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Abstract: Improving the remote sensing frameworks related to land cover mapping is necessary to
make informed policy, development, planning, and natural resource management decisions. These
efforts are especially important in tropical countries where technical capacity is limited. Land cover
legend specification is a critical first step when mapping land cover, with consequences for its
subsequent use and interpretation of results. We integrated the temporal metrics of SAR (Synthetic
Aperture Radar) and multispectral data (Sentinel-1 and Sentienel-2) with visual pixel classifications
and field surveys using five machine learning algorithms that apply different statistical methods to
assess the prediction and mapping of two different land cover legends at a high spatial resolution
(10 m) in a tropical region with seasonal flooding. The evaluated legends were CORINE (Coordination
of Information on the Environment) and ECOSO, a legend that we defined based on the ecological
and socio-economic conditions of the study area. Compared with previous studies, we obtained high
accuracies for land cover modeling (kappa = 0.82) and land cover mapping (kappa = 0.76) when using
ECOSO. We also found that the CORINE legend generated lower accuracies than the ECOSO legend
(kappa = 0.79 for land cover modeling and kappa = 0.61 for the land cover mapping). Although
CORINE was developed for European environments, it is the official land cover legend of Colombia,
a South American country with tropical ecosystems not found in Europe. Therefore, some of the
CORINE classes have ambiguous definitions for the study area, explaining the lower accuracy of its
modeling and mapping. We used free and open-access data and software in this research; thus, our
methods can be applied in other tropical regions.

Keywords: land cover; spatial modeling; Random Forest; wetlands; CORINE; Sentinel-1; Sentienel-2

1. Introduction

Land cover changes continuously transform the Earth from local to global scales [1–3].
Land cover changes also are the cause and consequence of climatic change, biodiversity
loss, hydrologic alteration, soil degradation, and loss of ecosystem services [4–6]. Thus,
developing accurate methods for land cover mapping is crucial to generate detailed infor-
mation to monitor and mitigate the current environmental crisis as well as to implement
international agreements addressing sustainable development goals [7,8]. Earth observa-
tions from satellite-based sensors provide accurate and consistent data for mapping and
monitoring land cover in large areas [9–11]. Consequently, land cover mapping via satellite
has been a central topic in remote sensing for decades [12,13].

The reliability of representing biophysical conditions using a thematic land-cover leg-
end affects the accuracy of land-cover mapping [8,14,15]. Thematic legends are developed
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by a variety of organizations and for specific objectives, sometimes generating discrepan-
cies among them [8,16]. Some assessments have shown differences in accuracies among
land cover maps with different legends when common areas are evaluated, even after
legend harmonization [15,17,18]. Additional issues can emerge when thematic legends are
developed for specific environments and then transferred to new environments [16], such
as the case of the CORINE (Coordination of Information on the Environment) land cover
legend [19,20]. CORINE was developed for environmental purposes in Europe based on
their climatic, geological, and socioeconomic conditions [21]. Some scholars have criticized
the Mediterranean bias of the CORINE nomenclature [22,23] and its errors at local scales,
and have identified challenges for its use in detailed landscape analysis [23,24]. Despite
these issues in European environments, CORINE has been transferred to Colombia, a South
American country with tropical conditions, and has been used as the official land cover
legend of this country since 2010 [25].

Mapping areas with mixed land cover is a well-studied problem in land cover and
land use change research [26]. In tropical environments, areas where wetlands, forests,
and other land cover classes converge are especially difficult to map due to seasonal
water-level changes in wetlands and because of the lack of standardized criteria by which
wetlands should be identified [27–29]. Forests and wetlands are under increasing threat
due to land-use changes in many tropical countries in South America [30–32]. In particular,
deforestation and the draining of wetlands have increased in Colombia following the peace
agreement in 2016 between the FARC, the largest guerrilla group in the country, and the
national government [33,34]. The loss of these ecosystems has been alarmingly high in
recent years, even within national parks [35,36]. Thus, land cover legends that accurately
describe such ecosystems are a necessary first step in efforts to map their extent and change
over time.

Some cloud platforms now offer open access to massive and systematic satellite remote
sensing data [37], potentially allowing the development of more accurate and advanced
methodologies for land cover detection and mapping. The estimation of multi-temporal
metrics is one of these methodologies [38–40] where time series data of multispectral
imagery (e.g., MODIS, Landsat, Sentinel-2) have helped to overcome the inter-annual or
seasonal inconsistencies produced by atmospheric contamination (e.g., clouds, shadows,
and water vapor) [7,39,41]. Once high-quality stacks of imagery are obtained, temporal
metrics [32,38,42–44] or time series statistics (change detection algorithms such as CCDC—
Continuous Change Detection and Classification [45], LandTrendr [46], VCT—Vegetation
Change Tracker [47], DTW—Dynamic Time Warping [48], and BFAST—Breaks For Additive
Seasonal and Trend [49]) of individual bands and spectral indices can be used as predictors
to capture the phenological characteristics that increase the accuracy of the land cover
mapping [7,30,40,50] or the spatial modeling of land cover attributes [51–53].

The integration of multispectral and SAR (Synthetic Aperture Radar) imagery is
another of the methodologies facilitated by cloud platforms to improve land cover map-
ping [54–56]. Multispectral and SAR metrics together detect more regions of the electro-
magnetic spectrum, offering a larger set of predictors related to phenological and structural
components which can improve the accuracy of land cover maps [7,52,57]. For instance,
the integration of Sentinel-2 (multispectral) and Sentinel-1 (SAR) has allowed important
progress in land cover detection due to the higher spatial, spectral, radiometric, and tem-
poral resolutions of these Sentinel data compared with previously launched multispectral
and SAR instruments [7,54–56,58].



Remote Sens. 2023, 15, 2522 3 of 29

Calibration and validation techniques also are essential components of the methodolog-
ical framework for mapping land cover. Sample data (i.e., calibration data or training data)
are required to apply machine learning algorithms, which are among the best-performing
methods for developing maps, while external validation data are used to assess the fi-
nal accuracy of the land cover maps [59–61]. Methodological independence between the
sample and validation data can mitigate inflated map accuracy statistics [62,63]. Sample
data based on visual classifications of high-resolution optical imagery (e.g., WorldView,
Ikonos, QuickBird, and GeoEye) can be obtained from open cloud platforms, allowing
researchers to acquire the abundant sample data required for the calibrations of learn-
ing algorithms [40,60,64,65]. Imagery spatial resolution is another key component of the
methodological framework for land cover mapping because it influences the detail level
of land-cover classes and thus the accuracy of the resulting maps [66]. Coarser spatial
resolutions tend to mix different land cover classes in individual pixels (mixed pixels),
reducing the accuracy of the classifications [67]. Detailed spatial resolutions conversely
reduce the prevalence of mixed pixels by decreasing the inclusion of fractional areas of
land cover classes within pixels in the landscape [68].

Here, our main objective is to compare land cover prediction and mapping from a
regional legend developed for temperate and Mediterranean environments to a legend
developed specifically for the study area, a tropical environment. Additional objectives are
to integrate high spatial resolution (10 m), multitemporal, multispectral, and SAR data to
improve the prediction and mapping of land cover in a seasonally flooded tropical region
where wetlands, forests, and other land cover converge. We developed land cover maps
using a set of sample data agreeing with two legends: (1) the CORINE legend adapted
to Colombia [25] and (2) a second legend, ECOSO, that we defined using the ECOlogical
and SOcioeconomic conditions of the study area. We hypothesized that these legends
should show different accuracies for resulting land cover maps due to their differences in
representing the biophysical conditions of the study area. We also hypothesized that the
temporal metrics (seasonal and annual) of multispectral and SAR data together should
increase the sensitivity of machine learning algorithms to discriminate land covers and
thus the accuracy of the resulting land cover maps. We used free and open-access data and
software; therefore, our methods can be readily adopted in other tropical regions.

2. Materials and Methods
2.1. Study Area

Our analysis was focused on a tropical seasonally flooded area that is part of the
Magdalena-Urabá Moist forests [69]. The study area is also included in the Caribbean
region, one of the five primary natural regions of the country identified by the Colombian
environmental authorities [70] (Figure 1). Annual rainfall ranges from 2095 mm to 3119 mm
throughout the study area. The rainy season is bimodal, with maximum rainfall from
April to May and September to October; January and February are the driest months of
the year [71]. The Magdalena River, the most important river in Colombia in terms of
transportation, crosses the study area from south to north, forming seasonal wetlands where
the water level changes through rainy and dry months. Land cover changes generated
by human influence, such as deforestation and the draining of wetlands, have generated
mosaics of native forests, wetlands, and land cover of anthropic origin in the study area.
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Figure 1. Study area. (a) Location of the study area in South America. (b) Location of the study area 
in the Magdalena-Urabá ecoregion of the global map of terrestrial ecoregions [69] and in the Carib-
bean region of Colombia [70]; the grid is shown in decimal geographic degrees. (c) A detailed scale 
of the study area. Magdalena River is observed crossing the study area from south to north. The 
grid is shown in meters. 
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and shrubs. We represented the primary agricultural activities in the study area with two 
classes: palm plantations and grassland, the latter of which is used for cattle grazing. We 
divided palm plantations into young and mature classes because the field surveys of some 
animal taxa (insects, birds, and mammals) have shown differences in diversity and com-
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saturates the soil to generate a particular type of evergreen 
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Figure 1. Study area. (a) Location of the study area in South America. (b) Location of the study
area in the Magdalena-Urabá ecoregion of the global map of terrestrial ecoregions [69] and in the
Caribbean region of Colombia [70]; the grid is shown in decimal geographic degrees. (c) A detailed
scale of the study area. Magdalena River is observed crossing the study area from south to north. The
grid is shown in meters.

2.2. Response Variables and Sample Data

We used two sets of land cover legends as categorical response variables. (1) The first
land cover legend was the CORINE second level, which is formed by ten classes (Table 1).
In Colombia, CORINE is structured in five hierarchical levels where the first two levels are
the most general and present the same land cover classes of Europe [25]. After assessing
field observations and high spatial resolution imagery, we found that the land cover classes
of the CORINE second level adjust better to represent the biophysical conditions of the
study area than the other CORINE levels. (2) We also developed a second legend, termed
ECOSO, tailored to the ECOlogical and SOcioeconomic conditions of the study area. The
ECOSO legend consists of eight classes representing the three main natural covers of the
study area, moist forest, wetlands, and areas dominated by natural herbs and shrubs. We
represented the primary agricultural activities in the study area with two classes: palm
plantations and grassland, the latter of which is used for cattle grazing. We divided palm
plantations into young and mature classes because the field surveys of some animal taxa
(insects, birds, and mammals) have shown differences in diversity and composition when
these two palm plantation ages are sampled. The definitions of each land cover of ECOSO
are presented in Table 1.
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Table 1. Summary of the thematic land cover legends modeled in this study. (1) CORINE second
level and (2) ECOSO legend. Land cover codes are in parentheses after the land cover names. Each
ECOSO class is matched to the CORINE class with which it has the greatest correspondence.

CORINE LEGEND ECOSO LEGEND

Forest (C1): Areas occupied by forests and woodlands with a
vegetation pattern composed of native or exotic coniferous
and/or broad-leaved trees.

Tropical moist Forest (E1): Evergreen vegetation dominated by
trees that reach over 30 m in height. These forests are the
primary natural non-flooding vegetation cover type of the study
area [72–75].

Continental humid areas (C2): Areas flooded or liable to
flooding during a great part of the year by fresh, brackish, or
standing water with specific vegetation coverage made of low
shrub, semi-ligneous, or herbaceous species.

Wetlands (E2): Swamps and shallow lakes where water
saturates the soil to generate a particular type of evergreen
vegetation that varies from shrubs to trees. These areas are
located along rivers, and their water levels vary during the year
according to rainfall [74,75].

Areas with herbaceous and/or shrub vegetation (C3): Areas
covered by natural grassland, moors, sclerophyllous vegetation,
and transitional woodland/shrub.

Herbaceous and Shrubland (E3): Areas dominated by natural
herbaceous vegetation and shrubs. Introduced forbs can be
present [75].

Grassland (C4): Dense grass cover dominated by graminaceae
not under a rotation system. Mainly for grazing, but the folder
may be harvested mechanically. Includes areas with hedges.

Grassland (E4): Introduced grass species that are used
primarily for cattle grazing [75].

Urban areas (C5): Any urban surface. Infrastructure (E5): Human infrastructures, such as urban
areas, buildings, concrete, and others.

Permanent crops (C6): All surfaces occupied by permanent
crops, not under a rotation system.

Mature palm plantations (E6): plantations of African palm
(Elaeis Guineensis Jacq). These cultivated areas are relatively
stable vegetation because palm requires three years to mature
and produce oil and its useful life is about 25 years, at which
point individuals are replanted with younger palms [76].

Young palm plantations (E7): First three years of a new
plantation of African palm [76].

Water (C7): Bodies of continental water. Water (E8): Bodies of continental water.

Temporary crops (C8): All surfaces occupied by crops in
rotation systems.

Heterogeneous agricultural areas (C9): Areas covered by
annual crops associated with permanent crops and complex
cultivation. Land principally occupied by agriculture, with
significant areas of natural vegetation or Agro-forestry areas.

Open Areas with little or no vegetation (C10): Areas covered
by beaches, bare rock, sparsely vegetated areas, burnt areas,
glaciers, and perpetual snow.

To obtain the sample data, the study area was divided into square sample areas of
10 m × 10 m that match the Sentinel imagery pixel size. We then visually identified and
selected the square sample areas with 100% of any of the land cover classes of the two
legends for the year 2020, using the Google Satellite Plugin of QGIS 3.4 Madeira. As
with other GIS applications (e.g., Google Earth and the Basemap of ArcGIS), the Madeira
Plugin grants the visualization of high spatial resolution imagery (e.g., WorldView, Ikonos,
QuickBird, and GeoEye) to experienced analysts who later select ideal areas of each land
cover [40,64,65]. We randomly selected 49,500 of these square sample areas as sample data,
using a spatial filter of 20 m2 to reduce spatial autocorrelation effects. We used a sample
size of 49,500 because it was the sample size where classification algorithms started to
achieve confident landcover classification (see land cover modeling section).
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2.3. Predictor Variables

We built mosaics of temporal mean metrics using the pixel values of all imagery
of Sentinel-1 (SAR data) and Sentinel-2 (multispectral data) available between 1 January
2020 and 31 December 2020 in the Google Earth Engine [37]. These mosaics were used as
predictor variables and were built for the backscatter coefficients, bands, and indices of
Table 2. These mosaics also were built for three different periods: (1) The annual mean
using all imagery of 2020, (2) the dry-season mean using the imagery of the two driest
months of 2020, and (3) the rainy-season mean using the imagery of the five rainiest months
of the year.

Table 2. Summary of the multispectral and SAR data used to build the temporal mean (mean-X)
mosaics. The first letter and second letter in the SAR data (H or V) refer to the transmit and return
signals, where H stands for horizontal and V for vertical polarization.

Satellite (Data Type) Band, Index Name, or Backscatter Coefficient Wavelength or Definition

Sentinel-1
(SAR)

VV of C band 5.6 cm (5.405 GHz)
VH of C band 5.6 cm (5.405 GHz)

VH/VV of C band 5.6 cm (5.405 GHz)
VV-VH of C band 5.6 cm (5.405 GHz)

Sentinel-2
(Multispectral)

Blue 492.1–496.6 nm
Green 559–560 nm
Red 664.5–665 nm

Red edge 1 703.8–703.9 nm
Red edge 2 739.1–740.2 nm
Red edge 3 779.7–782.5 nm

Near Infrared—NIR 835.1–833 nm
Red edge 4 864–864.8 nm

Short wave infrared 1—SWIR1 −1610.4–1613.7 nm
Short wave infrared 2—SWIR2 2185.7–2202.4 nm

NDVI—Normalized Difference Vegetation Index (NIR − Red)/(NIR + Red)
EVI—Enhanced Vegetation Index G * (NIR − Red)/(NIR + C1 * RED − C2 * Blue + L)

SAVI—Soil Adjusted Vegetation Index (1 + L) * (NIR − Red)/NIR + Red + L)
RNDVI—Red edge Vegetation Index (NIR − Red Edge 2)/(NIR + Red Edge 2)

To create the Sentinel-1 mosaics, we used the product Sentinel-1 SAR GRD (C-band
Synthetic Aperture Radar Ground Range Detected) of Google Earth Engine-GEE [77].
This product provides calibrated and ortho-corrected Sentinel-1 data. We also applied an
angular-based radiometric slope correction to this product [78], using the correction model
used for vegetation covers and the ALOS Global Digital Surface Model (AW3D30) to esti-
mate surface slope. To create the Sentinel-2 mosaics, we used the products Sentinel-2 MSI
(Multispectral Instrument-Level-2A) [79] and Sentinel-2—Cloud Probability of GEE [80].
Sentinel-2 MSI provides the corrected BOA (Bottom Of Atmosphere) reflectance of the
Sentinel-2 images. Sentinel-2—Cloud Probability provides information to mask pixels with
a high probability of cloud using the LightGBM library. We combined these two Sentinel-2
products following Braaten (2022) for masking clouds and cloud shadows [81]. Clouds
were identified from the Sentinel-2—Cloud Probability dataset and shadows are defined by
a cloud projection intersection with low-reflectance near-infrared (NIR) pixels.

We also used two geomorphological auxiliary predictors generated from the ALOS
Global Digital Surface Model (AW3D30), topographic slope and topographic position
index (TPI) [82]. This type of geomorphological data is useful in assisting the mapping of
wetlands because the landforms constrain the wetland distribution [27]. The topographic
slope was defined as the degree of inclination between the surface normal and a horizontal
plane. TPI is an index of terrain classification where the altitude of each pixel is evaluated
against its neighborhood pixels. If a pixel is higher than its surroundings, the TPI will
be positive, for instance on ridges and hilltops; TPI will be negative for low-lying pixels,
such as those corresponding to valleys where wetlands are more common [27,83]. After
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evaluating the effects of the predictors on the land cover mapping, we excluded the TPI of
the final modeling because the TPI did not affect the prediction of the land cover (see the
section on land cover mapping).

2.4. Land Cover Discrimination by Temporal Mean Metrics

We selected 400 sample data per land cover of the CORINE and the ECOSO legend to
perform one-way ANOVAS for evaluating the land cover classifications generated by the
three temporal mean metrics (annual, dry-season, and rainy-season periods) of each SAR
and multispectral datum. Significant differences would show that the backscatter coeffi-
cients, bands, or spectral indices behave differently depending on the period, providing
support that metrics could be used as predictor variables to help to discriminate between
land covers.

2.5. Land Cover Modeling

We modeled the land covers identified in the sample data as response variables and
used their corresponding values of the three temporal mean metrics of Sentinel (Sentinel-1
and Sentinel-2) and the auxiliary data as predictor variables. This procedure was performed
for both legends. We assessed five learning algorithms that apply to different statistical
methods to predict the response variable: (1) Bootstrap aggregating trees or Bagging (BAG),
(2) Random Forest (RF), (3) Linear support vector machine (SVM_L), (4) Radial support
vector machine (SVM_R), and (5) Multivariate Adaptive Regression Splines (MARS). We
tuned the parameters of the learning algorithms to achieve the most accurate predicted
models following Boehmke and Greenwell (2019) [84]. We performed the learning algo-
rithms in different sample sizes from 1500 to 49,500 (1500, 3000, 4500, . . . , and 49,500 data
samples) using the R Package ‘caret’ [85]. We used the Overall Accuracy (OA) and Cohen’s
kappa coefficient (kappa) estimated in five-cross validations (CV) to measure the accuracy
of the models.

To compare the effect of the three types of temporal mean metrics (annual, dry-
season, and rainy-season metrics) and the three types of remote sensing data (Sentinel-1,
Sentinel-1, and geomorphological auxiliary) on the accuracy of the land cover classifications,
we calculated the predictors’ importance for the learning algorithms at a sample size of
49,500 sample data using the R package caret [85]. This package applies the methods of each
learning algorithm to estimate predictor importance and scales the maximum importance
to the value of 100, allowing the comparison of the importance among different algorithms.
For BAG and RF classifications, the prediction accuracy of the out-of-bag portion of the data
is recorded for each tree. Then, the same is repeated after permuting each predictor variable.
The difference between the two accuracies is then averaged over all trees and normalized
by the standard error [85,86]. For MARS, a backward elimination feature selection routine
that looks at reductions in the generalized cross-validation estimate of error is performed.
The function tracks the changes in model statistics for each predictor and accumulates
the reduction in the statistic when each predictor’s feature is added to the model. This
total reduction is used as the variable importance measure [87]. SVM_L and SVM_R lack a
reliable methodology to estimate the importance of the predictors.

2.6. Land Cover Mapping

We generated land cover maps for the CORINE and ECOSO legends using the learning
algorithm that produced the highest accuracy measures using the previous modeling of
the sample data. Before the creation of these maps, we performed a Boruta analysis [88] to
identify the importance of the predictors on the land cover modeling and eliminate possible
predictors with no importance. The Boruta algorithm compares predictor importance
with shadow predictors (predictor copies generated by random permutations of their own
values) in numerous classifications, 100 in our case. Predictors with a significantly larger or
smaller importance than shadow predictors are declared as important or unimportant for
the modeling. The result of the Boruta analyses showed that all the predictors, except TPI,
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presented significant effects on the modeling of the land cover for the ECOSO and CORINE
legends (Figures A1 and A2). Therefore, the final modeling excluded TPI.

We then measured map accuracies by estimations of OA and kappa, using the pre-
dicted land covers of the maps against the validation data obtained from 2131 field surveys.
We also estimated sensitivity (the proportion of testing data of a land cover correctly
classified or true positive rate), specificity (the proportion of testing data of a land cover
incorrectly classified as another land cover or true negative rate), and F1 score (the harmonic-
mean of precision and recall for the minority positive class) to evaluate the accuracy of the
classifications per land cover. These accuracy metrics were estimated for the CORINE and
ECOSO legends by partitioning the sample data into training (70%) and testing (30%) sets.

3. Results

Five-cross validations showed that the learning algorithms used in the land cover
modeling produced more accurate classifications when the land covers of the ECOSO
legend were used as response variables compared with the CORINE legend for the different
sample sizes evaluated (Paired T-Tests values: For OA; T > 10.02 and p-value < 0.001. For
kappa; T > 7.1 and p-value < 0.001) (Figures 2 and 3).

Most temporal means of the multispectral and SAR data showed significant differences
in the same land cover when annual, dry-season, and rainy-season periods were compared
for the ECOSO legend and CORINE legend (Tables A1 and A2). The backscatter coefficients
VV, VH, and VV—VH of Sentinel-1 and most bands and indices of Sentinel-2 were different
within each land cover (p-value < 0.04; F = 3.06), excepting land cover corresponding to
infrastructure and water bodies of the ECOSO legend. This also occurred within land cover
corresponding to open areas with little or no vegetation, urban zones, and water bodies of
the CORINE legend. The VV/VH backscatter ratio and the blue and green bands tended to
present the lowest variations within each land cover.
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Figure 3. Cohen’s kappa coefficient (kappa) generated by CORINE legend and ESOCO legend land
cover modeling using different sample data sizes and five learning algorithms: Bootstrap aggregating
trees or Bagging (BAG), Random Forest (RF), Linear support vector machine (SVM_L), Radial support
vector machine (SVM_R), and Multivariate Adaptive Regression Splines (MARS).

The RF algorithm generated the most accurate models across the different sample
sizes for both land cover legends, the ECOSO (paired T-test values: For OA; T > 11.82 and
p-value < 0.001. For kappa; T > 6.22 and p-value < 0.001) and CORINE (paired T-test values:
For OA; T > 10.72 and p-value < 0.001. For kappa; T > 10.62 and p-value < 0.001). We also
found that only the RF algorithm generated excellent classifications (kappa > 0.8) for the
land cover of the ECOSO legend when the sample size was over 42,000. No algorithms
generated classifications with kappa > 0.8 for the CORINE legend (Figures 2 and 3).

The predictor importance generated by the three types of temporal metrics varied
for the ECOSO (X2 = 10.38, df = 3, p-value = 0.01) and the CORINE (X2 = 9.97, df = 3,
p-value = 0.01) legends in the classifications generated by the BAG, RF, and MARS al-
gorithms. Dry-season metrics presented the highest importance (~65%) compared with
the annual (~37%) and rainy-season (~7.6%) metrics for both legends (ECOSO: Z > 2.03,
p-value < 0.03; CORINE: Z > 2.15, p-value < 0.03) (Figure 4). In addition, the three types
of remote sensing data showed different predictor importance for the ECOSO (X2 = 6.48,
df = 2, p-value = 0.03) and CORINE (X2 = 7.2, df = 2, p-value = 0.02) legends in the three
learning algorithms evaluated. Metrics generated by Sentinel-2 presented the highest
importance (~75.1%) compared with the metrics generated by Sentinel-1 (~23.9%) and the
geomorphological auxiliary metrics (~1%) for the ECOSO legends (Z > 2.53; p-value < 0.03)
and CORINE (Z > 2.68; p-value < 0.01) legends (Z > 2.53; p-value < 0.03) (Figure 5).
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Figure 5. Comparison of the predictor importance for the land cover modeling generated by three
types of remote sensing data: the SAR data of Sentinel-1, the multispectral data of Sentinel-2, and
topographic auxiliary data. Three learning algorithms were used for the predictor importance
estimates: Bootstrap aggregating trees or Bagging (BAG), Random Forest (RF), and Multivariate
Adaptive Regression Splines (MARS).

The map for the ECOSO legend obtained higher accuracy than the map for the
CORINE legend when the OA (0.81 for the ECOSO Legend and 0.73 for the CORINE legend)
and kappa (0.75 for the ECOSO legend and 0.61 for the CORINE legend) were estimated us-
ing the validation data obtained from surveys in the field (Figure 6). Herbaceous, grassland,
and/or shrub vegetation for the CORINE legend and herbaceous, wetland, and shrubland
for the ECOSO legend produced the lowest sensitivity values (0.60 < sensitivity < 0.66),
indicating that these land cover classes are the most difficult to map. All land cover of both
legends generated high values of specificity (>0.95), that is, the proportion of testing data of
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land cover incorrectly classified as a land cover was low in general terms. Moreover, the F1
scores were relatively low for heterogeneous agricultural areas (0.53) of the CORINE legend
and herbaceous vegetation and shrubland (0.59) of the ECOSO legend (Tables A3 and A4).
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Figure 6. Land cover maps. (a) Map for the CORINE legend: Forest—C1, Continental humid
areas—C2, Areas with herbaceous and/or shrub vegetation—C3, Grassland—C4, Urban areas—C5,
Permanent crops—C6, Water—C7, Temporary crops—C8, Heterogeneous agricultural areas—C9, and
Open areas with little or no vegetation—C10. (b) Map for the ECOSO legend: Tropical moist Forest—
E1, Wetland—E2, Herbaceous and shrubland—E3, Grassland—E4, Infrastructure—E5, Mature palm
plantations—E6, Young palm plantations—E7, and Water—E8.

4. Discussion

By integrating dry-season, rainy-season, and annual metrics of SAR and multispectral
data with visual pixel classifications and field surveys, we obtained high accuracies for
land cover modeling (kappa < 0.82) and land cover mapping (kappa < 0.76) in a tropical
region with seasonal flooding at a detailed spatial resolution (10 m). We used free and
open-access data and software; therefore, our methods can be adopted in other regions to
construct land cover maps. We highlight that our classification analyses were based on
large sample data (Big data) that were performed in a high-performance computing cluster.
This could be a limitation for the development of this type of analysis; however, desktop
computers can perform classifications with enough data sizes to produce land cover maps
with sufficiently high accuracy.

Previous studies on the land cover modeling of tropical regions have obtained lower
accuracies at coarser spatial resolutions when annual metrics are used [14,89,90], demon-
strating that the inclusion of more temporal metrics can increase the accuracy of land cover
mapping. On the other hand, findings using the reflectance and backscatter values of
individual SAR and multispectral images as well as smaller sample sizes of the sample
data set (sample data < 200) showed higher accuracies for the land cover mapping of the
tropical regions of Colombia (kappa > 0.86) [56]. Theoretically, temporal metrics should
increase the resulting accuracies of the land cover modeling and land cover mapping due
to the inclusion of the phenological characteristics of the vegetation [40,51,53]. Although
differences in the terrain’s physical conditions and the landcover legends make it difficult
to compare the resulting accuracies of different land cover mapping efforts, it is possible
that a spatial bias or dependence between sample and validation data inflates map accu-
racies when only one image and low sample sizes are used [62,63]. To clarify this type of
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discrepancy, it is necessary to consistently evaluate the use of temporal metrics estimated
from temporal stacks of imagery against the reflectance and textural metrics estimated
from individual images.

The dry-season metrics estimated of SAR and multispectral data had higher impor-
tance in the land cover classifications than the rainy-season metrics. Some classes of the
ECOSO and CORINE legends were built based on vegetation characteristics, and the dry
season is a period of water stress for some of these vegetation types. Grassland, shrubland,
and herbaceous vegetation are highly exposed to water limitations during the dry season,
which significantly reduces their greenness and changes their structure (loss of leaves),
while the forest and wetland vegetation are less exposed to such limitations and thus
can maintain a relatively higher greenness and a higher leaf density. These phenological
variations would maximize the spectral differences during the dry season among land
cover types. On the other hand, during the rainy season, all vegetation types have less
moisture limitation and higher photosynthesis levels and leaf density; consequently, their
SAR and multispectral signatures may present similarities. These spectral similarities make
it difficult to discriminate land cover classes when classification algorithms and remote
sensing data are used in tropical environments [30,91,92]. Interestingly, the dry-season
metrics estimated of SAR and multispectral data also had a higher importance in the land
cover classifications than the annual metrics. Although annual metrics capture the spectral
differences of the dry season, increasing land cover discrimination, annual metrics also
capture the spectral similarities of the rainy season that reduce discrimination. This spectral
ambiguity may explain why annual metrics were comparatively superior to rainy-season
metrics but inferior to dry-season metrics for land cover classification.

Using the same reference dataset (sample data and predictor variables), we found
that the land cover modeling and mapping for the ECOSO legend was more accurate than
for the CORINE legend. The ECOSO legend included only land cover that represented
the conditions of the study area while the CORINE legend contained a higher number
of classes that are not well adapted to the study area, explaining its lower modeling and
mapping accuracy. Some CORINE classes, such as heterogeneous agricultural areas and
temporary crops, have ambiguous definitions for the study area and thus were difficult
to discriminate by the learning algorithms, reducing the accuracy of the modeling and
mapping. The ambiguous definition of some land cover is an issue frequently mentioned by
technicians who build maps by the visual interpretation of high spatial resolution images
when the CORINE legend is used in Colombia. We were able to detect the same issue in
the land cover modeling of CORINE using learning algorithms.

We found lower differences in accuracy between the ECOSO and the CORINE legend
for the land cover modeling (~2% for OA and ~1 for kappa values) than for the land cover
mapping (8% for OA and 14 for kappa values). Previous authors have criticized the bias of
land cover maps when accuracies are estimated only with partitions of the sample data (e.g.,
cross validations or data partitions) as we did with the accuracies of land cover modeling.
These authors suggest that the non-independence of the data for estimating accuracies
inflates OA and kappa due to variations of the prevalence generated by the high spatial
correlation of sample data and human bias in imagery interpretation [63,93]. For those
reasons, field confirmations of land cover maps prepared by accuracy estimations using
surveys are essential to estimate more realistic OA and kappa values, as we did with the
accuracies of the land cover mapping. The substantially lower OA and kappa for the land
cover mapping of the CORINE compared to the ECOSO legend showed that the Random
Forest modeling actually produced an inferior representation of the CORINE land cover.

The least accurately mapped land cover in both legends were the areas corresponding
to herbaceous and shrub vegetation (C3 of the CORINE and L3 of the ECOSO legend
in Table 1). Previous work has also encountered this issue from tropical to temporal
environments [14,15,94,95]; these authors suggest that the performance classification of
herbaceous and shrubland is relatively poor because their phenological changes produce
greater intra-annual complexity and spectral variability than the other classes. We initially
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expected the classification of the wetland areas to be relatively poor due to their seasonal
water-level changes that produce changes in their coverage areas during the same year.
However, compared to previous works in other tropical regions [27,96], the wetland classifi-
cations for both legends (C2 of CORINE and L2 of the ECOSO legend in Table 1) presented
higher accuracies. We demonstrated that the inclusion of seasonal predictors of SAR and
multispectral data (dry-season, rainy-season, and annual metrics) and the topographic
auxiliary predictor (topographic slope) reduced the errors of wetland classification; the
former predictors involved the seasonal dynamic of the wetlands while the latter predictor
discarded places where topography limits the wetland distribution.

After evaluating five learning algorithms with different statistical approaches to pre-
dict a response variable, we found that Random Forest was the best algorithm for our land
cover modeling. Other works have also shown the better performance of Random Forest
relative to other learning algorithms to predict land covers [97,98]. Although Random
Forest requires some parameter tuning and predictor selection, the algorithm is relatively
simple to use and is less affected by outliers, nonparametric data, and predictor correlation
than other learning algorithms. Recently, deep learning algorithms (e.g., convolutional
neural networks and deep learning networks) have shown competitive or superior accu-
racies to Random Forest for the modeling of land cover [99–101]; however, deep learning
algorithms currently lack standardized methodologies to estimate the predictor importance
which complicates inference related to the predictors.

The metrics generated by Sentinel-2 presented a higher importance for land cover
modeling than the metrics generated by Sentinel-1 and the geomorphological auxiliary
metrics in both evaluated land cover legends. A large number of Sentinel-2 predictors (42)
compared with the Sentinel-1 (12) and geomorphological (1) predictors produced a higher
general importance of Sentinel-2. However, the comparative importance of Sentinel-1 is
not low (~23.9%), confirming that the integration of SAR (Sentinel-1) and multispectral
(Sentinel-2) data is a suitable remote sensing strategy to improve land cover classifications.
We also found that three Sentinel-1 predictors for the CORINE legend and one Sentinel-1
predictor for the ECOSO legend were among the most important ten predictors for the land
cover classification of each legend, demonstrating the positive effect of this sensor in both
land cover classifications.

5. Conclusions

We demonstrated that it is possible to improve land cover modeling by integrating
the temporal metrics of SAR and multispectral data with visual pixel classifications and
field surveys. The use of dry-season, rainy-season, and annual metrics of Sentinel-1 and
Sentinel-2 captured the phenological and structural variation of the vegetation that com-
prises land cover, increasing land cover discrimination by typical learning algorithms used
for modeling and mapping. We showed that these learning algorithms produced high
accuracies for modeling and mapping when land cover legends were developed using the
ecological and socioeconomic conditions of the study area. Conversely, accuracy estima-
tions are lower when these learning algorithms model land cover legends developed for
different contexts, as in the case of the CORINE legend adapted to Colombia. These results
suggest the need to build an official land cover legend for Colombia using information on
the environmental conditions of the country. Our results also confirm the importance of
the independence between the sample and validation data to avoid inflating the accuracy
estimation of the land cover maps. Future advances in remote sensing data and statistical
methods are expected to increase the accuracy of the land cover maps generated by su-
pervised classifications. However, the reliability of land cover legends in describing the
characteristics of the regions and countries in which they are used will be a fundamental
step to increasing these accuracies. For this reason, in countries such as Colombia, where
the official legend has been transferred from other countries or regions, it is necessary to
start thinking about the design of a national legend that brings together the country’s own
regional variation and facilitates future planning.
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Figure A1. Importance of predictors in the Random Forest classification for the land covers of the
CORINE legend. Predictors with significant importance (green boxes), predictors with no significant
importance (red boxes), and the maximum, minimum, and average of the shadow predictors (blue
boxes). P1 (annual VV), P2 (annual VH), P3 (annual VH/VV), P4 (annual VH-VV), P5 (dry VV), P6
(dry VH), P7 (dry VH/VV), P8 (dry VH-VV), P9 (rainy VV), P10 (rainy VH), P11 (rainy VH/VV), P12
(rainy VH-VV), P13 (annual blue), P14 (annual green), P15 (annual red), P16 (annual red edge 1), P17
(annual red edge 2), P18 (annual red edge 3), P19 (annual near infrared), P20 (annual red edge 4), P21
(annual short wave infrared 1), P22 (annual short wave infrared 2), P23 (annual NDVI), P24 (annual
EVI), P25 (annual SAVI), P26 (annual RNDVI), P27 (dry blue), P28 (gry green), P29 (dry red), P30 (dry
red edge 1), P31 (dry red edge 2), P32 (dry red edge 3), P33 (dry near infrared), P34 (dry red edge 4),
P35 (dry short wave infrared 1), P36 (dry short wave infrared 2), P37 (dry NDVI), P38 (dry EVI), P39
(dry SAVI), P40 (dry RNDVI), P41 (rainy blue), P42 (rainy green), P43 (rainy red), P44 (rainy red edge
1), P45 (rainy red edge 2), P46 (rainy red edge 3), P47 (rainy near infrared), P48 (rainy red edge 4),
P49 (rainy short wave infrared 1), P50 (rainy short wave infrared 2), P51 (rainy NDVI), P52 (rainy
EVI), P53 (rainy SAVI), P54 (rainy RNDVI), P55 (slope), and P56 (TPI).

https://doi.org/10.5281/zenodo.7799931


Remote Sens. 2023, 15, 2522 15 of 29

Appendix B

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 27 
 

 

Appendix B 

 
Figure A2. Importance of predictors in the Random Forest classification for the land covers of the 
ECOSO legend. Predictors with significant importance (green boxes), predictors with no significant 
importance (red boxes), and the maximum, minimum, and average of the shadow predictors (blue 
boxes). P1 (annual VV), P2 (annual VH), P3 (annual VH/VV), P4 (annual VH-VV), P5 (dry VV), P6 
(dry VH), P7 (dry VH/VV), P8 (dry VH-VV), P9 (rainy VV), P10 (rainy VH), P11 (rainy VH/VV), P12 
(rainy VH-VV), P13 (annual blue), P14 (annual green), P15 (annual red), P16 (annual red edge 1), 
P17 (annual red edge 2), P18 (annual red edge 3), P19 (annual near infrared), P20 (annual red edge 
4), P21 (annual short wave infrared 1), P22 (annual short wave infrared 2), P23 (annual NDVI), P24 
(annual EVI),P25 (annual SAVI), P26 (annual RNDVI), P27 (dry blue), P28 (dry green), P29 (dry red), 
P30 (dry red edge 1), P31 (dry red edge 2), P32 (dry red edge 3), P33 (dry near infrared), P34 (dry 
red edge 4), P35 (dry short wave infrared 1), P36 (dry short wave infrared 2), P37 (dry NDVI), P38 
(dry EVI), P39 (dry SAVI), P40 (dry RNDVI), P41 (rainy blue), P42 (rainy green), P43 (rainy red), P44 
(rainy red edge 1), P45 (rainy red edge 2), P46 (rainy red edge 3), P47 (rainy near infrared), P48 (rainy 
red edge 4), P49 (rainy short wave infrared 1), P50 (rainy short wave infrared 2), P51 (rainy NDVI), 
P52 (rainy EVI), P53 (rainy SAVI), P54 (rainy RNDVI), P55 (slope), and P56 (TPI). 

Appendix C 

Table A1. Summary of one-way ANOVAS to compare the temporal mean values of the multispec-
tral and SAR data per land cover of the ECOSO legend for three periods of 2020: (1) Annual mean 
using all imagery of 2020; (2) dry season mean using the imagery of the two driest months of 2020; 
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 VV 
Tropical moist forest 6 0.002568297 **
Grassland 62 3.67405E-26 ***

Figure A2. Importance of predictors in the Random Forest classification for the land covers of the
ECOSO legend. Predictors with significant importance (green boxes), predictors with no significant
importance (red boxes), and the maximum, minimum, and average of the shadow predictors (blue
boxes). P1 (annual VV), P2 (annual VH), P3 (annual VH/VV), P4 (annual VH-VV), P5 (dry VV), P6
(dry VH), P7 (dry VH/VV), P8 (dry VH-VV), P9 (rainy VV), P10 (rainy VH), P11 (rainy VH/VV), P12
(rainy VH-VV), P13 (annual blue), P14 (annual green), P15 (annual red), P16 (annual red edge 1), P17
(annual red edge 2), P18 (annual red edge 3), P19 (annual near infrared), P20 (annual red edge 4), P21
(annual short wave infrared 1), P22 (annual short wave infrared 2), P23 (annual NDVI), P24 (annual
EVI),P25 (annual SAVI), P26 (annual RNDVI), P27 (dry blue), P28 (dry green), P29 (dry red), P30 (dry
red edge 1), P31 (dry red edge 2), P32 (dry red edge 3), P33 (dry near infrared), P34 (dry red edge 4),
P35 (dry short wave infrared 1), P36 (dry short wave infrared 2), P37 (dry NDVI), P38 (dry EVI), P39
(dry SAVI), P40 (dry RNDVI), P41 (rainy blue), P42 (rainy green), P43 (rainy red), P44 (rainy red edge
1), P45 (rainy red edge 2), P46 (rainy red edge 3), P47 (rainy near infrared), P48 (rainy red edge 4),
P49 (rainy short wave infrared 1), P50 (rainy short wave infrared 2), P51 (rainy NDVI), P52 (rainy
EVI), P53 (rainy SAVI), P54 (rainy RNDVI), P55 (slope), and P56 (TPI).
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Appendix C

Table A1. Summary of one-way ANOVAS to compare the temporal mean values of the multispectral
and SAR data per land cover of the ECOSO legend for three periods of 2020: (1) Annual mean using
all imagery of 2020; (2) dry season mean using the imagery of the two driest months of 2020; and
(3) rain season mean using the imagery of the five rainiest months of the year. We found significant
differences among these three periods that show that the temporal means per band, multispectral
index, and backscatter coefficient behave differently during the evaluated periods. These differences
demonstrate that the temporal mean value calculated for each of these periods can be used as a
variable to discriminate land covers in the study area. The first letter and second letter in the SAR
data (H or V) refer to the transmit and return signals; H stands for horizontal and V for vertical
polarizations. Significant p values range; p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*).

Satellite (Data
Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

VV

Tropical moist forest 6 0.002568297 **

Grassland 62 3.67405E-26 ***

Herbaceous and shrubland 23 1.57724E-10 ***

Infrastructure 0 0.631883799

Mature palm plantations 72 3.08908E-30 **

Water 3 0.031589942 *

Wetland 11 1.76326E-05 ***

Young palm plantations 90 3.55004E-37 ***

VH

Tropical moist forest 6 0.002387089 **

Grassland 84 4.77421E-35 ***

Herbaceous and shrubland 26 1.27439E-11 ***

Infrastructure 1 0.343709726

Mature palm plantations 139 5.1437E-55 ***

Water 7 0.000870292 ***

Wetland 3 0.053333071 *

Young palm plantations 101 3.48339E-41 ***

VVmVH

Tropical moist forest 5 0.008475596 **

Grassland 47 3.22066E-20 ***

Herbaceous and shrubland 18 2.72475E-08 ***

Infrastructure 0 0.680842298

Mature palm plantations 42 1.51053E-18 ***

Shrubland 8 0.000320566 ***

Water 2 0.090936068

Wetland 14 1.33331E-06 ***

Young palm plantations 62 1.71158E-26 ***

VHdVV

Tropical moist forest 1 0.297645719

Grassland 0 0.645580222

Herbaceous and shrubland 0 0.846826805

Infrastructure 0 0.977296257

Mature palm plantations 9 0.000140432 ***

Water 0 0.760810131

Wetland 11 2.46617E-05 ***

Young palm plantations 3 0.040476133 *
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Table A1. Cont.

Satellite (Data
Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

BLUE

Tropical moist forest 2 0.153644537

Grassland 5 0.00609176 *

Herbaceous and shrubland 2 0.12682676

Infrastructure 5 0.004748278 *

Mature palm plantations 42 3.40328E-18 ***

Water 7 0.001516881 *

Wetland 11 2.93761E-05 ***

Young palm plantations 29 4.75329E-13 ***

GREEN

Tropical moist forest 3 0.053247018 *

Grassland 2 0.132665756

Herbaceous and shrubland 2 0.207288516

Infrastructure 7 0.001213031 **

Mature palm plantations 4 0.017734227 *

Water 1 0.225658337

Wetland 6 0.003982018 **

Young palm plantations 2 0.115107982

RED

Tropical moist forest 5 0.010667312 *

Grassland 17 5.21408E-08 ***

Herbaceous and shrubland 6 0.002036325 *

Infrastructure 3 0.046986096 *

Mature palm plantations 56 6.96644E-24 ***

Water 4 0.012729719 *

Wetland 23 2.33559E-10 ***

Young palm plantations 44 2.82816E-19 ***

RED_E_1

Tropical moist forest 11 1.62602E-05 ***

Grassland 2 0.216948004

Herbaceous and shrubland 3 0.033364352 *

Infrastructure 10 6.81317E-05 ***

Mature palm plantations 3 0.038285219 *

Water 8 0.00024883 ***

Wetland 11 1.72503E-05 ***

Young palm plantations 2 0.164089184

RED_E_2

Tropical moist forest 110 1.25924E-44 ***

Grassland 113 7.53722E-46 ***

Herbaceous and shrubland 38 8.18867E-17 ***

Infrastructure 18 1.79485E-08 ***

Mature palm plantations 410 2.3864E-136 ***

Water 4 0.020459247 *

Wetland 14 6.56859E-07 ***

Young palm plantations 341 6.1106E-118 ***
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Table A1. Cont.

Satellite (Data
Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

RED_E_3

Tropical moist forest 114 6.74092E-46 ***

Grassland 113 1.40749E-45 ***

Herbaceous and shrubland 37 2.16841E-16 ***

Infrastructure 18 2.92979E-08 ***

Mature palm plantations 423 1.76E-139 ***

Water 4 0.016013878 *

Wetland 16 1.78503E-07 ***

Young palm plantations 333 8.7789E-116 ***

NIR

Tropical moist forest 65 1.81645E-27 ***

Grassland 63 1.16778E-26 ***

Herbaceous and shrubland 21 9.85588E-10 ***

Infrastructure 9 0.000172513 ***

Mature palm plantations 291 1.5266E-103 ***

Water 3 0.056042942 *

Wetland 10 5.68407E-05 ***

Young palm plantations 236 5.56687E-87 ***

RED_E_4

Tropical moist forest 95 4.88148E-39 ***

Grassland 77 2.82783E-32 ***

Herbaceous and shrubland 29 4.25091E-13 ***

Infrastructure 15 2.53381E-07 ***

Mature palm plantations 388 1.926E-130 ***

Water 3 0.059911938 *

Wetland 11 1.26172E-05 ***

Young palm plantations 291 1.5251E-103 ***

SWIR_1

Tropical moist forest 13 3.99272E-06 ***

Grassland 38 1.44193E-16 ***

Herbaceous and shrubland 6 0.002912467 **

Infrastructure 10 5.48921E-05 ***

Mature palm plantations 8 0.000514043 **

Water 3 0.043625139 *

Wetland 30 2.57828E-13 ***

Young palm plantations 13 3.20698E-06 ***

SWIR_2

Tropical moist forest 2 0.187005907

Grassland 42 1.53557E-18 ***

Herbaceous and shrubland 8 0.000266878 ***

Infrastructure 6 0.00235001 **

Mature palm plantations 7 0.001428365 **

Water 8 0.000312134 **

Wetland 37 3.01375E-16 ***

Young palm plantations 26 6.6958E-12 ***
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Table A1. Cont.

Satellite (Data
Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

EVI

Tropical moist forest 50 1.03023E-21 ***

Grassland 58 1.03682E-24 ***

Herbaceous and shrubland 17 3.80441E-08 ***

Infrastructure 2 0.207651799

Mature palm plantations 276 2.9126E-99 ***

Water 1 0.449498764

Wetland 11 2.70347E-05 ***

Young palm plantations 186 4.50887E-71 ***

SAVI

Tropical moist sorest 41 4.27621E-18 ***

Grassland 45 1.15582E-19 ***

Herbaceous and shrubland 14 7.42276E-07 ***

Infrastructure 1 0.384579741

Mature palm plantations 260 2.23105E-94 ***

Water 0 0.739025492

Wetland 8 0.000341478 **

Young palm plantations 175 2.39727E-67 ***

RNDVI

Tropical moist forest 5 0.009506599 **

Grassland 32 4.23285E-14 ***

Herbaceous and shrubland 11 1.7484E-05 ***

Infrastructure 6 0.003625327 **

Mature palm plantations 3 0.034660805 *

Water 3 0.043060708 *

Wetland 13 2.06961E-06 ***

Young palm plantations 6 0.00176677 **

NDVI

Tropical moist forest 14 7.66839E-07 ***

Grassland 25 2.5465E-11 ***

Herbaceous and shrubland 8 0.000231118 **

Infrastructure 0 0.858098151

Mature palm plantations 142 6.91379E-56 ***

Water 1 0.493770717

Wetland 3 0.046984903 *

Young palm plantations 92 8.82396E-38 ***
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Appendix D. (Long Table, It Was Added after References)

Table A2. Summary of one-way ANOVAS to compare the temporal mean values of the multispectral
and SAR data per land cover of the CORINE legend for three periods of 2020: (1) Annual mean using
all imagery of 2020; (2) Dry season mean using the imagery of the two driest months of 2020; and (3)
Rain season mean using the imagery of the five rainiest months of the year. We found significant
differences among these three periods that show that the temporal means per band, multispectral
index, and backscatter coefficient behave differently during the evaluated periods. These differences
demonstrate that each temporal mean value calculated for these periods can be used as a variable to
discriminate land covers in the study area. The first letter and second letter in the SAR data (H or
V) refer to the transmit and return signals; H stand for horizontal and V for vertical polarizations.
Significant p values range; p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*).

Satellite
(Data Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

Sentinel-1
(SAR)

VV

Urban areas 3.8 0.022657 *

Temporary crops 77.9 1.57E-32 ***

Permanent crops 34.5 2.61E-15 ***

Grassland 33.0 1.1E-14 ***

Heterogeneous agricultural areas 149.5 1.1E-58 ***

Forest 9.8 5.93E-05 ***

Areas with herbaceous and/or shrub vegetation 7.0 0.000905 ***

Open areas with little or no vegetation 1.7 0.182592

Continental humid areas 41.8 2.82E-18 ***

Water 1.9 0.151496

VH

Urban areas 2.5 0.080392

Temporary crops 157.8 1.55E-61 ***

Permanent crops 62.9 1.08E-26 ***

Grassland 51.8 2.66E-22 ***

Heterogeneous agricultural areas 386.7 2.9E-130 ***

Forest 8.3 0.000261 ***

Areas with herbaceous and/or shrub vegetation 7.4 0.000615 ***

Open areas with little or no vegetation 22.7 2.11E-10 ***

Continental humid areas 9.5 8E-05 ***

Water 4.3 0.014194 **

VVmVH

Urban areas 3.8 0.023579 *

Temporary crops 57.3 1.77E-24 ***

Permanent crops 19.3 5.67E-09 ***

Grassland 23.2 1.26E-10 ***

Heterogeneous agricultural areas 71.5 4.72E-30 ***

Forest 8.6 0.000187 ***

Areas with herbaceous and/or shrub vegetation 5.7 0.003311 *

Open areas with little or no vegetation 0.0 0.98551

Continental humid areas 50.6 7.73E-22 ***

Water 1.3 0.279511
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Table A2. Cont.

Satellite
(Data Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

VHdVV

Urban areas 2.9 0.058313

Temporary crops 0.4 0.694037

Permanent crops 3.4 0.032289 *

Grassland 3.2 0.041195 *

Heterogeneous agricultural areas 6.8 0.001139 *

Forest 2.5 0.07944

Areas with herbaceous and/or shrub vegetation 1.5 0.221896

Open areas with little or no vegetation 188.8 5.28E-72 ***

Continental humid areas 15.3 2.66E-07 ***

Water 0.7 0.514729

Sentinel-2
(Multispectral)

BLUE

Urban areas 1.0 0.352686

Temporary crops 1.0 0.351463

Permanent crops 21.2 9.04E-10 ***

Grassland 10.9 2.06E-05 ***

Heterogeneous agricultural areas 4.0 0.018951 *

Forest 10.1 4.43E-05 ***

Areas with herbaceous and/or shrub vegetation 1.5 0.232523

Open areas with little or no vegetation 281.4 7E-101 ***

Continental humid areas 24.2 5.18E-11 ***

Water 14.8 4.53E-07 ***

GREEN

Urban areas 1.1 0.323845

Temporary crops 4.0 0.018853 *

Permanent crops 1.1 0.342954

Grassland 3.3 0.036229 *

Heterogeneous agricultural areas 43.3 6.89E-19 ***

Forest 0.3 0.722477

Areas with herbaceous and/or shrub vegetation 2.2 0.110736

Open areas with little or no vegetation 278.3 5.7E-100 ***

Continental humid areas 6.7 0.001316 *

Water 14.8 4.31E-07 ***

RED

Urban areas 0.2 0.855469

Temporary crops 6.3 0.001832 **

Permanent crops 17.2 4.15E-08 ***

Grassland 34.5 2.75E-15 ***

Heterogeneous agricultural areas 19.8 3.45E-09 ***

Forest 12.1 6.19E-06 ***

Areas with herbaceous and/or shrub vegetation 5.2 0.005423 *

Open areas with little or no vegetation 213.5 5.11E-80 ***

Continental humid areas 73.6 7.3E-31 ***

Water 36.6 3.91E-16 ***
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Table A2. Cont.

Satellite
(Data Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

RED_E_1

Urban areas 0.6 0.568254

Temporary crops 8.8 0.000166 ***

Permanent crops 13.9 1.07E-06 ***

Grassland 5.0 0.006749 *

Heterogeneous agricultural areas 50.8 6.9E-22 ***

Forest 5.0 0.006819 *

Areas with herbaceous and/or shrub vegetation 6.1 0.002329 *

Open areas with little or no vegetation 204.9 3.01E-77 ***

Continental humid areas 16.7 7.11E-08 ***

Water 55.4 9.94E-24 ***

RED_E_2

Urban areas 28.0 2.16E-12 ***

Temporary crops 238.3 7.46E-88 ***

Permanent crops 166.7 1.38E-64 ***

Grassland 135.6 8.32E-54 ***

Heterogeneous agricultural areas 166.1 2.22E-64 ***

Forest 66.2 5.19E-28 ***

Areas with herbaceous and/or shrub vegetation 24.3 4.69E-11 ***

Open areas with little or no vegetation 33.0 1.16E-14 ***

Continental humid areas 34.0 4.49E-15 ***

Water 8.9 0.00014 *

RED_E_3

Urban areas 23.3 1.7E-10 ***

Temporary crops 285.3 4.7E-102 ***

Permanent crops 143.5 1.36E-56 ***

Grassland 137.9 1.25E-54 ***

Heterogeneous agricultural areas 189.4 3.55E-72 ***

Forest 75.5 1.34E-31 ***

Areas with herbaceous and/or shrub vegetation 24.6 3.42E-11 ***

Open areas with little or no vegetation 21.5 6.91E-10 ***

Continental humid areas 40.7 7.86E-18 ***

Water 7.6 0.000514 **

NIR

Urban areas 6.1 0.00236595 *

Temporary crops 211.6 2.0775E-79 ***

Permanent crops 70.3 1.348E-29 ***

Grassland 74.0 4.8769E-31 ***

Heterogeneous agricultural areas 107.5 1.1997E-43 ***

Forest 46.1 4.9883E-20 ***

Areas with herbaceous and/or shrub vegetation 14.6 5.2772E-07 ***

Open areas with little or no vegetation 23.9 6.8998E-11 ***

Continental humid areas 22.2 3.4788E-10 ***

Water 5.4 0.00482082 *
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Table A2. Cont.

Satellite
(Data Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

RED_E_4

Urban areas 14.0 1.13E-06 ***

Temporary crops 283.1 2.1E-101 ***

Permanent crops 120.8 1.62E-48 ***

Grassland 101.1 2.77E-41 ***

Heterogeneous agricultural areas 147.3 6.28E-58 ***

Forest 63.1 8.5E-27 ***

Areas with herbaceous and/or shrub vegetation 17.6 2.98E-08 ***

Open areas with little or no vegetation 24.0 6.21E-11 ***

Continental humid areas 25.0 2.29E-11 ***

Water 5.8 0.003018 *

SWIR_1

Urban areas 15.2 3.47E-07 ***

Temporary crops 4.0 0.017824 *

Permanent crops 13.7 1.27E-06 ***

Grassland 46.3 4.21E-20 ***

Heterogeneous agricultural areas 4.6 0.01007 *

Forest 7.7 0.000479 **

Areas with herbaceous and/or shrub vegetation 7.0 0.000932 **

Open areas with little or no vegetation 253.7 1.41E-92 ***

Continental humid areas 32.4 1.94E-14 ***

Water 0.2 0.822389

SWIR_2

Urban areas 12.9 3.21E-06 ***

Temporary crops 4.9 0.007743 *

Permanent crops 3.4 0.032219 *

Grassland 60.9 6.76E-26 ***

Heterogeneous agricultural areas 16.9 5.65E-08 ***

Forest 1.7 0.182995

Areas with herbaceous and/or shrub vegetation 8.0 0.000366 *

Open areas with little or no vegetation 384.5 1.1E-129 ***

Continental humid areas 50.8 6.87E-22 ***

Water 0.6 0.568736

EVI

Urban areas 1.4 0.236922

Temporary crops 122.9 2.92E-49 ***

Permanent crops 56.1 4.96E-24 ***

Grassland 81.5 6.47E-34 ***

Heterogeneous agricultural areas 99.1 1.51E-40 ***

Forest 39.0 3.9E-17 ***

Areas with herbaceous and/or shrub vegetation 10.5 2.97E-05 ***

Open areas with little or no vegetation 1.4 0.241734

Continental humid areas 39.2 3.24E-17 ***

Water 0.1 0.877852
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Table A2. Cont.

Satellite
(Data Type)

Band, Index Name, or
Backscatter Coefficient Land Cover Class F-Value p-Value Significance

SAVI

Urban areas 0.9 0.400928

Temporary crops 95.4 3.73E-39 ***

Permanent crops 55.1 1.3E-23 ***

Grassland 66.6 3.65E-28 ***

Heterogeneous agricultural areas 70.6 1.02E-29 ***

Forest 35.1 1.53E-15 ***

Areas with herbaceous and/or shrub vegetation 7.3 0.000692 **

Open areas with little or no vegetation 1.1 0.347356

Continental humid areas 28.3 9.89E-13 ***

Water 0.1 0.914428

Urban areas 0.9 0.400928

RNDVI

Urban areas 3.6 0.027078146 *

Temporary crops 2.2 0.108978781

Permanent crops 17.3 4.06165E-08 ***

Grassland 17.9 2.11557E-08 ***

Heterogeneous agricultural areas 2.1 0.118146032

Forest 6.7 0.001281665 **

Areas with herbaceous and/or shrub vegetation 10.8 2.19194E-05 ***

Open areas with little or no vegetation 8.4 0.000228264 *

Continental humid areas 8.7 0.000170631 **

Water 5.8 0.003089327 **

NDVI

Urban areas 0.5 0.579018

Temporary crops 30.7 1.03E-13 ***

Permanent crops 31.2 6.18E-14 ***

Grassland 40.5 9.95E-18 ***

Heterogeneous agricultural areas 31.5 4.58E-14 ***

Forest 11.4 1.27E-05 ***

Areas with herbaceous and/or shrub vegetation 1.7 0.191762

Open areas with little or no vegetation 0.4 0.692677

Continental humid areas 15.4 2.47E-07 ***

Water 1.1 0.335542
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Appendix E

Table A3. Estimates of sensitivity (true positive rate) and specificity (true negative rate) for the
CORINE landcover legend. Sensitivity and specificity were estimated by performing data partitions
of the 49,500 sample data (training 70% and testing 30%).

Land Cover Sensitivity Specificity F1 Score Prevalence

Forest (C1) 0.72 0.96 0.68 0.09
Continental humid areas(C2) 0.74 0.97 0.60 0.04
Areas with herbaceous and/or shrub vegetation (C3) 0.62 0.95 0.69 0.22
Grassland (C4) 0.66 0.97 0.61 0.05
Urban areas (C5) 0.90 1.00 0.87 0.02
Permanent crops (C6) 0.83 0.98 0.82 0.09
Water (C7) 0.95 0.98 0.96 0.43
Temporary crops (C8) 0.93 1.00 0.71 0.00
Heterogeneous agricultural areas (C9) 0.82 1.00 0.53 0.00
Open areas with little or no vegetation (C10) 0.88 0.98 0.84 0.07

Appendix F

Table A4. Estimates of sensitivity (true positive rate) and specificity (true negative rate) for the
ECOSO land cover legend. Sensitivity and specificity were estimated by performing data partitions
of the 49,500 sample data (training 70% and testing 30%).

Land Cover Sensitivity Specificity F1 Score Prevalence

Tropical moist forest (L1): 0.75 0.97 0.78 0.15
Wetland (L2): 0.66 0.97 0.70 0.12
Herbaceous and shrubland (L3): 0.60 0.95 0.59 0.09
Grassland (L4): 0.72 0.98 0.66 0.05
Infrastructure (L5): 1.00 1.00 0.78 0.01
Mature palm plantations (L6): 0.83 0.98 0.78 0.05
Young palm plantations (L7): 0.77 0.99 0.71 0.03
Water (L8): 0.97 0.97 0.97 0.51
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