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Abstract: Intensified complementary metal-oxide semiconductor (ICMOS) sensors can capture images
under extremely low-light conditions (≤0.01 lux illumination), but the results exhibit spatially
clustered noise that seriously damages the structural information. Existing image-denoising methods
mainly focus on simulated noise and real noise from normal CMOS sensors, which can easily mistake
the ICMOS noise for the latent image texture. To solve this problem, we propose a low-light cross-scale
transformer (LL-CSFormer) that adopts multi-scale and multi-range learning to better distinguish
between the noise and signal in ICMOS sensing images. For multi-scale aspects, the proposed LL-
CSFormer designs parallel multi-scale streams and ensures information exchange across different
scales to maintain high-resolution spatial information and low-resolution contextual information. For
multi-range learning, the network contains both convolutions and transformer blocks, which are able
to extract noise-wise local features and signal-wise global features. To enable this, we establish a novel
ICMOS image dataset of still noisy bursts under different illumination levels. We also designed a two-
stream noise-to-noise training strategy for interactive learning and data augmentation. Experiments
were conducted on our proposed ICMOS image dataset, and the results demonstrate that our method
is able to effectively remove ICMOS image noise compared with other image-denoising methods
using objective and subjective metrics.

Keywords: low light; intensified CMOS image; image denoising; cross-scale transformer; two-stream
noise-to-noise

1. Introduction

Night vision technology uses optoelectronics to capture images under low light con-
ditions. Owing to the limitation of the human eye, people cannot accurately identify the
detailed features of objects under extremely low illumination. Intensified charge-coupled
devices (ICCDs) and intensified complementary metal-oxide semiconductor (ICMOS) de-
vices combine a CCD or CMOS sensor with an image intensifier tube. They can acquire
images under extremely low-light conditions, requiring less power than other types of night
vision devices, and they are relatively inexpensive.

The primary drawback of ICMOS devices is that the image intensifier amplifies the
intensity of noise while enhancing the signal, resulting in obvious scintillation noise in the
acquired image. Owing to the crosstalk effect of microchannel plates, ICMOS image noise is
not independent and identically distributed (IID), but spatially clustered noise [1,2], which
is more complex than that of normal CMOS images. This kind of noise seriously destroys
the original structural features of the image and greatly increases the difficulty of image
denoising and noise modeling.

Many approaches have been proposed for image denoising. Existing denoising meth-
ods can be categorized into spatial-domain, transform-domain, sparse-representation, and
deep learning-based methods. Spatial-domain methods are mainly aimed at the indepen-
dent and identical distribution of natural image noise. They adopt filters to remove noise,
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such as mean filtering, bilateral filtering [3], or non-local means (NLM) [4]. However, these
methods are not suitable for spatially clustered noise in ICMOS images. Transform-domain
methods firstly apply a specific transformation to the noisy image, and then process the
transform coefficients according to the difference between noise and signal in the transform
domain. Examples of transform-domain methods include the Fourier transform, wavelet
transform [5], and block-matching and 3D filtering (BM3D) [6]. These methods usually con-
sider noise as high-frequency components and image signals as low-frequency components.
However, spatially clustered noise includes both low- and high-frequency components, so it
is difficult for transform-domain methods to process ICMOS images. Sparse representation
methods sparsely represent a noisy image through an overcomplete atomic library, sepa-
rating the image from the noise by sparsity using techniques such as principal component
analysis (PCA) [7], learned simultaneous sparse coding (LSSC) [8], multi-scale weighted
group sparse coding model (MS-WGSC) [9] or latent low-rank representation (LatLRR) [10].
However, these methods are computationally expensive and inefficient for denoising low-
light grayscale images.

Deep learning methods separate noise and image signals by learning the distribution
characteristics of noise from a large number of noisy data samples. These methods have
been widely used for image denoising in recent years [11–17]. Many studies demonstrate
that learning-based methods outperform traditional methods for image denoising, espe-
cially for real image noise from different imaging devices. DnCNN [11] proposed a residual
end-to-end denoising network for additive Gaussian noise. CBDnet [12] designed a convolu-
tional blind denoising network for real photographs. VDN [13] integrated image denoising
into a Bayesian framework to remove non-IID noise in real scenarios. DANet [14] could
simultaneously deal with both the noise removal and noise generation tasks. GR2R [16]
could obtain the noise model through a residual image and a random mask. DeamNet [17]
incorporated adaptive consistency into the network design. However, to the best of our
knowledge, no learning-based denoising method has been reported for ICMOS sensing
images, and existing deep learning-based denoising methods only consider independent
and identically distributed image noise.

Recently, transformer and its variants have made significant breakthroughs in com-
puter vision tasks [18–21], demonstrating their ability to model global and long-range
dependencies more powerfully than CNNs. Consequently, transformers have also been
used for image restoration. For instance, Uformer [22] introduced a novel locally-enhanced
window (LeWin) transformer block for window-based self-attention. SwinIR [23] was the
first to employ the Swin transformer for image restoration. Restormer [24] proposed several
key designs in the building blocks to capture long-range pixel interactions. However, these
methods are somewhat weak in obtaining local information. Figure 1 shows an example of
comparison with different methods.

To achieve ICMOS image denoising, we propose a novel image denoiser called a low-
light cross-scale transformer (LL-CSFormer). Due to the introduction of the microchannel
plate, the noise from ICMOS images tends to be spatially clustered and unevenly scaled,
which is different from the independent identically distributed (IID) noise in simulated
images and real images from normal CMOS sensors. General image-denoising methods do
not work well on ICMOS images, because the random scale and pattern of the clustered
noise may be mistaken as the true image structure with these methods. To this end, we
propose a novel cross-scale transformer network that effectively separates noise and signal
through multi-scale and multi-range learning. Firstly, unlike existing deep learning-based
methods with only a full-resolution pipeline or progressively low-resolution pipeline, we
designed a cross-scale structure to maintain the high-resolution spatial representation and
ensure rich semantic information from low-resolution representation. On the one hand,
the multi-scale features here can help to extract unevenly scaled noise in ICMOS sensing
images, and on the other hand, they can help to discover the latent texture in the image
by rich semantic information. Secondly, the proposed network introduces multi-range
learning, combining the core mechanisms of short-range model convolution and long-
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range model transformer. This combination enables the network to extract both noise-wise
local features and signal-wise global features in ICMOS sensing images. Additionally,
we established an ICMOS image dataset of still noisy bursts by obtaining images from a
direct-coupled camera under different illumination levels and scenes. To enable the training
pipeline, we designed a two-stream noise-to-noise strategy that inputs noisy image pairs of
the same scene for interactive learning and data augmentation.

Figure 1. An example of an ICMOS noisy image. Compared with other image-denoising methods,
our LL-CSFormer performs the best.

Our contributions can be summarized as follows:

• We propose an image denoiser for ICMOS sensing images called a low-light cross-scale
transformer (LL-CSFormer).

• Considering the spatially clustered noise from ICMOS sensing images, we designed
a cross-scale transformer network to effectively separate the signal and noise by
multi-scale and multi-range learning.

• We established a novel ICMOS image dataset of still noisy bursts under different
illumination levels and scenes.

• Extensive experiments conducted on our proposed dataset demonstrate that our
method outperforms existing state-of-the-art image-denoising methods for ICMOS
sensing image denoising.

The remainder of this paper is organized as follows. In Section 2, we introduce the
principle of intensified CMOS imaging system. The pipeline and details of our proposed
method are given in Section 3. In Section 4, we provide the experimental results and
analysis. We further discuss the results and findings in Section 5. Finally, the conclusions
are presented in Section 6.

2. Intensified CMOS Imaging System

ICMOS is a night vision device composed of an intensifier coupled with a CMOS
sensor. Figure 2 shows an example of an image intensifier and a directly-coupled ICMOS
camera. This device integrates the high sensitivity of night vision direct-view imaging
devices and the camera function of TV imaging devices. The principle of ICMOS imaging
is more complicated than normal CMOS imaging. As shown in Figure 3, the intensifier
consists of three parts: a photocathode, a microchannel plate, and a phosphor screen.
Photons enter the lens, and the weak light signal is converted into an electronic image after
photoelectric conversion by the photocathode. The generated electrons are then injected
into the microchannel plate to obtain energy multiplication. The electrons are projected onto
the fluorescent phosphor screen and converted into an optical image, and finally, the CMOS
sensor captures the light signal from the phosphor screen to generate the final image.

Owing to the complexity of the ICMOS structure, the ICMOS noise model is different
from that of natural images, and includes components from four sources: the photocathode,
MCP, phosphor screen, and CMOS sensor. In general, due to the crosstalk effect caused by a
microchannel plate, ICMOS image noise has two main characteristics. (1) The ICMOS noise
is not independent and identically distributed (IID) but spatially clustered; (2) The ICMOS
noise exhibits a randomly clustered pattern, which varies widely in scale [1]. This kind
of noise greatly destroys the structural information of the latent image and even causes
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a lot of unreasonable textures. Moreover, ICMOS noise is unevenly distributed in the
temporal dimension and has strong randomness, which manifests as serious scintillation
noise. As shown in Figure 4, we make a comparison of ICMOS image noise under 10−3 lx
and Gaussian noise with σ = 55. The two images have the same background and the
ICMOS image comes from the proposed dataset. It can be seen that the ICMOS image
contains unexpected image textures and the scales appear random, while original structure
information can still be seen in the image polluted by Gaussian noise. In this paper, we
mainly focus on the spatially clustered noise from ICMOS images.

Figure 2. An example of an ICMOS camera.

Figure 3. ICMOS imaging pipeline.

Figure 4. Comparison of ICMOS image noise and Gaussian noise at similar amplification.

3. Proposed Method

In this section, we provide the details of our proposed low-light cross-scale transformer
(LL-CSFormer) for ICMOS image denoising.
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3.1. Low Light Cross-Scale Transformer

Due to the introduction of the microchannel plate, the noise in ICMOS images tends to
be spatially clustered and unevenly scaled. To remove the complex noise and recover the
latent texture in ICMOS sensing images, our network combines two core components: (1)
multi-scale learning, which uses a cross-scale structure to extract multi-scale image features
and ensure information interaction between different scales; (2) multi-range learning: a
combination of short-range dependency convolution and long-range dependency trans-
former to extract local noise features and global signal features. Vision science has found
that the local neuronal receptive fields of the human eye are of different sizes, demonstrat-
ing the importance of multi-scale information in neural networks. The cross-scale structure
not only employs parallel multi-scale streams for fine-to-coarse and coarse-to-fine feature
representations, but also allows for efficient extraction of multi-scale image features while
ensuring the interaction of high- and low-resolution information at each step. In each
scale, we designed a novel hybrid transformer module (HTM) as our sub-module, which
combines the core mechanisms of convolution and transformer to capture both local and
global image features. In ICMOS images, local image features mainly represent noise, while
global image features mainly represent the signal. Hence, the proposed model effectively
separates the signal and noise in ICMOS sensing images.

The entire network structure is illustrated in Figure 5. We denote a noisy ICMOS input
image as y. Firstly, the input y is encoded by a head module, which converts the input
image from 3 channels to a 32-dimensional feature map through 2 convolutional layers and
a PReLU activation function.

Figure 5. Cross-scale transformer structure.

In order to introduce multi-scale features, we employ the up- and downsampling
operators to change the resolution of image features yhead, where we use a convolutional
layer with a stride size of two for downsampling and a bilinear interpolation operator
for upsampling. As shown in Figure 5, the three streams receive yhead of different scales
directly as input. We consider the three adjacent HTMs at different scales as one cross-scale
step. After each step, three new results of different scales will be outputted, which will be
transformed to the other two streams separately by up- or downsampling operators and
added to the other two transformed results as the new input to the next step. Each HTM
consists of a convolutional attention block (CAB) for local feature extraction and a Swin
transformer layer (STL) for global feature extraction.

After obtaining the results of the multi-scale streams y1, y2, y3, we concatenate them
and pass through a convolution module, which is the same as the head module to achieve
the final denoised image.

Hybrid Transformer Module (HTM)

The hybrid transformer module’s core is multi-range learning, which considers both
local image details and global contextual information for ICMOS image denoising. Each
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HTM contains a CAB and an STL. The CAB is a CNN-based module in our network, and
its schematic is shown in Figure 6. It extracts local image features through short-range
dependency convolutional streams. Motivated by modern low-level vision tasks [25–27],
we add spatial and channel attention modules based on the Res-block [28]. The attention
modules share information within a feature tensor in terms of both spatial and channel
dimensions, allowing the CAB to extract informative local features while suppressing re-
dundant ones. The spatial/channel attention module generates a spatial/channel attention
map by averaging and globally pooling to rescale the input feature map.

Figure 6. The structure of the convolutional attention block (CAB).

As mentioned earlier, capturing long-range dependencies and global image priors
are important for image denoising. To achieve this, we adopt the Swin transformer layer
(STL) [23] to extract global image features. The structure of the STL is illustrated in Figure 7.
The STL is the improved version of classic multi-head self-attention [18]. The core of STL
is the shifted window attention, which shows great promise for vision tasks. First, the
input feature map xin ∈ RH×W×C will be reshaped to a new tensor of size HW

M2 ×M2 × C
by partitioning it into non-overlapping local windows of size M×M. We set M = 8 in
our model. Then, the self-attention mechanism is computed in each window. For each
window feature xi ∈ RM2×C, i = 1, . . . , N, the feature query Qi, key Ki, and value Vi can be
formulated as

Qi = xiFQ, Ki = xiFK, Vi = xiFV (1)

where FQ, FK, FV ∈ RC×d are projection matrices for all of the local windows. Then, the
classic self-attention matrix is calculated by

SA(Qi, Ki, Vi) = so f tmax(
Qi · KT

i√
d

+ B) ·Vi (2)

Here, B is a learnable parameter for position coding and d is the dimension of the key
feature. Abiding by the multi-head self-attention mechanism, we apply self-attention h
times in parallel for various attention distributions. Here, we set h = 3 in our work. Finally,
a feedforward network (FFN) consisting of two fully connected layers and Gaussian error
linear units (GELU) is employed for feature extraction. Layer normalization (LN) and
residual skipping connections are performed before both MSA and FFN.

Zi = WMSA(LN(Qi, Ki, Vi)) + xi

Zi = FFN(LN(Zi)) + Zi
(3)

The window multi-head self-attention mechanism only applies self-attention within
each window, which neglects cross-window information. To address this limitation, we
introduce a shifted window multi-head self-attention module (SWMSA) by shifting the
window location by (

[
M
2

]
,
[

M
2

]
) pixels during the partitioning process. This mechanism

promotes information interaction between different windows by shifting their positions.
Similar to WMSA, SWMSA can be formulated as

Zi = SWMSA(LN(QZ
i , KZ

i , VZ
i )) + Zi

Zi = FFN(LN(Zi)) + Zi
(4)
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Furthermore, the receptive field of the self-attention mechanism in STL is limited in
the two fixed windows by window shifting. Through multi-scale learning, the scale of the
receptive field will be extended.

Figure 7. The structure of the Swin transformer layer.

3.2. Two-Stream Noise-to-Noise Training Strategy

In general, acquiring pairs of noisy and clean images as data samples is necessary
when training image denoising neural networks. However, obtaining high-quality noise-
free ground truth images can be difficult for special imaging devices. In this study, we
propose a novel two-stream noise-to-noise training strategy to address this problem, which
is a variant of the noise-to-noise pipeline. The noise-to-noise pipeline attempts to relax the
requirement of supervised mechanisms from noisy/clean pairs to noisy/noisy pairs, and
performs almost as well as a noise-to-clean pipeline [29]. The theoretical premise behind
this approach is that the noise is zero-mean and the noise from ICMOS images meets this
requirement based on frame integral experiments. In this method, pairs of samples in the
training dataset are all noisy images of the same scene, the two images can be formulated as

{
y = x + n
y′ = x + n′

(5)

where n and n′ are different ICMOS image noises, and x is the latent clean image. Then,
the noise-to-clean pipeline trains the network by minimizing the empirical risk:

argmin ∑
i

{
‖F(yi)− xi‖2

2

}
(6)

where F() denotes the denoising network. The noise-to-noise pipeline proves that the clean
data x used as training targets can be replaced with noisy images y′ without changing what
the network learns, which can be formulated as

argmin ∑
i

{∥∥F(yi)− y′i
∥∥2

2

}
(7)

Then, we have

argmin ∑
i

{∥∥F(yi)− y′i
∥∥2

2

}
=argmin ∑

i

{∥∥F(yi)− xi − n′i
∥∥2

2

}
=argmin ∑

i

{
‖F(yi)− xi‖2

2 − 2(n′i)
>(F(yi)− xi) + (n′i)

>ni

}
=argmin ∑

i

{
‖F(yi)− xi‖2

2

}
− 2argmin ∑

i

{
(n′i)

>F(yi)
}
+ c

(8)
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Since the noise n and n′ are uncorrelated and zero-mean, the second term can be
simplified as argmin ∑i

{
(n′i)

>F(yi)
}
= 0. Then, we can see that the empirical risk of the

noise-to-noise pipeline is equivalent to that of the noise-to-clean pipeline, except for a
constant c.

As shown in Figure 8a, the noise-to-noise training strategy is a special case where
the ground truths for the regression task are noisy images instead of the desired clean
images. In our ICMOS image denoising task, we have a limited dataset of still noisy bursts.
The core of our proposed two-stream training strategy is to use paired noisy samples as
both input and target, leading to interactive learning. In this case, the number of noisy
samples for the denoiser is doubled, allowing for data augmentation. However, overfitting
is a common issue during the noise-to-noise training strategy [30], mainly due to the use
of noisy samples, such as the labels. Given the two images, i.e., y and y′, the overfitting
result is such that F(y) estimates y′ and F(y′) estimates y. Based on the two-stream training
strategy, this problem can be solved by measuring the difference between F(y) and F(y′).
In other words, if the denoiser reaches the best performance, the difference between F(y)
and F(y′) should be minimal, because y and y′ contain the same latent image x.

Figure 8. The pipeline of the noise-to-noise training strategy and two-stream noise-to-noise training
strategy.

Our proposed two-stream noise-to-noise training strategy is illustrated in Figure 8b.
After receiving y and y′ as input, the two-stream multi-scale transformer produces F(y)
and F(y′) as the output, respectively. The two-stream networks share their weights and
parameters during training. Therefore, only one stream network is utilized during testing.
In addition to the losses between F(y) and y′ and between F(y′) and y, we also consider the
loss between F(y) and F(y′) to avoid the overfitting problem, which is called interactive
loss in our model. All of the losses employed in our model are Charbonnier losses [31]. The
total loss is formulated as

L1 =

√
‖y− F(y′)‖2 + ε +

√
‖y′ − F(y)‖2 + ε(ε = 10−6) (9)

Linter =

√
‖F(y)− F(y′)‖2 + ε (10)



Remote Sens. 2023, 15, 2483 9 of 20

Ltotal = λ1L1 + λinterLinter (11)

where λ1 and λinter are the corresponding coefficients. After the experiments, we empiri-
cally set λ1 = 1 and λinter = 0.1 in our model.

4. Experimental Results and Analysis
4.1. ICMOS Noisy Image Dataset

Existing learning-based image-denoising methods have always focused on synthetic
or real data captured by normal CMOS sensors. In this study, we first collect a real ICMOS
image dataset for training. We adopted a directly-coupled ICMOS camera that couples a
25 mm diameter image intensifier to a Canon EOS M3 sensor [32]. This camera is able to
capture videos under 10−3 lx with 1920× 1080 pixels in spatial resolution. We captured
still image bursts directly on the camera display at 30 fps. Our dataset is divided into two
parts, i.e., indoor scenes and outdoor scenes. The indoor data collection experiment was
carried out in a dark room. We used an integrating sphere to control scene illumination, and
an illuminometer was used to measure the illuminance of the low-light scene accurately.
Figure 9 shows the indoor experiment scene. The outdoor data were collected in the urban
night environment, and we also used the illuminometer to measure the illuminance of the
target scene. The setting of our dataset is shown in Table 1.

Figure 9. The indoor data collection experiment scene.

To enable the two-stream noise-to-noise training strategy, we need to capture a large
number of image bursts, and all the scenes in our dataset must be static. To better compare
the performance of our method, we applied the frame integral algorithm to these images to
obtain relatively clean results for each scene sequence. Examples of noisy images and corre-
sponding clean images from the indoor part are shown in Figure 10. We captured images
under two illumination levels, namely 1× 10−3 lx and 1× 10−2 lx. For each illumination
level, we captured video sequences of 20 static scenes, with each sequence consisting of
1000 frames. These images have the same underlying scene but different noise distributions.
Each video was processed using a frame’s integral algorithm to obtain a corresponding clean
image. Therefore, this indoor dataset contains a total of 20 clean images and 20,000 noisy
images. We randomly selected 5 video sequences as the training set, where 5000 images were
equally divided into 2 parts for input and ground truth to satisfy our noise-to-noise training
strategy. Next, we randomly extracted 5 noisy images from each of the remaining 15 video
sequences as the validation set, which consisted of 75 test images in total. Examples of
noisy images and corresponding clean images from the outdoor part are shown in Figure 11.
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We captured video sequences of 15 different static scenes in the urban night environment.
Similar to the previous indoor scenes, we have a total of 15,000 images and 15 corresponding
clean images. Due to the unevenness of urban night lighting, the illumination range of the
target scene is between 2× 10−2 lx and 1× 10−1 lx. As shown in these figures, the frame
integral images basically exclude noise components, and the detailed information of the
image itself is well preserved, so we will later employ frame integral images as ground truth
images for evaluation.

yclean =
y1 + y2 + · · ·+ yN

N
(12)

where N = 1000 in our experiment.

Table 1. Setting of our ICMOS image dataset.

Dataset Location Illumination Level Total Scenes Total Images

part1 indoor 1× 10−2 lx 20 20,000
1× 10−3 lx 20 20,000

part2 outdoor 2× 10−2 lx–1× 10−1 lx 15 15,000

Figure 10. Examples of noisy images and corresponding clean images from indoor scenes.

Figure 11. Examples of noisy images and corresponding clean images from outdoor scenes.

4.2. Implementation Details

We adopted the Adam optimization method to optimize the parameters, with β1 = 0.9
and β2 = 0.999. The initial value of the learning rate is 2× 10−4, with decay by cosine an-
nealing as training progresses. The images in the dataset have a uniform size of 1920× 1080,
but the images are randomly cropped to 128× 128 when training. We also apply random
rotation and flipping to the image patches for data augmentation. All experiments were
performed using two NVIDIA GeForce RTX 3090 GPUs. To compare the performance
of our method with others, we use the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) for an objective evaluation.
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4.3. Ablation Study

In this section, we describe several ablation experiments conducted to verify the
effectiveness of each component of our model.

4.3.1. The Analysis of Cross-Scale Structure

To verify the effectiveness of the cross-scale structure, we remove the cross-scale
pipeline from the LL-CSFormer. This means that the network is performed in a fixed
resolution, and the three-hybrid transformer module is conducted in the only branch. The
results in Figure 12c show that the denoising performance is very poor without the cross-
scale structure. It also achieves the lowest scores of PSNR and SSIM in Table 2, indicating
that the cross-scale structure is crucial for ICMOS image denoising.

Figure 12. Results of the ablation study.

4.3.2. The Analysis of STL

To test the performance of the STL, we replace all of the STL in the network with CAB.
As can be seen in Figure 12d, the noise is removed relatively well with the CAB, but the
images are oversmoothed and the latent texture details are severely lost. The results in
Figure 12f indicate that STL can help the model recover image texture details by extracting
global features. Table 2 demonstrates that the PSNR increases by an average of 0.46 dB
with the help of STL. So, STL is an essential part in our model.

Table 2. Quantitative results under different configurations (‘CS’ means cross-scale structure, ‘w/o’
means without).

CS STL CAB
PSNR/dB (↑) SSIM (↑)

10−2 lx 10−3 lx 10−2 lx 10−3 lx

w/o CS X X 33.63 33.45 0.8595 0.8880
w/o STL X X 34.13 33.74 0.8857 0.9004
w/o CAB X X 33.95 33.42 0.8810 0.8833

LL-CSFormer X X X 34.50 34.29 0.8904 0.9077

4.3.3. The Analysis of CAB

CAB plays the role of extracting local noise features from images. To verify its effec-
tiveness, we replaced all CAB with STL (similar to before). As can be seen from Figure 12e,
it retains more image details compared to Figure 12d, but it still suffers from noise con-
tamination. Whereas the results in Figure 12f achieve the best denoising effects among all
experiments. After the introduction of CAB, the PSNR rose by an average of 0.71 dB. It is
clear that CAB also significantly improves the performance of the network.
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4.4. Results and Analysis

To verify the performance of our LL-CSFormer, we compare it to several state-of-the-
art image-denoising methods, including NLM [33], BM3D [6], CBDnet [12], VDN [13],
DANet [14], DeamNet [17], and Uformer [22]. For the deep learning-based methods, we
used the publicly available source code provided by the authors and trained them using
our ICMOS noisy dataset. Due to the specificity of the dataset in this paper, we used the
noise-to-noise training strategy for the other methods here.

4.4.1. Visual Comparison

Figures 13–16 show a visual comparison of indoor images of these methods, it is clear
that the ICMOS image noise becomes worse as illumination decreases. We find that NLM is
the least effective among all of the methods, as the results show that NLM can barely remove
the noise from the ICMOS image. BM3D, the best conventional image denoising method,
is able to perform well at 10−2 lx illumination, but cannot work at 10−3 lx illumination.
As shown in Figures 15c and 16c, many unreasonable bright spots and artifacts still exist
in the pictures. CBDnet, VDN, and DeamNet exhibit poor generalization performance
for the spatially clustered noise of ICMOS images, and tend to destroy image edges and
textures during denoising across different illumination levels. These models are unable to
distinguish noise and texture clearly. DANet is able to restore some image textures, but also
introduces artifacts such as striped textures as shown in Figures 13f and 15f. Uformer is able
to remove the noise component, but still damages the image details as shown in Figure 15h,
and produces ripple artifacts as shown in Figures 13h and 14h.

Figures 17 and 18 show the visual comparisons from outdoor images. It can be seen
that NLM, BM3D, and VDN have difficulty completely removing noise from ICMOS images.
The processed images still contain strong noise interference. CBDnet, DANet, and DeamNet
over-smooth the signals in the images, even producing artifacts. As shown in Figure 17d,g,
the striped texture on the building was directly blurred. Although Uformer can restore
image details, it still cannot effectively restore texture details. There is a noticeable ghosting
effect at the wall joint in Figure 18h.

In comparison, our LL-CSFormer exhibits a strong denoising performance for all images,
removing image noise to the maximum extent and simultaneously retaining image details.

4.4.2. Quantitative Comparison

We also compare our method to other state-of-the-art methods in terms of objective
evaluation metrics. Table 3 shows the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) results of each method on the test set. It is worth noting that the overall
indicators of indoor scene images will be higher than outdoor scenes due to the relatively
simple background. Similar to the subjective evaluation, with the traditional methods, NLM
achieved the lowest scores among all the methods in terms of PSNR and SSIM. Due to
the limitations of the model, CBDnet, VDN, and DeamNet also scored poorly in terms of
PSNR and SSIM. Since BM3D performs well at 10−2 lx illumination, the scores are relatively
high. In general, the results demonstrate that our proposed LL-CSFormer outperforms other
methods in all cases. At the same time, we compare the parameters and running times of
different methods in Table 4. The running time experiments were performed by averaging
75 images of size 1920× 1080. For NLM and BM3D, the codes are operated by CPU, while
the deep learning-based methods are operated by GPU. As shown in Table 3, our method
has a minimal number of parameters with only 0.97M. In terms of running time, traditional
methods have huge time costs. Due to the introduction of transformer mechanism, our
method operates slightly slower than CBDnet and VDN.
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Figure 13. Visual comparison results under 10−2 lx; ‘n2n’ means the noise-to-noise training strategy.
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Figure 14. Visual comparison results under 10−2 lx; ‘n2n’ means noise-to-noise training strategy.
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Figure 15. Visual comparison results under 10−3 lx; ‘n2n’ means noise-to-noise training strategy.
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Figure 16. Visual comparison results under 10−3 lx; ‘n2n’ means the noise-to-noise training strategy.
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Figure 17. Visual comparison results from the outdoor scene; ‘n2n’ means noise-to-noise training
strategy.

Figure 18. Visual comparison results from the outdoor scene; ‘n2n’ means the noise-to-noise training
strategy.



Remote Sens. 2023, 15, 2483 18 of 20

Table 3. Objective evaluation of different methods.

Methods
PSNR/dB (↑) SSIM (↑)

10−2 lx 10−3 lx Outdoor 10−2 lx 10−3 lx Outdoor

NLM 30.39 22.62 18.92 0.7753 0.5255 0.5559
BM3D 33.28 31.66 18.00 0.8725 0.8389 0.6947

CBDnet 31.82 31.49 22.03 0.8667 0.8794 0.7564
DANet 32.81 30.88 21.08 0.8407 0.7580 0.6870
VDN 31.23 31.38 19.12 0.8241 0.8479 0.5341

DeamNet 32.34 32.85 22.04 0.8745 0.8937 0.7595
Uformer 33.98 33.89 22.07 0.8791 0.8975 0.7639

ours 34.50 34.29 22.24 0.8904 0.9077 0.7666

Table 4. Parameters and running times of different methods.

Methods Parameters (M) Running Time (s)

NLM / 163.2
BM3D / 2236

CBDnet 4.3 0.124
DANet 9.2 0.318
VDN 7.8 0.109

DeamNet 2.2 0.369
Uformer 50.9 0.886

ours 0.97 0.186

5. Discussion

In this section, we will further analyze the experimental results and findings of this
paper.

1. ICMOS image noise is spatially clustered with a strong spatial correlation, which
differs from the independent and identically distributed noise in natural images. As shown
in Figure 4, the noise in ICMOS images significantly degrades the image details and
introduces undesirable textures. Currently, denoising methods designed for real-world
natural noises struggle to remove ICMOS image noise. In contrast, our method introduces a
cross-scale and multi-range learning approach that can effectively extract the characteristics
of ICMOS image noise and achieve optimal denoising results.

2. As the illumination decreases, the noise intensity of ICMOS images increases and
the denoising effects of different methods become worse. As shown in Section 4, the il-
lumination of the scene seriously affects the noise intensity of ICMOS. Some algorithms
can effectively remove noise interference under the 10−2 lx environment, but their perfor-
mances significantly deteriorate under 10−3 lx and in outdoor environments. However, our
method achieves the best denoising effects under different illumination conditions. Our
method can also handle the situation of uneven illumination in outdoor urban scenes.

6. Conclusions

In this study, we propose a learning-based low-light cross-scale transformer (LL-
CSFormer) for denoising ICMOS sensing images. To remove the spatially clustered and
unevenly scaled ICMOS noise, we introduce multi-scale and multi-range learning. The
proposed cross-scale transformer structure is able to extract multi-scale features and ensures
information exchange across different scales. In each scale, we employ both convolutions
and transformer blocks to extract noise-wise local features and signal-wise global contextual
information. We also establish a novel ICMOS image dataset of still noisy bursts under
different illumination levels to enable network training and evaluation. The two-stream
noise-to-noise training strategy proposed in this paper offers a new trick in the study of
denoising of specific devices. The experimental results show that our proposed method can
remove the ICMOS image noise under different illumination levels, and also greatly restore
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the corrupted detail features of ICMOS sensing images. We performed several ablation
studies to verify the effectiveness of our core component in the model. Comparisons with
other state-of-the-art image-denoising methods demonstrate the superiority of our method
in both visual effects and objective quality metrics.
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