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Abstract: Land Use/Land Cover (LULC) mapping is the first step in monitoring urban sprawl and
its environmental, economic and societal impacts. While satellite imagery and vegetation indices
are commonly used for LULC mapping, the limited resolution of these images can hamper object
recognition for Geographic Object-Based Image Analysis (GEOBIA). In this study, we utilize very
high-resolution (VHR) optical imagery with a resolution of 50 cm to improve object recognition
for GEOBIA LULC classification. We focused on the city of Nice, France, and identified ten LULC
classes using a Random Forest classifier in Google Earth Engine. We investigate the impact of
adding Gray-Level Co-Occurrence Matrix (GLCM) texture information and spectral indices with their
temporal components, such as maximum value, standard deviation, phase and amplitude from the
multi-spectral and multi-temporal Sentinel-2 imagery. This work focuses on identifying which input
features result in the highest increase in accuracy. The results show that adding a single VHR image
improves the classification accuracy from 62.62% to 67.05%, especially when the spectral indices and
temporal analysis are not included. The impact of the GLCM is similar but smaller than the VHR
image. Overall, the inclusion of temporal analysis improves the classification accuracy to 74.30%. The
blue band of the VHR image had the largest impact on the classification, followed by the amplitude
of the green-red vegetation index and the phase of the normalized multi-band drought index.

Keywords: GEOBIA; LULC; temporal analysis; Google Earth Engine; GLCM; VHR

1. Introduction

Land Use and Land Cover (LULC) mapping is an important first step in urban sprawl
monitoring. Urban sprawl leads to a range of negative consequences which can be cate-
gorized as environmental, economic and societal impacts [1]. As many urban zones keep
expanding and taking up more open space, the environment is at risk. Furthermore, the loss
of open space and farmland leads to an increase in runoff and a decrease of water infiltra-
tion. Current techniques for LULC mapping make use of satellite imagery and machine
learning and deep learning techniques. Recent studies attempt to fuse different data sources
such as optical and radar Sentinel data [2,3] and make use of the multi-temporal aspect of
the available data for the classification of LULC [4,5].

There are several studies that integrate different data sources for LULC mapping.
Clerici et al. [2] fused Sentinel-1 (S1) and Sentinel-2 (S2) data for land cover mapping. S1
provides C-band SAR data, which is complimentary to the multi-spectral information
that S2 provides. Furthermore, SAR data are not affected by clouds and thus provide an
uninterrupted multi-temporal stack of data. Erasmi and Twele [5] also have shown that
the combination of SAR with Landsat ETM+ optical imagery has led to an improvement
in classification of vegetation classes. Their focus lies on the multi-temporal availability
of SAR data to observe the phenological stages of crops. Furthermore, the integrated
SAR-based texture information improves the classification.
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One of the major strengths of satellite imagery is its multi-temporal aspect. Not only
are a plethora of multi-spectral images throughout the year accessible, but for Sentinel-2
available imagery goes back to 2015 and for Sentinel-1 it goes back to 2014. This provides
researchers with phenological cycle data that allow the observation of vegetation growth
patterns and thus helps the classification of different vegetation types. Xu et al. [6] and
Lawton et al. [7] make use of the harmonic analysis of vegetation indices to detect land
cover change. In particular, they use the harmonic analysis of vegetation indices such as
the Normalized Difference Vegetation Index (NDVI) to identify breaks caused by a land
cover change. The harmonic analysis of vegetation indices can also be used to identify
surface phenology. Many vegetation types undergo different stages in the span of a
year. For example, the harmonic analysis of the NDVI helps identify the growing season.
Furthermore, the land surface phenology of one land cover class is expected to have the
same variations at different locations in the same ecoregion [8]. Thus, a harmonic analysis
of multi-temporal data can help distinguish between different land cover classes.

When classifying at the pixel level, high-resolution imagery is sensitive to the salt and
pepper effect. Therefore, a Geographic Object-Based Image Analysis (GEOBIA) approach
proves useful because at such scale, objects can be identified, which is not easy in low-
resolution imagery with a 1 km2 cell resolution [9]. In a sense, by grouping pixels in
patches, the basic analysis units of objects are set [10] and textural and spatial features
can be included [11]. According to Blaschke et al. [9], using GEOBIA, new features can be
derived such as shape and neighborhoods which can be the deciding factors when spectral
properties are the same. Mboga et al. [12] use a GEOBIA approach in combination with
a deep learning network to classify Very High Resolution (VHR) optical imagery. They
use the GEOBIA segments to refine the results generated by a fully convolutional network.
Overall accuracy increased and edge delineation improved. However, they did not include
multi-spectral imagery and only identified five land cover classes including only one
vegetation class. Gavankar and Ghosh [13] use K-means clustering to help detect building
footprints. Praticò et al. [14] also use K means in machine-learning forest classification.
Gudmann et al. [15] use a clustering algorithm in combination with landscape metrics.

The most common spectral index to extract from multi-spectral imagery for LULC
mapping is the normalized difference vegetation index (NDVI). The NDVI is a vegeta-
tion index that can be linked to the chlorophyll concentration and biomass productivity
variations [14,16]. Other metrics that are evaluated for land cover mapping and land
cover change detection are the soil-adjusted vegetation index (SAVI), bare soil index (BSI),
tasseled cap greenness (TCG) and tasseled cap brightness (TCB) such as in [16] for land
cover change detection. Luca et al. [3] employ the NDVI, normalized burn ratio (NBR),
normalized difference red-edge index (NDRE) and two SAR indices, radar vegetation
index (RVI) and radar forest degradation index (RFDI), to perform land cover mapping
in a Mediterranean region. NDVI, S2 red-edge position index (S2REP), green normalized
difference vegetation index (GNDVI) and the modified soil-adjusted vegetation index
(MSAVI) are used in [2] for land cover mapping using S1 and S2 data. Abdi [4] uses the
NDVI, modified normalized difference water index (MNDWI) and normalized difference
built-up index (NDBI) to identify eight different land cover classes in S2 data.

Spectral indices provide information at the pixel level. There are, however, also
metrics that provide context information. Gudmann et al. [15] integrate four landscape
metrics that describe the size and shape characteristics of segmented patches generated
by GEOBIA techniques in Landsat 8 and S2 imagery. These metrics capture the continuity
of the landscape’s structure. The researchers found that the patch-level landscape metrics
improved the overall accuracy of the classification. To describe the structure within a patch,
the Grey-Level Co-occurrence Matrix (GLCM) [17] can be used. GLCM is a method to
extract textural indices from greyscale images. These indices provide information on the
spatial relationship of each pixel [18]. There are a total of 18 different texture indices that
GLCM generates. Su et al. [19] have shown that employing four GLCM textural indices
improves object-oriented classification in urban areas. In [2], GLCM is used on S1 C-band
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SAR imagery because surface texture influences the radar back-scatter. The combination of
textural and spectral information in their GEOBIA approach improved the classification.
However, the texture indices from GLCM should not be included in the segmentation
process to generate objects because GLCM extracts pixel-wise metrics using a sliding
window and when encountering heterogeneous classes, high contrast will be detected [20].
For example, a forest is a heavily textured patch due to the variation in vegetation and
shadows. This high texture contrast should thus not be used as an edge indicator between
objects. Furthermore, the textural features are defined by neighborhoods and not by
individual pixels. Therefore, their positional accuracy is of less quality than the input
pixels [21].

Since Sentinel-2 provides multi-spectral data from which numerous spectral indices
can be generated, it is useful to look at the relative importance of all these input bands
(or features) and their derived indices. There are several metrics to determine feature
importance in Random Forest (RF) classification models. The Random Forest algorithm
implemented in GEE (and used in this work) utilizes the Gini index to determine the
feature importance.

Variable importance in RF models has received little attention. Performing classifi-
cation of eight land cover classes in Vietnam, Dieu et al. [22] concluded from the relative
importance histogram that topographical information such as slope and elevation were
more important than NDVI variables such as mean and variance. Luca et al. [3] also
investigated the importance of input features in a fusion method of S1 SAR and S2 optical
imagery. They found that SWIR and red-edge-based indices were the most important of
the optical layers for vegetation mapping. Furthermore, the SAR bands were found to not
be decisive in the classification decision. Walker et al. [23] used PlanetScope and S2 data to
detect crop burning. Unsurprisingly, the bare soil index was the most important feature in
the RF model. Furthermore, they reduce the amount of input data in the final model by
retaining only the most important features. Numbisi et al. [18] used the Random Forest
feature importance to select the 10 most important S1 SAR images out of a multi-seasonal
time series to detect cocoa agroforests.

Tassi and Vizzari [24] employ GEOBIA and integrate GLCM textural features to
perform LULC classification of Landsat 8, PlanetScope and S2 data. They compare the
performance of a Support Vector Machine (SVM) and Random Forest (RF) classifier using
a pixel-based as well as an object-based approach. In contrast to the recent trend of
performing classification using deep learning models, Tassi and Vizzari utilize a machine
learning model. In our work, we also choose to train a machine learning classifier as
opposed to a deep learning model because although deep learning models can outperform
machine learning networks, they require fully labeled input imagery which is unrealistic to
obtain. Furthermore, with poorly labeled data, deep learning models are hard to train.

We identify several shortcomings in LULC mapping with Sentinel-2 data. First, the low
resolution (10 m in the RGB and NIR bands) of the S2 bands hampers object generation.
Second, the multi-temporal aspect of S2 data is underutilized. Several informative features
can be extracted from the harmonic analysis to help identify land cover, such as the phase
and amplitude. Third, the inclusion of VHR optical imagery in GEOBIA approaches is not
fully investigated.

Therefore, our work builds forth on the research of Tassi and Vizzari [24] and adds the
following contributions. We include VHR optical imagery to enhance object generation. We
include a temporal analysis of several spectral indices. We investigate LULC classification
with an RF classifier using GEOBIA. Finally, we determine the importance of the various
input bands by looking at the relative importance histogram. We use Google Earth Engine
(GEE) to perform the data preprocessing, training and validation of the model.
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2. Materials and Methods
2.1. Study Area

The investigated area comprises the conurbation and the surroundings of Nice, France.
It is located on the eastern border with Italy. The image patches are spread out evenly
over the area of Nice as shown in Figure 1. The urban area is relatively small; most of the
area is covered with forests. The Alps, spanning the border between France and Italy, are
characterized by a rough, richly diverse, mountainous area with snow-covered tops.

Figure 1. The area of Nice is located on the Mediterranean Sea coast of southeastern France. All
available image patches are shown on the left map. Four examples of the orthoimages are shown on
the right. Each tile encompasses 1 km2.

2.2. Training Data

The very high resolution (VHR) image patches and the labels are part of the
grss_dfc_2022 dataset provided by the 2022 IEEE GRSS Data Fusion Contest (DFC2022).
The VHR aerial imagery and labels originate from the MiniFrance dataset [25,26]. This is
the first dataset for benchmarking semi-supervised learning in the field.

The labels originate from the Urban Atlas 2012, generated by the Copernicus program.
Although the labels are generated in 2012, the optical imagery was acquired between 2012
and 2014. The VHR image tiles span 2000× 2000 pixels at a resolution of 50 cm/pixel. We
limit the investigated area to Nice. The 333 image tiles are spread out evenly over Nice as
shown in Figure 1. We integrate Sentinel-2 (S2) data spanning a 3 year period from 2017 to
2019. All 13 bands of the S2 data are retained. The RGB and NIR bands have a resolution of
10 m/pixel; the remaining bands have a resolution of either 20 or 60 m.

Three data sources are used in this study:

• Sentinel-2 imagery
• Very high resolution optical imagery
• Land Use/Land Cover labels

The MiniFrance labels contain 14 land cover classes, but in Nice only 9 classes are
present. The dataset involves two challenges: a temporal aspect and undetectable classes
due to the high resolution of the labels. There are 3 urban classes that cause confusion
with the provided VHR aerial imagery and the S2 data: (red label) urban fabric, (orange
label) industrial, commercial, public, military, private and transport units, (yellow label)
mine, dump and construction sites. The orange label includes roads which are too narrow
to be detected in S2 imagery. The yellow label contains construction sites, which are of a
temporal nature and might have disappeared in the used S2 imagery. Therefore, we merge
these three classes into one urban class. Figure 2 shows how the three urban classes were
merged into one class. Finally, we retain 10 classes.
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Figure 2. The 12 available classes in the IEEE data fusion contest is reduced to ten. Training samples
are acquired through stratified point sampling.

Although the labels are designed to train a convolutional neural network, we choose
to extract point samples and train a machine learning model for several reasons. First,
the provided labels are not reliable as we will discuss in detail below. Second, we aim to
investigate the possibilities of various input data sources using less training data. Deep
learning models such as CNNs have performed well for LULC mapping, but require
training data that are complex to obtain. To extract training samples, we use a stratified
sampling technique, as illustrated in Figure 2. Out of each class, 500 point samples are
randomly selected. We split the data into a 400–100 training–validation set. When training
the model, we consider a 40 m buffer around each point in case points fall on unclear
borders of two classes.

Upon careful examination, we find many labels to be incorrect. As an example, we
provide two VHR orthoimages with their respective labels in Figure 3. In the top image,
we see that the buildings on the left are labeled partially as class 1 and partially as class 2
due to a straight divide between classes 1 and 2. In the middle on the image, the label of
the bridge is misplaced. Furthermore, it is highly unlikely that the middle area running
from top to bottom is pasture. In the bottom image, the water class encompasses part of
the surrounding dry area. The orange class 2 labels on the left side do not perfectly align
with the roads. These two images clearly show that the training samples will be affected
by poor labeling and this further motivates us to train an RF classifier instead of a deep
learning model.
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Figure 3. Poor data labeling by the Urban Atlas and reused in the IEEE data fusion contest. (Left)
aerial imagery. (Right) labeled images. The labels are as follows: 1: Urban fabric; 2: Industrial,
commercial, public, military, private and transport units; 7: Pastures; 10: Forests; 11: Herbaceous
vegetation associations; 12: Open spaces with little or no vegetation; and 14: Water.

2.2.1. Spectral Indices

From the S2 bands, we extract 8 spectral indices to provide more information on
vegetation, urban cover, bare ground and water classes. A list of the used indices is
provided in Table 1.

Table 1. Spectral indices extracted from Sentinel-2 bands.

Index Full Name Formula

BSI [27] bare soil index (B11+RED)−(NIR+BLUE)
(B11+RED)+(NIR+BLUE)

EVI [28] enhanced vegetation index 2.5 NIR−RED
NIR+6ṘED−7.5ḂLUE+1

GRVI [29] green-red vegetation index GREEN−RED
GREEN+RED

MNDWI [30] modified normalized difference water index GREEN−B11
GREEN+B11

NDBI [31] normalized difference built-up index B11−NIR
B11+NIR

NDVI [32] normalized difference vegetation index NIR−RED
NIR+RED

NMDI [33] normalized multi-band drought index NIR−(B11−B12)
NIR+(B11−B12

SMMI [34] soil moisture monitoring index
√

NIR+B11
2

2.2.2. Pixel-Wise Temporal Analysis

Performing a harmonic analysis of satellite data can help in restoring missing data
values in a time series, but it can also be used to observe phenology cycles. Extracting the
phenology is useful for classifying vegetative land cover classes [8] and distinguishing
vegetation with large intra-annual NDVI variations from urban classes with low intra-
annual variation [7].

The intra-annual trend of the spectral indices can be approximated using a harmonic
function:

NDVIt = β0 + β1t + β2 cos (2πωt) + β3 sin (2πωt) (1)
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where t is the time in decimal years, ω is the phase (t0 to the first peak) and the β′s are
the parameters.

We model the intra-annual trend of five spectral indices (BSI, GVRI, NDBI, NDVI,
NMDI) for each pixel in the input image according to the harmonic function. We choose
these indices as this subset will be sufficient to identify the classes of the dataset. An ex-
ample of the fitted harmonic is shown in Figure 4. From the fitted curve, we extract five
metrics: maximum, standard deviation, phase, amplitude and mean value. The phase ω
represents the time of year when a vegetation cover matures. The amplitude shows the
intra-annual variation. Using phase, amplitude and the mean value, we can construct an
HSV image such as Figure 5.

Figure 4. The fitted harmonic trend of NDVI at four different locations. Land cover classes can
be distinguished based on the fitted curves. To include this information in the image composite,
the maximum value, standard deviation, phase, amplitude and mean value of each curve are added
as bands.

Figure 5. The HSV image shows the phase (HUE), amplitude (SAT) and mean (VAL) of the NDVI
index in a region at the coast of Nice. The color indicates at what time of year a crop matures.
The saturation shows how much intra-annual variation is observed. Black areas have a low mean
value and thus no variation is present.

2.3. Random Forest Classifier

The Random Forest (RF) classifier is a machine learning method often used in LULC
classification. The benefit of RF is that it is insensitive to overfitting, it is fast to train
compared to convolutional neural networks and no normalization of the input data is
required [18,22]. Furthermore, the feature importance can easily be determined. The deci-
sions made in the trees can be inspected to help determine which features are most decisive
for determining the land cover class.
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Regarding the dataset used in this study, RF is especially suitable. The used dataset
only contains few labeled samples. In this study, we used 333 tiles out of which we extracted
500 training points per class (500× 10 = 5000 labeled points). In addition, the provided
labels cover challenging classes which results in mislabeled points. Deep learning networks
are sensitive to the amount of training data and noisy data. RF will outperform deep
learning networks in such cases [22,35]. Given the nature of the data, we choose to train an
RF classifier even though the data fusion contest was designed for a deep learning network
using semi-supervised learning.

RF is comparable to a Support Vector Machine (SVM). However, Lawrence and Moran [36]
found in their classification accuracy comparison tests that RF outperforms SVM: out of
30 datasets, RF was found to be the highest performing classifier. In our initial tests, we
found that RF outperformed SVM but only marginally.

Dieu et al. [22] perform hyperparameter tuning to reduce the overfitting of the Ran-
dom Forest classifier. Because the Random Forest classifier is prone to overfit on a high-
dimensional dataset, they limit the number of trees and number of variables in each tree.
This reduces the correlation between each tree and guarantees the importance of the vari-
ables used in the tree. We choose to limit the number of trees to 25 as increasing it does not
improve the performance of the model.

2.4. GEOBIA: Geographic Object-Based Image Analysis

Geographic Object-Based Image Analysis (GEOBIA) is an object-oriented approach
to classify pixels in an image. The goal is to extract meaningful objects out of the image
and classify these objects as a whole regarding their spectral information as well as their
texture. The mean of the individual pixels in the segments is considered as input.

2.4.1. SNIC

To extract the objects, we use Simple Non-Iterative Clustering (SNIC), an unsupervised
clustering algorithm that groups neighboring pixels into segments [37]. We perform SNIC
using a built-in function in GEE with a compactness of 0 to not limit the shape of the
clusters, a connectivity of 8 to include all directions and a neighborhood size of 256 (all
following the example from Tassi and Vizzari [24]). For the seeds we use a grid of 10 pixels.
As input bands for the clustering, we use all available bands from the composite. Then,
to test if clustering improves solely relying on the VHR imagery, we also perform SNIC on
only the VHR RGB bands.

2.4.2. GLCM

As a texture index, we use the seven most relevant GLCM metrics extracted from
a grey-scale image according to Tassi and Vizzari [24], namely angular second moment,
contrast, correlation, entropy, variance, inverse difference moment and sum average. We
used the built-in GEE GLCM function with a size of 2 and the default value for kernel
(null) and averaging set to True. For each object patch, the mean of the GLCM metric is
retained. The value of each GLCM metric is added to the image composite as a new band.
The grey scale image is calculated using two formulas. When using the VHR RGB image,
the one-band grey-scale image for the GLCM is generated using the blue, red and green
band of the VHR image:

grey = 0.11B + 0.3R + 0.59G (2)

When extracting textures from the S2 imagery, the following combination of bands is used
to create the grey-scale input image:

grey = 0.11G + 0.3NIR + 0.59R (3)

3. Results

In this section, we present and discuss the results of our tests. We focus on several
research questions which are elaborated in the following subsections. Figure 6 displays
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some results of the predictions made by the trained Random Forest models. The image
shows results for two areas. The left column shows the generated clusters using only the
Sentinel-2 bands, the VHR aerial image of that same area and the ground truth labels.
The next three columns represent the predictions by the model trained on S2 (Sentinel-2
bands), S2i (Sentinel-2 bands and spectral indices) and S2+ (Sentinel-2 bands, spectral
indices and their temporal analysis), both with and without VHR aerial image input bands
and with adding both the VHR input bands and the GLCM texture metrics. From the visual
results, it is clear that when SNIC is performed on the VHR aerial image bands, the clusters
are more refined resulting in a finer prediction. Furthermore, the class predictions differ
when adding the VHR aerial image and the GLCM texture metrics. However, the most
noticeable difference is in the ground truth labels, which are very smooth and cover large
areas with the same class. Fine roads, which cannot be observed in the Sentinel-2 images or
SNIC clusters, are also present.

3.1. Improvements Adding the Temporal Analysis

In Table 2 we see that the overall accuracy (OA) of three tests in which the input data
are expanded each time, increases with more input bands. Test one (S2) uses the 13 S2
bands as input to the RF classification model and results in an OA of 0.6262. When adding
the 8 spectral indices, the OA increases with +0.0470 points. Test S2+ contains the max,
standard deviation values and the temporal analysis (phase and amplitude) of 5 spectral
indices as well, which improves the OA by the maximum value of +0.0558 compared to the
previously mentioned test.

Table 2. The overall accuracy (OA) & improvement of the object-based image analysis (GEOBIA)
using various input layers.

Input Data OA OA Improvement

S2 0.6262
S2i (S2 + indices) 0.6732 +0.0470
S2+ (S2i + temporal analysis) 0.7290 +0.0558

3.2. Improvements Adding One VHR Image

Adding one VHR image can improve the OA as shown in Table 3. This effect is most
noticeable when only the raw S2 bands are used. The clustering is then best performed
on the VHR bands only. When including the spectral indices (S2i), the clustering is best
performed on all input bands, i.e., the S2 bands, spectral indices and VHR bands. When
including the temporal analysis of the spectral indices (S2+), adding the VHR image does
not improve the OA noticeably. On the contrary, the OA decreases for S2+ and VHR input
data when clustering only on the VHR bands. In Figure 7, the predictions of three tests are
shown: (a) S2 without VHR, (b) S2 with VHR (clustering on the VHR input bands) (c) and
S2+ with VHR (clustering on S2+ and VHR bands). Using the VHR input bands to form
the clusters, visually refines the clusters. The usage of the SNIC algorithm for clustering on
the VHR image can be questioned. It can be argued that this algorithm is not designed to
be applied to remote sensing imagery and, therefore, the generated clusters are not optimal.
Modern clustering techniques employ deep learning techniques to leverage deep visual
features as in [38]. These techniques employ transfer-learned networks that are trained to
interpret satellite imagery.
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+VHR +VHR +GLCM

S2

S2 SNIC clusters

S2i

VHR aerial image

S2+

Ground truth

+VHR +VHR +GLCM

S2

S2 SNIC clusters

S2i

VHR aerial image

S2+

Ground truth

Figure 6. The resulting LULC Random Forest prediction for two VHR aerial images using Sentinel-2
input data (S2), spectral indices (S2i) and the temporal analysis (S2+). In the third column, the VHR
orthoimage is added. In the last column, the GLCM features are added. For the legend, we refer to
Figure 2.
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Table 3. The overall accuracy (OA) improvement adding one VHR image with clustering based on
the Sentinel-2 and VHR bands or only on the VHR bands.

Input Data Base OA Improvement With VHR Clustering on

S2 0.6262 +0.0443 0.6705 S2 and VHR bands
+0.0934 0.7196 VHR bands

S2i 0.6732 +0.0284 0.7016 S2i and VHR bands
(S2 + indices) +0.0103 0.6835 VHR bands

S2+ 0.7290 +0.0140 0.7430 S2+ and VHR bands
(S2i + temporal analysis) −0.0127 0.7163 VHR bands

(a) (b)

(c)

Figure 7. The predictions are influenced by the clustering. (a) Clustering on S2 data, prediction on S2.
(b) Clustering on VHR, prediction on S2 and VHR. (c) Clustering on S2+ and VHR, prediction on S2+
and VHR.

3.3. Improvements Adding the GLCM

The overall accuracy (OA) of the results with the VHR image and the GLCM is shown
in Table 4. The GLCM is based on the VHR bands when available in the input data.
The table compares the OA to the base OA. Adding the VHR leads to a bigger increase of
OA than the GLCM. The largest OA is achieved with the S2+ input data with the VHR
image. Adding the GLCM does not increase the OA noticeably. In contrast, the VHR image
bands or the combination of VHR and GLCM increase the OA by as much as 0.0536. Both
Trias-Sanz et al. [21] and Okubo et al. [20] also found that the GLCM did not improve the
GEOBIA LULC classification in very high resolution imagery (aerial and QuickBird). Since
adding the GLCM to the S2 data has a bigger contribution than when added to the S2i and
S2+ data, we can derive that the indices are enough to classify land use at the object level.
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Table 4. The overall accuracy (OA) improvement adding the GLCM with clustering based on various
input bands.

Input Data Base OA Improvement OA With Clustering on

S2 0.6262 +0.0443 0.6705 VHR S2 and VHR bands
+0.0328 0.6590 GLCM S2 bands
+0.0414 0.6676 VHR & GLCM S2 and VHR bands

S2i 0.6732 +0.0284 0.7016 VHR S2i and VHR bands
(S2 + indices) +0.0066 0.6798 GLCM S2i bands

+0.0536 0.7268 VHR & GLCM S2i and VHR bands

S2+ 0.7290 +0.0140 0.7430 VHR S2+ and VHR bands
(S2i + temporal analysis) +0.0032 0.7322 GLCM S2+ bands

+0.0076 0.7366 VHR & GLCM S2+ and VHR bands

3.4. The Relative Importance Histogram

The highest overall accuracy of 0.7430 is achieved using GEOBIA on S2 data, indices
and temporal analysis (S2+) input data with VHR image. The relative importance histogram
of the RF model is shown in Figure 8. The higher the bands appear in the trees, the higher
their importance. The exact importance measure is determined using the Gini-index.
The three VHR bands on the right side in the graph show high relevance to the class
prediction, with the blue band b3_B being the most important. Most of the temporal
analysis bands show higher relevance than the original S2 bands. Looking at the indices,
the GRVI amplitude (AMP_GRVI) is the most important, followed by the NMDI phase
(PHASE_NMDI) and the NMDI mean (NMDI). The Sentinel-2 blue band B2 has one of
the lowest relative importances likely due to the fact that this information is duplicated
in the VHR blue band. The bare soil index bands BSI_MAX, BSI_STD and BSI have very
low relative importance. However, the phase and amplitude have high relative importance.
These last two represent the time of year an area achieves its highest BSI value and the
amount of annual variation in BSI.

Overall, the indices are more important than the raw S2 bands because an index
contains more information than a single input band. However, it cannot be concluded that
the bands with lower relevance are completely irrelevant because they might contain the
same information as another more relevant band or combination of bands in the graph.
Performing principal components analysis as described in [24,39] can help in reducing the
number of bands by merging those that have equal deterministic properties.

When selecting the 20 most relevant bands (out of 57 for S2+ with VHR and GLCM) and
retraining the classifier on these, the OA only drops by 0.01 point. It can thus be concluded
that certain bands contain irrelevant or correlated information to the LULC classes.

Figure 8. The relative importance histogram of S2+ with VHR image bands. The 12 S2 bands are
shown on the left. The middle section shows the spectral indices and their temporal analysis bands.
The VHR bands are on the outer right. In general, the VHR bands have a high relevance meaning
that they have the highest Gini-index in the random forest.
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3.5. Confusion Matrix

There are approximately 100 validation samples per LULC class. The confusion matrix
(CM) for S2+ with VHR image bands is shown in Figure 9. Class 9 is absent in the study
area. The CM shows confusion between classes 1 and 2 and classes 5, 6 and 7. Class
1 represents urban areas and class 2 contains artificial non-agricultural vegetated areas,
i.e., parks in urban areas. Due to the difficulty of labeling these classes, the confusion
is understandable. Class 5 are pastures, class 6 are forests and class 7 are herbaceous
vegetation associations. The intersection over union (IoU) of class 7 is 0.3817. Poor labeling
as shown in Figure 2 is to blame for these class confusions.

Figure 9. The confusion matrix of S2+ with VHR image bands.

4. Discussion

The accurate mapping of LULC faces a range of challenges. The class confusion and
unclear boundaries in combination with low resolution satellite imagery make it hard to
train a general model. Moreover, the available data sources for LULC mapping are diverse,
including the temporal aspect which adds complexity and depth to the input data layers.
To interpret and limit the various layers of satellite imagery, it is necessary to investigate
which parameters are most meaningful for the classification task. To this end, this study
integrates two data sources for LULC mapping: multi-temporal and multi-spectral Sentinel-
2 data and very high resolution optical imagery. We examine the relevance of different
layers for accurate classification using a GEOBIA approach with an unsupervised clustering
method following [24]. While Tassi and Vizarri’s work reaches similar conclusions, their
study uses only satellite imagery without temporal analysis of indices and is limited to six
LULC classes. Furthermore, the labels in their study are generated manually, which could
explain the higher accuracy.

Our results show that a Random Forest classifier, combined with the multi-temporal
and multi-spectral aspect of Sentinel-2 data, can achieve high accuracy with the MiniFrance
dataset. Compared to the supervised and semi-supervised deep learning models used
in [25] on the same dataset, our method outperforms with an overall accuracy of 74.30%.
The authors of MiniFrance obtained lower overall accuracy of 46.30% and 47.90% for
supervised and semi-supervised convolutional neural networks (CNNs), respectively,
despite using more training data than we did. The superior performance of our method can
be attributed to the use of very high resolution optical imagery to generate object clusters
and the incorporation of temporal analysis to identify the phenology of the vegetation.

CNNs have gained popularity in LULC classification research. However, boundary de-
tection is a significant challenge for CNNs. To overcome this, the authors of [40] employed
a boundary detection network to fuse the results with the semantic segmentation by a CNN.
In a similar manner, our method utilizes clustering to group pixels into objects, which are
then used in the classification. Another study compared the performance of a CNN to
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traditional machine learning models such as Random Forest and super vector machine
and found that that the CNN outperformed the machine learning models, especially in
identifying coastal regions [41]. However, this approach required manually labeled data
and was limited to only five classes, highlighting the need for high-quality data with
accurate labeling for effective implementation of CNNs in LULC classification.

Overall, our study suggests that the choice of classification method depends on the
availability and quality of the training data. While deep learning CNNs have shown high
accuracy in LULC classification, they require large amounts of high-quality labeled data.
In cases where training data is limited or unreliable, a Random Forest classifier can still
provide a viable alternative with comparable accuracy. This is exemplified by our results,
which show that our approach outperforms the deep learning CNN trained on the same
dataset [25]. In fact, the authors of [42] mention the MiniFrance dataset, but choose to
create a new dataset employing second-level CORINE (Coordination of information on the
environment) classes as labels.

5. Conclusions

In this study, we investigate the effectiveness of a Random Forest classifier for land
use/land cover mapping in Nice, France. Our method utilizes multi-temporal Sentinel-2
data and a single VHR optical aerial image to improve object recognition in a geographic
object-based image analysis (GEOBIA) framework. Specifically, we employ unsupervised
clustering with SNIC to generate objects and create eight spectral indices from the Sentinel-
2 data. Additionally, we perform a pixel-wise harmonic analysis on the multi-temporal
layers of Sentinel-2 data to extract phenological characteristics of the vegetation.

Despite the challenges posed by the dataset, we were able to achieve an overall
accuracy of 74.30% by combining the indices and their temporal analysis with the RGB
bands of a VHR image. The accuracy of the classification increases from 62.62% when
using only the Sentinel-2 bands, to 67.05% upon adding one VHR image. Our analysis
reveals that the GLCM texture features do not have a significant impact on the predictions
and the VHR image has a greater impact than the GLCM. Notably, the impact of the VHR
image is more pronounced when the temporal analysis features and spectral indices are
not used. We identify class confusions through the confusion matrix. Moreover, the relative
importance histogram indicates that the VHR image bands play a crucial role in accurately
predicting the LULC class, highlighting the importance of integrating VHR imagery into
the classification process.

Future prospects include the improvement of the generated objects. While we used
SNIC clustering in our study, the recently released Segment Anything Model (SAM) [43]
generates meaningful objects that can be more accurately classified via machine learning
models or even deep learning CNNs. Another promising research area is the integration
of GEOBIA methods with deep learning CNNs. By combining the strengths of these two
techniques, we may be able to improve our LULC classification accuracy even further.
In addition, we can use the relative importance histogram from our study to select the
most relevant input layers for training the CNN, which could result in a more efficient and
accurate classification process.

Although we have shown the added accuracy resulting from employing various input
sources, especially the spectral indices and their temporal analysis, the biggest limitation is
by far the used dataset, which also allowed for another aspect of the research, i.e., how to
deal with poor data.

Author Contributions: Conceptualization, S.C. and A.N.; methodology, S.C. and A.N.; software, S.C.
and A.N.; validation, S.C.; formal analysis, S.C.; investigation, S.C. and A.N.; resources, S.C. and
A.N.; data curation, S.C. and A.N.; writing—original draft preparation, S.C.; writing—review and
editing, S.C., A.N. and M.V.; visualization, S.C.; supervision, A.N. and M.V.; project administration,
M.V.; funding acquisition, S.C. and M.V. All authors have read and agreed to the published version
of the manuscript.



Remote Sens. 2023, 15, 2501 15 of 16

Funding: This research was funded by the FWO research foundation grant number 1S11218N and
the Geomatics Section of the Department of Civil Engineering of KU Leuven in Belgium.

Data Availability Statement: Code is available at https://github.com/SuzannaLin/GEE_LULC
(accessed on 7 April 2023).

Acknowledgments: The authors would like to thank the IEEE GRSS Image Analysis and Data Fusion
Technical Committee, Université Bretagne-Sud, ONERA and ESA Φ-lab for organizing the Data
Fusion Contest.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vermeiren, K.; Crols, T.; Uljee, I.; Nocker, L.D.; Beckx, C.; Pisman, A.; Broekx, S.; Poelmans, L. Modelling urban sprawl and

assessing its costs in the planning process: A case study in Flanders, Belgium. Land Use Policy 2022, 113, 105902. [CrossRef]
2. Clerici, N.; Calderón, C.A.V.; Posada, J.M. Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the

lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [CrossRef]
3. Luca, G.D.; Silva, J.M.N.; Fazio, S.D.; Modica, G. Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine

learning algorithms for land cover mapping in a Mediterranean region. Eur. J. Remote Sens. 2022, 55, 52–70. [CrossRef]
4. Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using

Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [CrossRef]
5. Erasmi, S.; Twele, A. Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—A case

study from Central Sulawesi, Indonesia. Int. J. Remote Sens. 2009, 30, 2465–2478. [CrossRef]
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