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Abstract: Soil moisture is a crucial factor in the field of meteorology, hydrology, and agricultural
sciences. In agricultural production, surface soil moisture (SSM) is crucial for crop yield estimation
and drought monitoring. For SSM inversion, a synthetic aperture radar (SAR) offers a trustworthy
data source. However, for agricultural fields, the use of SAR data alone to invert SSM is susceptible
to the influence of vegetation cover. In this paper, based on Sentinel-1 microwave remote sensing
data and Sentinel-2 optical remote sensing data, a convolution neural network optimized by sparrow
search algorithm (SSA-CNN) was suggested to invert farmland SSM. The feature parameters were
first extracted from pre-processed remote sensing data. Then, the correlation analysis between
the extracted feature parameters and field measured SSM data was carried out, and the optimal
combination of feature parameters for SSM inversion was selected as the input data of the subsequent
models. To enhance the performance of the CNN, the hyper-parameters of CNN were optimized
using SSA, and the SSA-CNN model was built for SSM inversion based on the obtained optimal hyper-
parameter combination. Three typical machine learning approaches, including generalized regression
neural network, random forest, and CNN, were used for comparison to show the efficacy of the
suggested method. With an average coefficient of determination of 0.80, an average root mean square
error of 2.17 vol.%, and an average mean absolute error of 1.68 vol.%, the findings demonstrated
that the SSA-CNN model with the optimal feature combination had a better accuracy among the 4
models. In the end, the SSM of the study region was inverted throughout four phenological periods
using the SSA-CNN model. The inversion results indicated that the suggested method performed
well in local situations.

Keywords: soil moisture; remote sensing; convolution neural network; sparrow search algorithm;
hyper-parameter optimization

1. Introduction

Surface soil moisture (SSM) is a crucial component of the Earth’s ecosystem and ac-
tively participates in the water vapor cycle on a global scale [1]. SSM is an essential element
for crop development and growth in the agricultural sector. It is also a crucial characteristic
for crop growth monitoring, yield estimation, and drought monitoring. Therefore, it is
extremely important to obtain accurate and reliable SSM information [2,3].

Although the traditional method of SSM determination by the probe or gravimetric
method has high accuracy, it cannot meet the needs of large-scale SSM monitoring. Remote
sensing technology has the characteristics of wide coverage and strong aging, becoming
the main means of large-scale SSM monitoring at present [4–6].

High spectral and spatial resolution data can be obtained using optical remote sensing.
SSM monitoring technology based on optical remote sensing is an indirect way by using
visible, near-infrared, and thermal infrared bands. The empirical relationship between
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surface parameters and SSM is established by using spectral reflection and radiation char-
acteristics of ground objects to realize SSM inversion [7,8]. By using optical remote sensing
data, the vegetation index is extracted in the vegetation coverage area to reduce or remove
the impact of vegetation coverage, as to increase the precision of SSM inversion in the
vegetation coverage area [9]. However, due to the factor that optical remote sensing is
easily affected by the characteristics of the study area, seasonal conditions, and weather
conditions, its ability to monitor SSM is limited. Synthetic aperture radar (SAR) with high
resolution has been widely used in SSM research because of its all-weather, all-day, high
penetrating power and the responsiveness of soil dielectric properties to the radar backscat-
tering coefficient [10]. The radar backscatter coefficient is mainly influenced by factors
such as soil dielectric constant, ground surface roughness, and vegetation coverage [11].
Therefore, it is essential to successfully reduce their impact in order to increase the SSM
inversion’s accuracy. In response to this problem, multi-source remote sensing collaborative
inversion of SSM has been widely studied.

To date, researchers have attempted two basic strategies to raise the SSM inversion
accuracy. Firstly, classical physical models were used to invert the SSM [12,13]. Secondly,
mainstream machine learning techniques were used to maximize the use of different
meaningful feature parameters to invert the SSM [14,15].

Considering the penetration capabilities of SAR signals and their sensitivity to the
dielectric constant of the surface dielectric constant, a functional model of the backscatter
coefficient is typically constructed to estimate the dielectric constant [16,17]. Subsequently,
the SSM is calculated using a dielectric mixing model. However, during the SAR ground
observation, the interaction mechanisms between vegetation, soil, and electromagnetic
waves are complex [18]. Accurately isolating the contributions of vegetation and the surface
dielectric constant to radar backscattering is a key focus and challenge in current SAR soil
moisture inversion research [19,20].

For SSM inversion on bare ground, Ulaby et al. [21] were the first to suggest that
bare soil backscattering depends mainly on surface roughness and soil dielectric constant.
Oh, Dobson, Shi et al. [22–24] combined physical models and multi-frequency, multi-
polarization or full-polarization data to develop a semi-empirical model for SSM inversion
of bare ground. For SSM inversion in vegetated areas, microwave signals from SAR sensors
undergo complex interactions between the vegetation and the ground surface, causing
the final received backscatter to contain multiple forms of scattered components. It makes
SSM estimates potentially inaccurate in vegetated areas. Some scholars had established
a series of microwave scattering models by studying the characteristics of microwave
scattering, such as the Michigan microwave canopy scattering model (MIMICS) proposed
by Ulaby et al. [25] for the inversion of SSM in areas with tall vegetation cover areas and
the water cloud model (WCM) proposed by Attema et al. [26] for inversion of SSM in low
vegetation covered areas. Zribi et al. [27] combined Sentinel-1 and Sentinel-2 multi-source
remote sensing data and developed a SSM inversion model for agricultural land using
a normalized difference vegetation index (NDVI) retrieved from Sentinel-2 images and
received good inversion results with the precipitation measurements in the study area.
EI Hajj et al. [28] combined Sentinel-1 and Sentinel-2 remote sensing data to develop a
neural network-based inversion technique to invert radar signals and estimate SSM in
vegetated areas. In their study, the combination of WCM and integral equation modeling
(IEM) was used to generate a synthetic database. Then, the synthetic database was used to
train and validate the neural network. Finally, the trained neural network was used in a
real database to evaluate its robustness to SSM estimation. The results showed that SSM
could be estimated with an accuracy of about 5 vol.% in agricultural areas.

As an important branch of artificial intelligence, machine learning can integrate multi-
ple elements and learn complex nonlinear mapping relationships. It is increasingly popular
in SSM inversion because the number of parameters required for machine learning is not
limited by the surface parameters [29,30]. A particular branch of machine learning is known
as deep learning [31]. Convolutional neural network (CNN) is a particular class of artificial
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neural networks used in deep learning. CNN is renowned for its precise and effective
computation, strong learning capacity, and sophisticated feature extraction capability. In
recent years, the CNN model has become a highly effective teaching strategy and is widely
used in regression fitting analysis [32]. To lessen or eliminate the impacts of scant vegetation
in farming regions, Jian Liu et al. [33] constructed a CNN model to extract the deep features
from Sentinel-1 and Sentinel-2 remote sensing data and had the optimal inversion accuracy
compared with WCM, support vector regression (SVR), and generalized regression neural
network (GRNN).

However, the performance of CNN model is sensitive to hyper-parameters, and
different settings of hyper-parameters may lead to different generalization capabilities. It is
crucial to find the optimal combination of hyper-parameters to enhance the performance of
the CNN model. Thus far, researchers have developed numerous optimization algorithms,
such as the grey wolf optimizer (GWO) [34], gravitational search algorithm (GSA) [35], and
particle swarm optimization (PSO) [36]. Recently, the sparrow search algorithm (SSA) was
developed as a result of observations of sparrow populations’ foraging and anti-predation
behaviors [37]. Compared with benchmark function learning algorithms such as PSO,
GWO, and GSA, SSA has stronger optimization capability and faster learning efficiency.

Based on the above analysis, a convolution neural network optimized by the sparrow
search algorithm (SSA-CNN) was developed to increase the accuracy of SSM inversion on
the surface of agricultural fields. Firstly, multiple feature parameters were extracted from
the pre-processed remote sensing images to provide a more comprehensive reference for
SSM inversion studies. Then, the correlation analysis of the extracted feature parameters
was performed to obtain the best combination of features for SSM inversion. Finally, the
SSA-CNN model was proposed for SSM inversion of winter wheat covered farmlands.

The rest of this paper is organized as follows. The study area and the SSM inversion
methods are both thoroughly explained in Section 2. The inversion outcomes are displayed
in Section 3. There is a discussion and our conclusions in Sections 4 and 5, respectively.

2. Materials and Methods

In this paper, a SSM retrieval model combining SSA and CNN was proposed. The
vegetation cover type of the study area was winter wheat, and the study period was
from October 2019 to February 2021. Section 2.1 briefly describes the study area, and
Section 2.2 describes the data used and the preprocessing of the data. Section 2.3 describes
the procedure and the methods used in this experiment in detail.

2.1. Study Area

The study area was located in Xiangfu District (Lat 34◦36′–34◦51′N, Lon 114◦30′–
114◦45′E), Kaifeng city, Henan Province, China, which covered an area of approximately
500 km2, as shown in Figure 1. The region had a temperate continental monsoon climate
and was part of the North China Plain. The climate was ideal for agricultural growth, with
an average yearly temperature of about 14 ◦C and 628 mm of precipitation. The farmland
in the research region was mainly planted with winter wheat and corn, and a crop rotation
pattern of winter wheat and summer corn was implemented. Winter wheat was generally
planted in October and harvested in June of the following year. Four different phenological
stages of winter wheat, including the emergence stage, tillering stage, overwintering stage,
and standing stage, were selected for SSM inversion during two annual growth cycles of
winter wheat, which were 2019–2020 and 2020–2021 cycles.

2.2. Data Set and Image Preprocessing

For Sentinel-1 data, Single Look Complex (SLC) format in Interferometric Wide swath
(IW) mode and Sentinel-1 Ground Range Detected (GRD) format were used for this study.
A total of 10 SAR images acquired on 6 dates was used in the experiment, as shown in
Table 1. At first, the Sentinel Application Platform (SNAP) software was used to process
SAR images. The GRD data were pretreated by orbit correction, radiometric correction,
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multi-looking, speckle filtering using refined Lee filter, and terrain correction. For SLC
products, the preprocessing steps were the same as GRD operations except that the filtering
operation was polarization filtering. Next, the study area was extracted to extract the
feature parameters.

Figure 1. Location and Sentinel-1 images of the study area and sampling points: (a) location of the
study area; (b) Sentinel-1 image of the study area and sampling points.

Table 1. Information of the collected Sentinel-1 data and field measurements.

Acquisition Date of
Sentinel-1 Growth Stage Wheat Height

(cm)
SSM Range

(Vol.%)

18 October 2019 Emergence 0 6–25
30 October 2019 Tillering 0–5 8–23

29 December 2019 Overwintering 5–15 4–13
22 March 2020 Standing 24–48 2–20

24 October 2020 Emergence 0 7–27
5 November 2020 Tillering 2–8 3–23
11 December 2020 Tillering 4–12 3–12

4 January 2021 Overwintering 6–16 9–29
16 January 2021 Overwintering 6–17 6–13

21 February 2021 Standing 11–21 6–19

The optical data used in this paper were Sentinel-2 Level 2A (L2A) data after atmo-
spheric correction processing. Based on the dates of Sentinel-1 SAR image acquisition and
the presence of weather factors such as clouds and rain that affect large fluctuations in soil
moisture, 10 quasi-synchronous optical images were selected as experimental data. Band
fusion was performed on the downloaded Sentinel-2 images, and then the study area was
extracted to calculate the vegetation indexes.

A synchronous ground measurement was carried out on each acquisition date of
Sentinel-1 image used in this study, and a total of 10 field surveys were conducted during the
winter wheat growing seasons from October 2019 to February 2021. A total of 20 reference



Remote Sens. 2023, 15, 2515 5 of 22

plots were sampled in each survey. The data sampled in the field included SSM (vol.%),
latitude and longitude coordinates, and the height of winter wheat at each reference plot.
A TDR350 SSM meter with 3.8 cm long probes was used to measure the volumetric soil
moisture content of the surface layer of the farmland. Each reference plot was sampled five
times in each survey, and the average of the five measurements was taken as the actual SSM
of the reference plot. At the same time, the latitude and longitude coordinates of all the
reference plots in each survey were determined using an out-door handheld UG905 locator,
with a positioning precision of 1 to 3 m, and recorded using the WGS84 coordinate system.
The SSM measured in the field ranged from 0.02 cm3/cm3 to 0.29 cm3/cm3, and the height
of the wheat ranged from 0 to 48 cm throughout the field campaigns, as shown in Figure 2.
More details about the utilized data characteristics were presented in Tables 1 and 2.

Figure 2. Main states of winter wheat growing during 10 field surveys.
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Table 2. Information of the collected Sentinel-2 data and corresponding extracted NDVI.

Acquisition Date of
Sentinel-2 Growth Stage NDVI Range

15 October 2019 Emergence 0.08–0.15
4 November 2019 Tillering 0.16–0.34

3 January 2020 Overwintering 0.16–0.45
23 March 2020 Standing 0.51–0.72

24 October 2020 Emergence 0.12–0.47
8 November 2020 Tillering 0.20–0.58
13 December 2020 Tillering 0.38–0.71

7 January 2021 Overwintering 0.24–0.65
17 January 2021 Overwintering 0.24–0.66

16 February 2021 Standing 0.39–0.72

Finally, the dataset consisted of 200 elements. In this paper, the dataset was randomly
divided into two different training and testing sets to account for the random initialization
during the training of the deep learning models. In total, 80% of the 200 elements was
randomly selected for model training, and the remaining 20% was used for model testing.

2.3. Methodology

The flow chart of the method used in this paper is shown in Figure 3. After data col-
lection, the SSM inversion method proposed in this paper was mainly divided into 3 steps.
Firstly, the feature parameters and vegetation indexes were extracted from Sentinel-1 SAR
data and Sentinel-2 optical data after pre-processing, respectively. Secondly, correlation coef-
ficient and mutual information (MI) methods were used to analyze the correlation between
the extracted feature parameters and field measured SSM data to obtain the optimal combi-
nation of feature parameters. Then, the optimal combination of CNN hyper-parameters was
obtained by using SSA algorithm and used to build the SSA-CNN model for SSM inversion
of winter wheat covered farmlands. Finally, to demonstrate the effectiveness of the pro-
posed SSA-CNN model, three typical machine learning models, including random forest
(RF), GRNN, and CNN, were established for comparison experiments, and the regional
SSM values of the study area were retrieved during 4 winter wheat phenological periods.

Figure 3. Technology roadmap.
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2.3.1. Feature Parameters Extraction

Active microwave remote sensing emits electromagnetic waves to the surface features
by radar and then receives scattered information reflected back from the surface feature.
The received echo signal is different due to the different radar parameters and ground
surface parameters. Meanwhile, the presence of vegetation affects the scattering of radar
signals. Extracting feature information that characterizes ground objects from radar data
plays an important role in radar remote sensing inversion.

• Feature Parameters Extracted from SAR Data

Firstly, using the information reflected by backscatter coefficients is the primary
method of active microwave remote sensing for SSM retrieval. The incident angle (θ),
VV, and VH polarization backscattering coefficients are extracted from the pre-processed
SAR data. Secondly, the polarized scattering characteristics of SAR images can reflect the
texture, roughness, and geometry of the surface features, which can help to understand
and describe the scattering mechanism of the surface features. Based on the eigenvectors of
the coherent matrix, the H/A/α decomposition method proposed by Cloude and Pottier
is an effective polarization feature parameter extraction method that is not limited to spe-
cific applications [38]. Therefore, the H/A/α decomposition method was applied to the
dual-polarized Sentinel-1 data to decompose the eigenvalues of the covariance matrix of
the target features, from which the scattering entropy (H), inverse entropy (A), scattering
angle (α), and the eigenvalues (λ1, λ2) were extracted in this paper.

Thirdly, it is tough to simulate surface roughness since the information about surface
roughness changes on the band frequency, the incidence angle, and the polarization mode.
A combined roughness model was created from SAR data based on the existing research
hypothesis that there was a correlation between surface roughness and cross-polarized
backscattering coefficient [39], as shown in Equations (1)–(3).

Zs = exp

(
σ0

VH − σ0
VV − B(θ)

A(θ)

)
(1)

A = −2.6408 sin3(θ) + 5.293 sin2(θ)
−3.838 sin(θ) + 2.2042

(2)

B = 4.1522 sin3(θ)− 13.1 sin2(θ)
+16.9472 sin(θ)− 16.4228

(3)

where Zs represents the combined roughness; and A(dB) and B(dB) represent the coef-
ficients that are related to the incident angle. They are only applicable to the combined
roughness model for SAR data collected in the C-band. To sum up, a total of 9 feature
parameters, as shown in Table 3, were extracted from the Sentinel-1 SAR data.

Table 3. Feature parameters extracted from Sentinel 1 SAR data.

No. Parameter Note

1 θ Incident angle
2 VV

Backscatter coefficients3 VH
4 H Scattering entropy
5 A Inverse entropy
6 α Scattering angle
7 λ1 Eigenvalues
8 λ2
9 Zs Surface roughness
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• Feature Parameters Extracted from Optical Images

SSM distribution is influenced by vegetation coverage. It is necessary to take into
account the influence of the vegetation factor in SSM inversion. Based on the spectral
characteristics of the vegetation, the vegetation index is calculated by combining the visible
and near-infrared bands obtained by the multispectral camera [40]. Due to the variability of
surface environments in different regions and the different vegetation growth conditions in
the same region, different vegetation indexes have different effects [41]. Hence, 4 commonly
used vegetation indexes, including NDVI, MSI, FVI and NDWI, as shown in Table 4, were
selected to eliminate the influence of vegetation coverage in this study.

Table 4. Vegetation indexes calculated from Sentinel-2 data.

Vegetation Index Formulae Reference

Normalized difference
vegetation index (NDVI) NDVI = ρNIR−ρRED

ρNIR+ρRED
[42]

Moisture stress index (MSI) MSI = ρSWIR
ρNIR

[43]

Fusion vegetation index (FVI) FVI = 2∗ρNIR−ρRED−ρSWIR
2∗ρNIR+ρRED+ρSWIR

[44]
Normalized difference water

index (NDWI) NDWI = ρNIR−ρSWIR
ρNIR+ρSWIR

[45]

where ρNIR is the near-infrared band (band-8 of Sentinel-2), ρRED is the red band (band-4 of Sentinel-2), and ρSWIR
is the short-infrared band (band-11 of Sentinel-2).

2.3.2. Correlation Analysis between Input Parameters and Field Measured SSM Data

When using machine learning for regression fitting problems, it is significant to choose
the appropriate training data. Extra input data can cause the network to converge slowly
and affect the performance of the network. Hence, when selecting training data, the feature
parameters with strong correlation with field measured SSM data were selected as the
import data of the model to enhance the performance of the model. In this paper, two
methods, which were the correlation coefficient method and MI method, were selected to
analyze the correlation between the feature parameters and field measured SSM data to
reduce the dissenting nature of the correlation analysis results.

The Pearson correlation coefficient, which measures the linear correlation between two
variables X and Y and is defined as shown in Equation (4), is the most often used correlation
coefficient. Its value is between −1 and 1, and the stronger the correlation between the two
variables the higher the absolute value is.

ρX,Y =
Cov(X, Y)√
D(X)

√
D(Y)

=
E(X− EX)E(Y− EY)√

D(X)
√

D(Y)
(4)

where X and Y are two independent variables,
√

D represents the standard deviation,
Cov(X, Y) is called the covariance of the sum of random variables, E represents the mathe-
matical expectation, and ρX,Y represents the correlation coefficient between X and Y.

MI is an indicator of the amount of information shared between two or more variables,
a measure of interdependence between random variables in information theory, and also a
sensitivity analysis method used to analyze arbitrary relationships between each feature
and its label, including linear and nonlinear relationships [46]. The MI of two discrete
random variables X and Y can be expressed as shown in Equation (5).

MI(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(5)

where MI(X,Y) is called mutual information, p(x, y) represents the joint probability distribu-
tion function, and p(x) and p(y) represent the marginal probability distribution functions.
The logarithm is in base 2, and the unit of mutual information is bit.
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MI has many properties, two commonly used of which are symmetry and non-
negativity. The normalized MI (NMI) with a value range of (0, 1) was used in this study.
The larger value of NMI means more information about Y (or X) when X (or Y) is known.
More information about MI is shown in [47].

In this study, a total of 13 feature parameters were selected for correlation analysis with
field measured SSM data through preprocessing and analysis. By comparing the results
of the above two correlation analyses, the appropriate method of correlation analysis was
selected to obtain the feature parameters highly related to field measured SSM data as the
optimal feature combination input of the subsequent models.

2.3.3. Establishment of the Models

• Traditional Machine Learning Models

GRNN is a feed forward neural network developed by Specht [48]. It consists of an
input layer, a pattern layer, a summation layer, and an output layer. It is shown that this
network has advantages for small sample prediction and is suitable for solving nonlinear
problems. It is robust, highly fault-tolerant, and converges quickly. It can also handle
unstable data. Equation (6) provides an expression for the GRNN’s prediction function.

Y(x) =

n
∑

i=1
yi exp

[
−(x− xi)

T · (x− xi)/2σ2
]

n
∑

i=1
exp

[
−(x− xi)

T · (x− xi)/2σ2
] (6)

where n represents the number of samples, x represents the measurement input value, and
σ represents the smoothing factor.

RF, proposed by Leo Breiman in 2001 [49], is an integrated learning model with
decision trees as the basic classifier. It uses random selection of variables and random
subsets of the dataset for each decision tree to build many decision trees, and the ensemble
approach can significantly improve the predictive performance of the model. RF is mainly
based on Bagging and random subspaces and is used in regression problems to explain the
effects of a series of independent variables on dependent variables.

The two models mentioned above, which are typical machine learning regression pre-
diction models, perform well when applied to small samples and are frequently employed
to address the challenge of small sample regression fitting. However, both methods need a
lot of computing memory and effort and perform poorly when there are many training ex-
amples. This is a typical weakness in machine learning techniques for parameter inversion.

• Convolutional Neural Network Model

CNN is a representative deep learning model proposed by Lecun et al. in 1998 [50,51].
In the field of remote sensing, CNN is mainly used in surface feature recognition and image
classification. However, with the in-depth study of CNN, it was found that it could be used
not only for classification and target recognition but also for regression analysis. Generally
speaking, input layers, convolution layers, pool layers, full connection layers, and softmax
layers make up the majority of the CNN structure. The convolutional layer is used for
feature learning, abstracting, and extracting features from the input data. The convolutional
outputs are compressed in the pooling layer to obtain more significant features and to
successfully manage overfitting. The full connection layer is used to integrate the highly
abstracted features after multiple convolutions, normalize them, and send the output values
to the classifier for classification. In this paper, regression function was used to replace the
last softmax layer in parametric regression modeling.

Before using CNN for regression prediction, some parameters inside the CNN need to
be set in advance, which are called hyper-parameters. Selecting an optimal set of hyper-
parameters can enhance the CNN regression prediction performance without changing
CNN structure. Therefore, it is especially important to select the suitable hyper-parameters
to fully exploit the regression prediction performance of CNN architecture.
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• Implementation of SSA-CNN

SSA is an emerging meta-heuristic algorithm proposed in 2020 [37]. The algorithm is
simple to implement and has the advantages of high merit-seeking ability and fast conver-
gence. In SSA, the sparrow population is divided into producers, scroungers, and alerters,
and the position of each sparrow corresponds to a solution. According to the algorithm,
producers and scroungers are interchangeable, but the ratio remains constant. The number
of alerters is generally 10–20% of the population. In this paper, the optimal combination of
hyper-parameters for the CNN model was sought using the SSA optimization algorithm.
These hyper-parameters were learning rate, number of iterations, batch size, kernel size,
number of convolutional layers, and number of neurons in the full connection layers. The
mean square error (MSE) of the predicted and actual values was used as the fitness function
with the fitness function. Then, the optimal CNN model was established using the optimal
hyper-parameters, as shown in Figure 4, where the values of cx, mx, and nx were calculated
by the SSA algorithm. The pooling layers were removed from the network to prevent a
decline in regression prediction accuracy brought on by the loss of features from the pooled
data. The gradient vanishing problem, which is especially significant when adopting
saturated activation functions such as Tanh and Sigmod, is the main problem with deep
learning. The ReLu function overcomes the gradient vanishing problem and accelerates
the training speed [52]. The activation function was decided to be the ReLu function. For
parameters inversion and prediction, the classification layer in this paper was replaced by
regression layer. To avoid overfitting and enhance the generalization capabilities of the
model, each fully connected layer was connected to a dropout layer.

Figure 4. Structure of the proposed SSA-CNN model.

3. Results

In this section, the results of correlation analysis were first analyzed and ranked.
Then, the optimal hyper-parameters combination of CNN optimized by SSA algorithm
was shown. After that, RF, GRNN, CNN and SSA-CNN models were used to conduct
regression modeling analysis on the datasets. At last, the optimal regression prediction
model was used to invert the SSM in the study area.

3.1. Correlation Analysis Results

The correlation analysis results using Pearson correlation analysis and mutual infor-
mation methods are shown in Tables 5 and 6, respectively. Comparing the results of the
two correlation analyses, it can be seen that the results obtained using mutual information
method had a smaller variability, lower values for each feature parameter and smaller
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degrees of discrimination, which could not effectively identify the main sensitive feature
parameters related to field measured SSM data. As a consequence, the final results of
the Pearson correlation analysis were chosen as the best input data combination for the
model. Based on the results of Pearson correlation analysis, the ranked feature parameters
with the highest to lowest correlation with field measured SSM data were λ1, FVI, NDVI,
MSI, NDWI, H, VV, A, α, λ2, θ, Zs, and VH. The correlation between the four vegetation
indexes and field measured SSM data was relatively high, which was due to the fact that
the wavelength of 400–2500 nm had evident changes in the physiological conditions of
the crops. In agricultural applications, the red band, near-infrared band, and short-wave
infrared band are often used to study the biological indicators of vegetation. The biological
indicators and growth conditions of these vegetation are closely related to SSM. When the
growth of crops is abnormal, the changes can be reflected by the vegetation index [53]. For
α, Zs, λ2, θ, and VH, the correlation coefficients of these five feature parameters were less
than 0.3, and they were considered to be extremely weakly correlated or uncorrelated with
field measured SSM data. To summarize, the chosen eight feature parameters for the model
input from high to low were λ1, FVI, NDVI, MSI, NDWI, H, VV, and A.

Table 5. Pearson correlation coefficients ordering of feature parameters.

No. Parameter Correlation Coefficient

1 λ1 0.491 **
2 FVI −0.392 *
3 NDVI −0.39 *
4 MSI 0.386 *
5 NDWI −0.374 *
6 H −0.322 *
7 VV 0.32 *
8 A 0.317 *
9 α −0.196
10 λ2 0.172
11 θ −0.152
12 Zs −0.126
13 VH 0.054

The symbols * and ** represent significant correlations at the 0.05 and 0.01 levels, respectively.

Table 6. Mutual information ordering of feature parameters.

No. Parameter NMI

1 λ1 0.347
2 FVI 0.231
3 NDWI 0.228
4 MSI 0.222
5 NDVI 0.192
6 A 0.191
7 VV 0.191
8 H 0.184
9 VH 0.182
10 α 0.172
11 Zs 0.170
12 λ2 0.165
13 θ 0.147

3.2. Hyper-Paramzeters Optimization Results after SSA

The initialized structure of the CNN in this study mainly consisted of two convolu-
tional layers, three fully connected layers, and one regression layer. Each convolutional
and fully connected layer was connected to the ReLu function. The experiments of the
hyper-parameter optimization using the SSA algorithm were repeated twice in this study.
Every time, the dataset with 200 samples was randomly divided into a training set with
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160 samples and a testing set with 40 samples. The SSA algorithm was applied twice to
optimize the hyper-parameters of the same initialized CNN structure using two different
training sets, and two optimal hyper-parameter combinations were obtained, as shown in
Table 7.

Table 7. Hyper-parameters of CNN and SSA-CNN models in two repeated experiments.

Hyper-Parameter
First Training Set Second Training Set

CNN SSA-CNN SSA-CNN

Learning rate 0.01 0.006 0.004
Iterations 40 51 49
Batchsize 110 123 134

First layer kernel size 3 × 3 3 × 3 2 × 2

First layer number 4 5 6

Second layer kernel size 3 × 3 2 × 2 2 × 2

Second layer number 8 12 12

Number of neurons 30, 30, 1 32, 23, 1 31, 26, 1

3.3. Regression Model Results and Analysis

The RF, GRNN, and CNN models for the SSM inversion were established separately
to compare with the proposed SSA-CNN model. The optimal combination of feature
parameters was used as the same input data for all the four models. Three precision
evaluation indexes, which were coefficient of determination (R2), root mean square error
(RMSE), and mean absolute error (MAE), were used to evaluate the inversion accuracy. The
experimental results using the two different testing sets are shown in Figures 5 and 6. It can
be seen that the CNN model had higher inversion accuracy compared to the RF and GRNN
models. By calculating the average accuracy of the inversion results using the two different
testing sets, the average R2 of the CNN model was 0.72, the average RMSE was 2.55 vol.%,
and the average MAE was 2.07 vol.%. After hyper-parameter optimization, the proposed
SSA-CNN model had a further higher inversion accuracy than the CNN model, with the
average R2 increasing from 0.72 to 0.80, the average RMSE decreasing from 2.55 vol.% to
2.17 vol.%, and the average MAE decreasing from 2.07 vol.% to 1.68 vol.%.

Figure 5. SSM prediction results for the four models using the first testing set.
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Figure 6. SSM prediction results for the four models using the second testing set.

The estimated accuracy of the SSM inversion results using the two different testing sets
is shown in Table 8. It is shown that the SSM inversion results of the proposed SSA-CNN
model were much closer to the ground-truth values, compared with the other three models.
The results indicated that the SSM inversion accuracy could be improved by using SSA
algorithm to optimize the hyper-parameters of the CNN model, which demonstrated the
superiority of the proposed SSA-CNN model.

Table 8. Prediction accuracy of the four models in the two repeated experiments.

Model

First Testing Set Second Testing Set Average Accuracy

R2 RMSE
(Vol.%)

MAE
(Vol.%) R2 RMSE

(Vol.%)
MAE

(Vol.%) R2 RMSE
(Vol.%)

MAE
(Vol.%)

SSA-
CNN 0.80 2.11 1.65 0.79 2.22 1.71 0.80 2.17 1.68

CNN 0.72 2.53 2.09 0.71 2.57 2.05 0.72 2.55 2.07
GRNN 0.71 2.81 2.25 0.69 3.05 2.33 0.70 2.93 2.29

RF 0.67 2.83 2.46 0.64 3.12 2.61 0.66 2.98 2.54

3.4. Performance of the Four Models with Different Number of the Feature Parameters

The optimal size of the feature parameter subset used as the input data of the subse-
quent four models was explored in this study. The number of the used feature parameters
was gradually increased to use in the four models, according to the correlation ranking of
the feature parameters. First, only the top feature parameter with the highest relevance
ranking was used as input data to build the four models. Then, the four models were
constructed using the top two feature parameters in the correlation ranking. Finally, the
number of the used feature parameters was gradually increased until all of them were used
to build the four models. The result is shown in Figure 7. As can be seen in Figure 7, there
was a general trend in decreasing and then increasing of the RMSEs of the four models with
the increase in the number of the used feature parameters. In other words, a general trend
in increasing and then decreasing of the estimation accuracy of the four models was shown
with the increase in the number of feature parameters. Although the fluctuations of the four
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models were not the same, it was demonstrated that the trough of the RMSE curve, which
meant the highest estimation accuracy, occurred when the top eight feature parameters in
the correlation ranking were used in the four models. When the number of the used feature
parameters was greater than eight, the accuracy of the four models on the testing set would
decrease. The above results showed that redundant feature parameters could negatively
affect the fitting performance of the models to some extent. Therefore, correlation analysis
before conducting models was important to eliminate redundant feature parameters and
effectively improve the inversion accuracy. In addition, it was also shown in Figure 7 that
the SSA-CNN model proposed in this paper had the least fluctuation in accuracy and was
more stable among the four models, which further demonstrated its better performance.

Figure 7. Performance of the four models with different number of the feature parameters.

3.5. Analysis of Soil Moisture Dynamic Changes

The dynamic change in the average SSM in the winter wheat growing period is shown
in Figure 8. The average SSM values in the emergence stage, tillering stage, overwintering
stage, and standing stage of the winter wheat growing periods in 2019–2020 and 2021–2021
are represented in Figure 8a,b, respectively. On the whole, it is demonstrated in Figure 8a
that a decreasing trend in the average SSM was shown from the emergence stage to the
overwintering stage of the winter wheat. As sufficient soil moisture content was necessary
to ensure the emergence rate of winter wheat, much irrigation usually occurred during the
emergence period. With the growth of wheat seedlings and the evaporation of SSM, the
soil water consumption increased, and, therefore, the average SSM decreased gradually.
During the standing stage of winter wheat, a slight increase in the average SSM was shown
compared with that of the overwintering stage, mainly because the temperature gradually
rose, and the growth rate of wheat seedlings was accelerated during the standing stage.
It should be pointed out that there was an evident ascent of the average filed measured
SSM during the tillering stage in Figure 8b because it rained in the study area on the day
before the field survey on 11 December 2020. The trend in the average SSM during the
remaining phenological stages in Figure 8b was similar to that in Figure 8a. Overall, these
four models tracked the dynamic changes in SSM well, and the proposed SSA-CNN model
showed better performance than the other three models.
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Figure 8. Mean SSM variation in winter wheat pre-fertility periods: (a) 2019/10/18–2020/03/22;
(b) 2020/10/24–2021/02/21.

3.6. Performance of SSM Estimation under Different Coverages of the Winter Wheat Plants

In this study, NDVI was used as a surrogate for winter wheat biomass to judge the
growth status of winter wheat. Based on the 10 Sentinel-2 images covering the study
area, the average values of all the NDVIs at the sampling points in each field survey were
calculated, as shown in Figure 9.

Figure 9. Dynamics of the mean NDVI of the winter wheat sampling sites: (a) 2019/10/18–
2020/03/22; (b) 2020/10/24–2021/02/21.

It was demonstrated in Figure 9 that the NDVI exhibited an upward trend overall in
each growing period and was consistent with the growth process of the winter wheat. Dur-
ing the periods from 15 October 2019 to 23 March 2020 and 24 October 2020 to 16 February
2021, the ground coverage density of winter wheat increased gradually as a whole; except
for the overwintering stage, when the growth of winter wheat almost stopped, and the
coverage of winter wheat remained almost constant. It corresponded to the increasing
trend in the NDVI. It was worth noting that the winter wheat exhibited a relatively poor
state, with a reduced green coverage rate, during the overwintering stage. As a result, the
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red absorption band weakened, which was reflected in the downward trend in the NDVI
from 13 December 2020 to 17 January 2021. A comparison of the differences in the growth
status of winter wheat in the 10 field surveys is shown in Figure 2. The RMSE between
the measured and estimated SSM using the 4 models at the 10 survey dates is shown in
Figure 10. From Figures 9 and 10, it can be seen overall that RMSE increased accordingly
with the increase in NDVI, namely, the increase in winter wheat. However, the SSA-CNN
model proposed in this paper had a more stable accuracy in general compared with the
other three models.

Figure 10. RMSE of between SSM estimated and measured on 10 dates using the four models:
(a) 2019/10/18–2020/03/22; (b) 2020/10/24–2021/02/21.

3.7. Results of the Regional SSM Inversion

The proposed SSA-CNN model was used to estimate the SSM in the winter wheat
covered farmlands in the study area, based on the Sentinel-1 and Sentinel-2 remote sensing
data. The results are shown in Figures 11–14, which demonstrate the spatial distributions
of the SSM during the four phenological stages in the first growth cycle of winter wheat
and the difference analysis of the measured and retrieved SSM values at 20 reference plots
in each Sentinel-1 image. The spatial distributions of the SSM in the second growth cycle of
winter wheat were similar and, therefore, not repeatedly shown here. Non-farming areas
such as buildings, roads, and rivers were prescreened in advance and filled with white
pixels to highlight the farmland areas on the SSM distribution map.

Figure 11. Inversion results for 18 October 2019: (a) Inversion results of the regional SSM in the study
area; (b) Differences of the measured and retrieved SSM values at 20 reference plots.
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Figure 12. Inversion results for 30 October 2019: (a) Inversion results of the regional SSM in the study
area; (b) Differences of the measured and retrieved SSM values at 20 reference plots.

Figure 13. Inversion results for 29 December 2019: (a) Inversion results of the regional SSM in the
study area; (b) Differences of the measured and retrieved SSM values at 20 reference plots.

Figure 14. Inversion results for 22 March 2020: (a) Inversion results of the regional SSM in the study
area; (b) Differences of the measured and retrieved SSM values at 20 reference plots.
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From the inversion results, the SSM was relatively high in the early stage of the wheat
phenological stage because the wheat seedling emergence required certain moisture in the
early stage of wheat growth and development, and insufficient moisture would affect the
seedling emergence rate. From Figures 11b and 14b, it can be observed that there were
significant variations in SSM within the same day. This difference was mainly attributed to
the fact that winter wheat during these two dates was in the critical stages of emergence
and standing stages. During these two growth stages, the crop had a higher water demand,
leading to more frequent irrigation activities in the fields. However, due to the possible
differences in irrigation timing, methods, and intensity among the various plots within the
planting area, this resulted in significant variations in SSM values expression within the
same day. With the growth and development of winter wheat, its growth mainly depended
on the natural precipitation in the area. With uniform rainfall in the study area, the spatial
variation in SSM in the late stage of winter wheat growth was small, and the SSM gradually
decreased. Especially, to demonstrate the significant effect of rainfall events on SSM values,
the inversion results for 11 December 2020, the day after it rained in the study area, which
was mentioned in Section 3.5, are shown in Figure 15. As can be seen from Figure 15,
the SSM was generally higher after the rainfall. This was mainly due to the fact that the
rainfall provided a large amount of water replenishment to the soil, allowing sufficient
adsorption and infiltration of water in the soil. In conclusion, the above results showed that
the inversion method proposed in this paper was feasible and applicable to the regional
SSM retrieval in the winter wheat covered areas.

Figure 15. Inversion results for 11 December 2020: (a) Inversion results of the regional SSM in the
study area; (b) Differences of the measured and retrieved SSM values at 20 reference plots.

4. Discussion

The SSM inversion in winter wheat farmlands was investigated in this study based on
Sentinel-1 and Sentinel-2 multi-source remote sensing data. Good inversion results were
achieved through the optimization of the feature parameters extracted from remote sensing
data and the optimization of the neural network hyper-parameters. First, the feature
parameters related to the SSM in SAR images and optical images were extracted, and the
Pearson correlation analysis method was used to select the optimal feature parameter subset.
Then, the SSA algorithm and CNN model were combined to develop a new inversion model
for SSM inversion. Finally, the quantitative and qualitative evaluation results demonstrated
the effectiveness of the proposed method. Despite the fact that significant benefits were
obtained through feature optimization and the development of SSA-CNN model, there are
still some issues to be further discussed.
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First of all, based on all the field measured SSM values collected during four phenologi-
cal stages of winter wheat, the optimal combination of the feature parameters extracted from
multi-source remote sensing data was selected through the correlation analysis method in
this paper and uniformly used in subsequent inversion models to retrieve regional SSM
during the four phenological stages of winter wheat. However, the correlation between the
remote sensing feature parameters and field measured SSM of winter wheat covered area
may be various in different phenological stages of winter wheat and thus is the optimal
combination of remote sensing feature parameters, which needs to be further analyzed in
future research.

Next, the hyper-parameters are crucial to the performance of CNN model, and different
settings of hyper-parameters may lead to different generalization capabilities. Compared
with the traditional manual hyper-parameter adjustment method, the experimental results
showed that the SSA optimization method used in this paper was much more convenient
and effective. It is worth noting that the hyper-parameter settings of the deep learning
models had some inexplicable aspects, which need to be analyzed specifically for specific
problems, due to the black box nature of deep learning. More hyper-parameter optimization
methods suitable for SSM inversion are the focus of the subsequent research.

In the end, the performance of the proposed method was evaluated at different
winter wheat coverages in this study, as shown in Figures 11–14. It can be seen from
Figures 9 and 10 that the accuracy of the estimated SSM decreased with the increase in the
NDVI. The reason may be that the sensitivity of radar signal to soil moisture decreases
when the vegetation coverage increases [54,55]. Although the proposed method obtained
satisfactory estimates of SSM in general in the pre-fertility periods of winter wheat, more
improvements could be explored to further increase the inversion accuracy in the late
growth periods, when the winter wheat was taller, denser, and with higher NDVI.

5. Conclusions

In this paper, based on Sentinel-1 SAR data and Sentinel-2 optical data, an SSM
inversion method based on the SSA-CNN model, which was a convolution neural network
optimized by sparrow search algorithm, was proposed to retrieve SSM in winter wheat
farmlands. The following are the primary conclusions:

(1) In total, 14 feature parameters related to SSM were extracted from Sentinel-1 and
Sentinel-2 remote sensing data. After correlation analysis between 13 extracted feature
parameters and field measured SSM by using Pearson correlation analysis and mutual
information methods, 8 feature parameters, which were λ1, FVI, NDVI, MSI, NDWI,
H, VV, and A, were selected as the optimal combination of feature parameters for
SSM inversion.

(2) The SSA-CNN model was established and compared with RF, GRNN, and CNN
models to validate its effectiveness. Among the four models, the proposed SSA-CNN
model had a higher inversion accuracy. Its average R2, average RMSE, and average
MAE were 0.80, 2.17 vol.%, and 1.68 vol.%, respectively.

(3) The proposed SSA-CNN model was used to retrieve the regional SSM in winter wheat
farmlands during four phenological stages. The findings indicated that the proposed
method was feasible and suitable for SSM inversion in winter wheat covered areas,
which provided a beneficial exploration and technical support for SSM estimation in
agricultural regions.
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