the lowest plasticity in
the new domain. Moreover, the performance of FE in previous domains was ideal, which
we consider as reference results. Compared with FT, LwF [12] and ILTSS [25] only have a
slight effect on relieving catastrophic forgetting, while LwF (single-head) yields even worse
results than FT. Additionally, the performance of the multi-head decoder setting is slightly
better than that of the single-head decoder. Similarly, inevitable catastrophic forgetting
exists in the EwC [29] method.
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Table 2. Results of the 5-step domain-incremental learning. We record performance (IoU) on current and all previous domains at each step. Parentheses indicate the
drop in performance compared with the domain’s first trained step. ∆m and BWT are calculated from the results at step 5. ↑ indicates that larger is better, while ↓ is
the opposite. Convention: best.

DIL Step Step1 Step2 Step3 Step4
Methods GID GID BDCI GID BDCI Deepglobe GID BDCI Deepglobe Urban

Single-task 0.6190 0.6190 0.6332 0.6190 0.6332 0.6226 0.6190 0.6332 0.6226 0.4312

Multi-task 0.6190 0.5526 (−0.0664) 0.5666 0.4949 (−0.1241) 0.5147 (−0.0520) 0.5655 0.4194 (−0.1996) 0.4084 (−0.1582) 0.3722 (−0.1933) 0.2674

FT (single-head) 0.6190 0.2512 (−0.3678) 0.6365 0.1315 (−0.4875) 0.2359 (−0.4006) 0.6147 0.1555 (−0.4635) 0.0901 (−0.5464) 0.1002 (−0.5145) 0.4126

FE (multi-head) 0.6190 0.6190 (ref) 0.3034 0.6190 (ref) 0.3034 (ref) 0.1301 0.6190 (ref) 0.3034 (ref) 0.1301 (ref) 0.2674

EwC (single-head) [29] 0.6190 0.2518 (−0.3672) 0.6408 0.1736 (−0.4454) 0.3034 (−0.3374) 0.5172 0.1776 (−0.4414) 0.1533 (−0.4875) 0.1301 (−0.3871) 0.3553

LwF (single-head) [12] 0.6443 0.4954 (−0.1489) 0.5944 0.2863 (−0.3580) 0.3127 (−0.2817) 0.5827 0.2184 (−0.4258) 0.1438 (−0.4506) 0.1425 (−0.4402) 0.3914

LwF (multi-head) [12] 0.6532 0.2538 (−0.3994) 0.6074 0.1376 (−0.5156) 0.1994 (−0.408) 0.6362 0.1898 (−0.4634) 0.0905 (−0.5169) 0.0582 (−0.5779) 0.4345

ILTSS (single-head) [25] 0.6532 0.2629 (−0.3903) 0.5954 0.1531 (−0.5001) 0.2067 (−0.3887) 0.5902 0.1663 (−0.4869) 0.1228 (−0.4726) 0.1273 (−0.4629) 0.4113

ILTSS (multi-head) [25] 0.6443 0.4347 (−0.2096) 0.6217 0.2954 (−0.3489) 0.3717 (−0.2499) 0.6289 0.2213 (−0.4230) 0.2625 (−0.3592) 0.2331 (−0.3959) 0.4307

Ours 0.6532 0.6510 (−0.0022) 0.6064 0.6245 (−0.0287) 0.5622 (−0.0442) 0.6046 0.5530 (−0.1002) 0.5694 (−0.0370) 0.5398 (−0.0648) 0.4306

DIL step Step5 ∆m (%) ↑ BWT (%) ↓Methods GID BDCI deepglobe urban rural

Single-task 0.6190 0.6332 0.6226 0.4312 0.5467 - -

Multi-task 0.4052 (−0.2138) 0.3896 (−0.1770) 0.4183 (−0.1472) 0.2628 (−0.0046) 0.4527 −32.41 13.57

FT (single-head) 0.1560 (−0.4630) 0.2069 (−0.4296) 0.2404 (−0.3743) 0.3845 (−0.0281) 0.5701 −42.01 32.37

FE (multi-head) 0.6190 (ref) 0.3034 (ref) 0.1301 (ref) 0.2674 (ref) 0.3102 - -

EwC (single-head) [29] 0.2169 (−0.4021) 0.3125 (−0.3283) 0.2676 (−0.2497) 0.3123 (−0.0430) 0.5101 −41.38 25.57

LwF (single-head) [12] 0.1861 (−0.4582) 0.1181 (−0.4763) 0.1295 (−0.4532) 0.3282 (−0.0632) 0.5539 −50.61 36.27

LwF (multi-head) [12] 0.1887 (−0.4645) 0.1980 (−0.4094) 0.2463 (−0.3899) 0.3678 (−0.0667) 0.6543 −38.74 33.26

ILTSS (single-head) [25] 0.1809 (−0.4723) 0.1881 (−0.4073 ) 0.2495 (−0.3407 ) 0.3768 (−0.0345) 0.6128 −40.30 31.37

ILTSS (multi-head) [25] 0.2095 (−0.4348) 0.2207 (−0.4010) 0.2059 (−0.4230) 0.4272 (−0.0035) 0.6777 −35.04 31.55

Ours 0.5601 (−0.0931) 0.5507 (−0.0558) 0.5248 (−0.0798) 0.4180 (−0.0127) 0.6233 −5.46 6.03
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Compared with the above methods, our method achieves significantly better results
in both old and new domains. As highlighted in bold in Table 2, our approach shows the
minimum degradation of mIoU at each step, with good performance concurrently in the
current new domain. Additionally, our method achieves ∆m of −5.46% and BWT of 6.03%,
demonstrating plasticity and stability.

(2) Single-source domain-incremental learning scenario. In addition to discussing
domain-incremental learning in multi-source scenarios, we also considered the single-
source scenario where the rural and urban domains come from the same aerial dataset
LoveDA [16]. These domains share the same semantic categories and sensor resolution but
exhibit a domain shift. Furthermore, the t-SNE visualization results of these five domains
in the feature space, as shown in Figure 8, suggest that the domains are independently
identically distributed, with rural and urban having a more similar distribution. Based on
this observation, we conduct experiments in which the model incrementally learns from
rural to urban and from urban to rural. The results, as shown in Table 3, are compared with
the performance of rural and urban in the single-task setting. It is worth noting that the
two parentheses in step 2 indicate different meanings. Specifically, the left one shows the
drop/gain in performance concerning step 1, while the right one compares the performance
with the single-task baseline for the corresponding dataset. Our method performs well in
the single-source domain-incremental learning scenarios, with little catastrophic forgetting.
Furthermore, the performance in step 2 surpasses that of the corresponding dataset in
step 1, and we observe a gain of 14.78% concerning the single-task baseline for the rural
and urban. Our experiments suggest that our model achieves forward transfer from the
previous domain by capturing and adapting domain-agnostic and domain-specific features
between the rural and urban domains.

Figure 8. The t-stochastic neighbor embedding (t-SNE) visualization results of the features of domains
1–5 (GID, BDCI2020, deepglobe, LoveDA-rural, LoveDA-urban).

Table 3. Results obtained on a single-source domain-incremental learning scenario: rural→ urban
and urban→ rural. The left parenthesis in step 2 indicates a drop/gain in performance concerning
step 1, while the right one compares with a single-task baseline for the corresponding dataset.

DIL Step Single-Task Single-Task Step1 Step2: Rural → Urban Step1 Step2: Urban → Rural
IoU per Category Rural Urban Rural Rural Urban Urban Urban Rural

mIoU 0.4312 0.5467 0.4236 0.6091 (0.1855) 0.5790 (0.1478) 0.5280 0.5388 (0.0108) 0.6945 (0.1477)

Water 0.5569 0.6278 0.5054 0.7677 (0.2623) 0.6976 (0.1407) 0.6175 0.5866 (−0.0309) 0.7517 (0.1239)

Road 0.4947 0.4771 0.3039 0.5240 (0.2201) 0.5375 (0.0428) 0.5457 0.5421 (−0.0036) 0.5763 (0.0992)

Building 0.5056 0.4667 0.3278 0.5511 (0.2233) 0.5948 (0.0892) 0.5637 0.5535 (−0.0102) 0.6241 (0.1574)

Agriculture 0.3722 0.7042 0.4491 0.4959 (0.0468) 0.7006 (0.3284) 0.3332 0.3051 (−0.0281) 0.8266 (0.1224)

Forest 0.4026 0.7480 0.1710 0.4471 (0.2761) 0.6756 (0.2730) 0.3662 0.4360 (0.0698) 0.8332 (0.0852)

Barren 0.3434 0.3815 0.2444 0.4507 (0.2063) 0.4702 (0.1268) 0.3864 0.3752 (−0.0112) 0.6386 (0.2571)

(3) Class-wise qualitative analysis. In this section, we delve into the class-wise ac-
curacy of previous domains during domain-incremental learning. Figure 9 presents the
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comparative results of our method with a single-task and ILTSS (multi-head) [25], where
we recorded the test results of domains 1–4 (GID, BDCI2020, deepglobe, LoveDA-rural)
at step 5. Additionally, all test results are noted when the model is optimal in the current
domain (LoveDA-rural). As shown in Figure 9, the ILTSS method suffers heavy catas-
trophic forgetting and fails to maintain performance in the last domain (LoveDA-urban).
The model almost forgets all the knowledge of the previous domain (GID and BDCI2020),
particularly in classes such as building, agriculture, and grassland in domain GID and wa-
ter, road, and grassland in domain BDCI2020. On the other hand, our method successfully
mitigates forgetting in all previous domains, and there is a considerable gap between our
performance and ILTSS in the three domains (GID, BDCI2020, and deepglobe), of 41.80%,
31.11%, and 31.14%, respectively. It is worth noting that our method’s performance differs
slightly from the single-task method, performing even slightly better in some categories.
Moreover, to evaluate the current domain LoveDA-rural, we observe that our method and
ILTSS (multi-head) outperformed single-task performance by 7.55–13.32%. Considering the
similarity between the rural and urban areas of LoveDA, we attribute the knowledge of the
previous domain to getting forward transfer to the current domain. While ILTSS performs
better than our approach in the current domain.

Figure 9. The test class-wise accuracy of domains 1–5 (GID, BDCI2020, deepglobe, LoveDA-rural,
LoveDA-urban) after model optimally learns on domain5 (LoveDA-urban) at step 5.

LoveDA-rural highlights the plasticity–stability trade-off problem in incremental
learning. This trade-off refers to the need to compromise between learning a new domain
while also preserving the knowledge acquired from previously learned domains.

(4) Visualization analysis. Figure 10 presents the visualization results of representative
samples obtained by our method and the comparative methods on the experimental
domains. These datasets are uniformly cropped as 256 × 256, and some regions are cut
into small pieces, making the segmentation difficult due to the lack of contextual semantic
understanding. As shown in the first three domains (six rows) of Figure 10b,c, much noise
is introduced, and significant misclassification is present. Moreover, the model loses the
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ability to classify some categories in the previous domain, such as the ‘road’ category in
domain BDCI2020 of the ILTSS method, while misclassifying categories that did not exist
before, such as the ‘water’ category in domain BDCI2020 of the LwF method, indicating
catastrophic forgetting in both methods. In contrast, the results of the last domain (urban)
and the current domain (rural) show better performance in Figure 10b,c.

Figure 10. Visualization of semantic segmentation results in five domain as step 5: each domain
displays in two rows according to the training order (GID–BDCI2020–deepglobe–urban–rural). Each
line: (a) Input image; (b) LwF (multi-head); (c) ILTSS (multi-head); (d) multi-task; (e) Ours; (f) Ground
truth. The black bounding boxes highlight the details in the images. The color corresponding to each
category is shown at the bottom.
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Furthermore, we discuss the performance of multi-task training in Figure 10d. Al-
though multi-task training can access all domain data, the model optimizes the training
data from all domain sequences simultaneously, leading to suboptimal performance on all
domains. The performance of multi-task training in the rural and urban domains is worse
than the other three domains, likely due to the smaller amount of data and the feature space
gap, as shown in Figure 8. Although multi-task training achieves a more precise prediction
in some categories, such as the ‘agriculture’ category embedded in the ‘road’ and ‘building’
of BDCI2020 in Figure 10d, it still confuses misclassification in the ‘grassland’ category of
deepglobe, reflecting its performance instability in different samples.

In comparison, our method significantly improves the performances in these five
domains, as shown in Figure 10e, with minor catastrophic forgetting even in the previous
domain. Additionally, our method can correctly classify the ‘grassland’, ‘forest’, and
‘agriculture’ categories, as they are similar in appearance, such as the bounding box region
in the sixth row, thanks to our understanding of contextual semantic knowledge. The
model’s classification ability is susceptible to multi-source data, especially when it already
has knowledge of the previous domain, posing a challenge for utilizing different domain
knowledge, while our result benefits from the domain-specific structure.

4.5. Ablation Study

(1) Loss analysis. The proposed method comprises two key components: the DILRS
architecture and the multiple loss function. In this section, we present ablation experiments
to evaluate the effectiveness of the proposed loss function and architecture, as depicted
in Table 4. In all experiments, we used the proposed DILRS architecture, except for the
‘ours’ entry in Table 2, which is based on Erfnet [5]. We report the optimal results for
each experimental setting, with varying weights for different loss functions. Ablation
experiment 1 is conducted to examine the performance of only using the cross-entropy loss
LCE for training, which is similar to FT (multi-head, in Table 2) for incremental training.
In contrast, our DILRS model yields better results, which we attribute to the utilization of
domain-specific and domain-agnostic structures. By comparing ablation experiment 1 with
experiments 2, 3, and 4, we evaluate the impact of different types of distillation loss. The
results show that our proposed class-specific loss LD outperforms the others, as both ∆m and
BWT are improved. Additionally, we combine the class-specific loss LD with distillation
loss at the feature space, as shown in ablation experiment 5. As mentioned above, using
these two losses jointly maximizes the distillation of previous domain knowledge while
minimizing the effects of the label space shift. The excellent performance demonstrated in
ablation experiment 5 is also utilized in our method.

Table 4. Results of the ablation study for different loss functions. ∆m and BWT are calculated based
on our proposed model at step 5. LCE, LD, and LF are the loss function in our proposed method,
while Ldist represents the classical distillation loss proposed by [44].

LCE Ldist LD LF ∆m (%) ↑ BWT (%) ↓
1 X −33.12 26.46

2 X X −15.25 15.21

3 X X −9.24 11.44

4 X X −10.01 14.04

5 X X X −5.46 6.03

Moreover, we investigate the influence of the weights of loss λ1, λ2, and λ3 in (8),
which is also a critical factor to balance plasticity and stability. In our experiments, we set
λ2 = λ3 to simplify research, and λ2

λ1
represents the ratio of distillation to cross-entropy

loss. The results of varying the ratio λ2
λ1

are shown in Table 5. As introduced in Section 3.2,
∆m indicates the performance of each domain in domain-incremental models, while BWT
measures the ability to retain old knowledge. Ideally, as the λ2

λ1
increases, the model should



Remote Sens. 2023, 15, 2541 18 of 21

focus more on retaining old knowledge. Thus, the value of ∆m should gradually decrease,
and the value of BWT should decrease accordingly. The results show that the performance
conforms to this law only in a specific range, and λ2

λ1
= 1 achieves better results compared

to the other four parameter settings.

Table 5. Results of an ablation study for the weight ratio λ2
λ1

.

λ2
λ1

∆m (%) ↑ BWT (%) ↓

0.1 −7.45 8.48

1 −5.46 6.03

10 −27.75 24.19

100 −32.41 13.57

(2) Parameters and FLOP analysis. As discussed in [19] and the related work, parame-
ter isolation-based methods are the most suitable option for incremental learning in the
remote sensing field when compared with replay-based and regularization-based methods.
Our method also belongs to the parameter isolation-based method. However, as the model
expands to different domains, the increased number of parameters will inevitably burden
the application. Therefore, it is necessary to analyze the evolution of parameters and FLOPs
in the domain-incremental learning setting, as these reflect the model’s space and time
computational complexity. In Figure 11, we present the growth in the number of parameters
and floating point operations (FLOPs) of the single-task baseline and our method with
incremental domains. It can be observed that our method exhibits a 21.09% growth in
parameters, while the FLOPs remain constant. In contrast, although the single-task model
has fewer parameters and FLOPs at domain 1, the growth rate as incremental domains are
added is tremendous.

Figure 11. Parameters and FLOP growth with the incremental domain.

5. Conclusions

In this paper, we investigate the domain-incremental learning challenge in the con-
text of remote sensing, where the model needs to incrementally learn new out-of-domain
distribution data. Catastrophic forgetting caused by the coexistence of a domain shift and
label space shift has limited the performance of previous works in this area. To tackle
this issue, we propose a model that utilizes domain adapter modules to reparametrize
domain-agnostic and domain-specific parameters as well as introduce a novel multi-level
knowledge distillation loss. Our experimental results demonstrate that our approach out-
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performs existing methods for both multi-source and single-source remote sensing domains.
Additionally, class-wise qualitative analysis and visualization support the superiority of
our method.

As the deployment of deep learning models on edge devices gains importance in
earth intelligence interpretation, developing domain-incremental learning methods that
are suitable for remote sensing multi-source data becomes essential. Currently, there are
few relevant studies, and our dataset and experimental settings can serve as a benchmark
in the future. However, our research still has some limitations, as data collected by the
same satellite in different seasons and regions can be considered different domains, which
better align with the actual deployment of remote sensing edge devices. Due to limited
data, this setting was not followed in this study. We will continue to improve our method
in future studies.
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