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Abstract: Advancements in optical satellite hardware and lowered costs for satellite launches raised
the high demand for geospatial intelligence. The object recognition problem in multi-spectral satellite
imagery carries dataset properties unique to this problem. Perspective distortion, resolution variabil-
ity, data spectrality, and other features make it difficult for a specific human-invented neural network
to perform well on a dispersed type of scenery, ranging data quality, and different objects. UNET,
MACU, and other manually designed network architectures deliver high-performance results for
accuracy and prediction speed in large objects. However, once trained on different datasets, the per-
formance drops and requires manual recalibration or further configuration testing to adjust the neural
network architecture. To solve these issues, AutoML-based techniques can be employed. In this
paper, we focus on Neural Architecture Search that is capable of obtaining a well-performing network
configuration without human manual intervention. Firstly, we conducted detailed testing on the top
four performing neural networks for object recognition in satellite imagery to compare their perfor-
mance: FastFCN, DeepLabv3, UNET, and MACU. Then we applied and further developed a Neural
Architecture Search technique for the best-performing manually designed MACU by optimizing a
search space at the artificial neuron cellular level of the network. Several NAS-MACU versions were
explored and evaluated. Our developed AutoML process generated a NAS-MACU neural network
that produced better performance compared with MACU, especially in a low-information intensity
environment. The experimental investigation was performed on our annotated and updated publicly
available satellite imagery dataset. We can state that the application of the Neural Architecture Search
procedure has the capability to be applied across various datasets and object recognition problems
within the remote sensing research field.

Keywords: neural architecture search; AutoML; convolutional neural networks; MACU; satellite
imagery; object recognition; semantic segmentation

1. Introduction

Commercial satellite constellations from Maxar Technologies such as RADARSAT-2 [1],
Pleiades-1, and ICESat-2 [2], Vision-1 from Airbus Defence and Space [3], and Cartosat-3
by ISRO [4] provide full earth visual coverage of RGB and panchromatic imagery with a
resolution close to the maximum legal accuracy of >25 cm per pixel [5]. An increase in
imagery resolution combined with object recognition and machine learning (ML) techniques
has enabled a vast amount of new use cases to emerge and for real-world problems to
be solved. Economic and ecological intelligence is generated by processing very high-
resolution remote sensing images of the earth’s surface and even under the surface. These
new cases include deforestation [6], the classification of crop fields [7], water body detection
on the urban surface [8], resource identification, marine logistics, military and defence,
agriculture, manufacturing [9], urban planning, and biodiversity extinction [9].

Dispersity of these use cases requires problem-specific machine learning (ML) tech-
niques that perform well with a given type of dataset, resolution, sensor type, object class,
and other typological parameters [10]. The ability to automatically learn and extract the
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most relevant and informative features from an image is one of the key benefits of using
machine learning for image classification and object detection tasks compared with tra-
ditional techniques. An ML algorithm learns these features directly from the data and
achieves better performance than hand-crafted or predefined features [11].

Multiple convolutional neural network (CNN) architectures are being developed to ad-
dress different use cases. Top-performing CNNs in object recognition include DeepLabv3 [11],
FastFCN [12], UNET [13], and MACU [14]. However, these networks are normally tailored
to a certain type of imagery and resolution. Therefore, if the training set topology is vastly
different from what the network was based on at inception, the performance drops even
after extensive training [15]. The process of developing CNN architectures, together with
experimentation required to adjust the CNN hyperparameters, can take months and, in
some cases, years to reach a satisfactory result [16]. The research and architecture design
process is time-consuming and labor-intensive [17].

In addition to the limitations of human researcher capabilities and the dispersity of
task-specific topologies, another major problem in ML for object recognition (especially
in the satellite imagery domain) is the lack of available training and test data. In satellite
imagery, this problem arises due to the low number of high-resolution optical imagery
satellites in the orbit, most cost constraints, and limited public datasets availability [18].

Current state-of-the-art (SOTA) neural network architectures are manually built and
include theoretically prespecified hyperparameters, e.g., the number of network layers, the
number of nodes per each layer, activation function, and connection topologies between
different layers, all requiring human expertise, subjective judgment, and experimentation.
This brings great difficulty when building a high-quality machine learning system in
practice and therefore limits ML applications [19]. Automated machine learning (AutoML)
is a perspective solution part of the meta-learning group that allows building those systems
without deep human expert knowledge and months of research [19]. Neural Architecture
Search (NAS), as a part of AutoML, is a technique used to automate the design of neural
networks, and it aims to find suitable architectures for specific problems. NAS essentially
aims to tune a neural network faster and more effectively. Therefore, NAS has become
an active research topic in recent years [20]. Specifically, NAS represents a technique for
automating the design of artificial neural networks [21] instead of conventional hand-
designed ones [22] and has recently obtained gratifying progress [23]. NAS neuron cell-
level search space has been looked into for various broader architecture types, including
NAS-UNET [24].

In this paper, we solve a semantic image segmentation problem. We derive object
recognition results using semantic image segmentation metrics. Due to the low-resolution
nature of satellite imagery, the semantic segmentation technique is suitable for object
recognition in satellite imagery problems because it provides the most granular, pixel-
level performance. The object class selected for empirical investigation is “light vehicle”.
Objects in this class are as small as 120 pixels (15 × 8 pixel matrix as compared to millions
of pixels in common images sourced from the ImageNet); therefore, each pixel should
provide valuable information. Segmentation frequency is high (0.5 to 0.9 cycles/pixel) in
the resolution parameters of the dataset.

We apply the NAS technique as part of the AutoML, which could be used across
multiple use cases and have auto-calibration features that allow us to custom cater for the
problem at hand. Firstly, we conducted detailed testing on the top four performing neural
networks for object recognition in satellite imagery to compare their performance: FastFCN,
DeepLabv3, UNET, and MACU. Then, we applied and further developed the NAS for an
auto-customized best-performing MACU network focused on optimizing a search space at
the cellular level. We developed an optimized and automatically generated NAS-MACU
neural network that can achieve better performance. NAS-MACU is a new approach for
object recognition in multi-spectral satellite imagery. It is also a beneficial study for the
remote sensing field due to the limitations of available datasets.
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The research contributions of this paper are summarized in the following list:

• It provides an in-depth experimental comparative analysis of the top four best-
performing CNNs: DeepLabv3, FastFCN, UNET, and MACU on a satellite imagery
dataset.

• It introduces an effective NAS implementation of MACU network, NAS-MACU,
that is capable of self-discovering the well-performing cell topology and architecture
optimized for object recognition in multi-spectral satellite imagery.

• It presents NAS-MACU performance in four different information intensity environ-
ments and confirms that NAS-MACU is more suited when the training data (e.g.,
satellite imagery) has limited availability for practical real-world and economic rea-
sons.

• Finally, it includes a well-annotated and updated satellite imagery dataset for public
use and further development in this research field.

The rest of this paper is organized as follows. In Section 2, we provide an overview
of works in the field related to semantic segmentation in satellite imagery and neural
architecture search. The evaluation of top-performing CNNs is presented in Section 3.
Section 4 is dedicated to a detailed presentation and analysis of the proposed approaches
of NAS process design and visual representation to achieve results. There we also describe
an important aspect of the NAS-MACU meta-learning algorithm–cloud configuration,
computational resources, and other practical NAS implementation-related aspects. In
Section 5, we describe and interpret the experimental findings. Section 6 concludes the
paper.

2. Related Works

Image segmentation, as with image classification and object detection, is one of the
important research areas in the computer vision community. Image segmentation differs
from object detection since object detection aims to find a bounding box locating the objects,
while segmentation tries to find exact boundaries by classifying pixels. The segmentation
problem can be divided into two types: semantic segmentation and instance segmentation.
Semantic segmentation can be considered a classification problem for each pixel, and it
does not distinguish different instances of the same object. On the other hand, instance
segmentation also represents a unique label for different instances of the same object [25].

2.1. CNN Networks for Image Segmentation

Today, better-performing solutions to the segmentation problem are obtained with
deep learning-based solutions compared to the classical ML techniques such as support
vector machine (SVM) and k-means clustering. While classical methods require feature
extraction implemented by the developer, CNN architectures combine feature extraction
and classification in the learning phase. One of the first attempts for a deep learning-
based semantic segmentation [26] is based on fully connected networks (FCNs). The
general classification architecture with CNN consists of convolutional and pooling layers
to extract features with lower dimensions. In the last layers of these types of networks,
fully connected layers are used to make a final decision. On the other hand, in FCNs,
fully connected layers are placed in final dense layers, resulting in the same size output
as the input image. Up-sampling is applied to be able to acquire the same resolution
out. There different types of FCN-based architectures that have been developed [27]. The
proposed FCN architectures [28] use pretrained classification models such as VGG [29] and
ResNet [30] in the feature extraction stage.

Considering that the segmentation of remote sensing images is an important issue,
it is seen that segmentation studies are widely carried out in this field as well. FCNs are
applied in satellite images, and promising results are obtained [31]. On the other hand,
the main issue of FCNs is that the resolution of feature outputs is down-sampled with
several convolutional and pooling layers. To eliminate this issue, FCN variants [31] add a
skip connection from earlier layers to enhance the output for scale changes and perform
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well in remote sensing images. Various more advanced FCN-based approaches, such as
SegNet [32], UNET [13], and DeepLab [33], have also been proposed to address this issue.

The architecture named DeepLabv1 [34] applies a fully connected conditional random
field (FCRF) to enhance the poor localization property of deep networks. Thus, it is more ca-
pable of localizing segment boundaries compared to the previous methods. DeepLabv2 [33]
architecture applies atrous convolution (also named dilated convolution) for up-sampling
and atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales.
ASPP is actually a different variant of spatial pyramid pooling (SPP) proposed in the
study [35] and aims to improve the accuracy for different object scales. DeepLabv3 [11]
augments the ASPP module with image-level features encoding global context and further
boosting performance. It improves on previous DeepLab architecture versions, and still
achieves comparable performance with other state-of-the-art architectures.

Neural networks for image segmentation, such as UNET and SegNet, roughly consist
of two stages: encoding and decoding stages [36]. UNET and SegNet architectures transfer
the outputs of the encoding layer to the decoding layer by using skip connections. The
encoder stage of SegNet consists of 13 convolutional layers from the VGG16 network [29].
The contribution of SegNet is that pooling indices in the max-pooling layers at the encoding
stage are transferred to the decoding stage to perform non-linear up-sampling. However,
UNET transfers the entire feature maps from the encoding layers to the decoding layers
so that it uses much memory. Different pretrained models could be used in the encoding
stage of these networks to apply transfer learning. UNET was originally proposed for
medical images, but it also shows good performance for satellite image segmentation [13].
Different UNET-based architectures are proposed in the literature, such as UNET++ [37]
and UNET variants such as Inception-UNET [38]. Inception variants of UNET apply the
inception [39] approach in different ways and enhance the feature extraction stages, while
INCSA-UNET uses DropBlock [40] and spatial attention modules [40] to prevent overfitting
and enhance important features by focusing on key areas, respectively. The INCSA-UNET
architecture has been evaluated against Inception-based architectures, UNET++ and classic
UNET for the problem of building segmentation from aerial images and performs well
overall. UNet3+ [41] has fewer parameters compared to UNET++, and it also applies a
hybrid loss function for position and boundary-aware segmentation mapping. UNet3+ also
combines multi-scale features by redesigning the interconnection between the encoder and
the decoder. UNet3+ is only tested on medical images. A recent work named Hybrid-U-
Net [42] proposed a multi-scale skip-connected segmentation network for high-resolution
satellite images. UNET fuses the features from the same scale between the encoder and
decoder, while Hybrid-U-Net fuses coarse and fine semantic feature maps from both the
decoder and encoder subnetworks. It designs an additional decoder subnetwork and
fuses features of both decoder subnetworks to obtain a final semantic segmentation mask.
MACU [40] is another UNET-based architecture using multi-scale skip connections and
asymmetric convolution blocks.

The skip connection used in UNET and its variants acts as a bridge between low-level
and high-level features. This approach and multi-scale feature extraction make signifi-
cant performance improvements in the segmentation task. On the other hand, attention
modules with an encoding–decoding structure have been widely used for fine-resolution
image segmentation. Spatial and channel attention mechanisms perform well in different
architectures such as MACU, SENet [43], and DANet [43]. A multi-scale UNET study [44]
proposed an architecture to merge the low-level and abstract features extracted from the
shallow and deep layers. It aimed to retain detailed edge information for building segmen-
tation issue. The MACU architecture proposed multi-scale skip connections with channel
attention blocks and asymmetric convolution blocks in the UNET backbone. Experiments
on remote sensing datasets have shown the effectiveness of MACU. In the coordinate
attention (CA) mechanism [45], which is a newer approach, the spatial and channel infor-
mation is effectively captured by embedding positional information into channel attention.
FCAU-NET [46,47] uses the advantages of CA in the encoding stage, asymmetric convolu-
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tion block (ACB) in the decoding stage to enhance the extracted features, and refinement
fusion block (RFB) to combine low- and high-level features. Experimental results on two
remote sensing image datasets show that MACU outperforms state-of-the-art architectures
such as FCAU-NET, PSPNet [48], and TransUNET [49], producing a similar performance
to DeepLabv3 and FastFCN. A summary of the networks and their release year can be
reviewed in Table 1.

Table 1. Breakdown of manually designed neural networks for semantic segmentation.

Architectures Year Unique Approaches Deployed

UNET [13] 2015 Uses skip connections from down-sampling layers to
up-sampling

DeepLabv1 [34] 2016 Uses a fully connected conditional random field (CRF)

SegNet [32] 2017 In skip connection, SegNet transfers only pooling indices
to use less memory

PSPNet [48] 2017 Uses dilated convolutions and pyramid pooling module

DANet [43] 2017 Its position and channel attention modules followed by
ResNet feature extraction

UNET++ [37] 2018 Improved skip connections from down-sampling layers to
up-sampling

DeepLabv2 [33] 2019 Uses atrous/dilated convolution and fully connected CRF
together

MACU [40] 2019 Has multi-scale skip connections and asymmetric
convolution blocks

UNet3+ [41] 2020 Modifies skip connection and fewer parameters compared
to the UNET++. Proposes hybrid loss function

DeepLabv3 [11] 2021 Improved atrous spatial pyramid pooling (ASPP)

Inception-UNET [38] 2021 Uses inception modules instead of standard kernels
(wider networks)

TransUNET [49] 2021 Transformers encode the image patches in the encoding
stage

FastFCN [12] 2021 Fully connected network layers

INCSA-UNET [40] 2021 Uses DropBlock inside inception modules, and also
applies attention between encoding and decoding stages

Hybrid-U-Net [42] 2022
Builds a hybrid U-Net with additional decoder
subnetworks and introduces high-resolution satellite
images dataset

FCAU-NET [46] 2022
Coordinates attentions, asymmetric convolution blocks to
enhance the extracted features and refinement fusion
block (RFB) in skip connections

2.2. Neural Architecture Search

Preeminently performing neural network architectures are currently designed by
scholars and practitioners. An effective neural network architecture design often requires
substantial knowledge in the particular domain and lengthy manual trialing [24]. The
process of network component experimentation can take months and, in some cases,
years to reach the required result [19,50]. Researchers encounter limitations such as the
design process being time-consuming and labor-intensive. NAS, as a part of AutoML,
aims to solve this problem and make the process of purpose-built neural network design
accessible to a wide range of domains and a larger quantity of researchers. The objective
of NAS is to remove the manual and high-technical knowledge requirement and carry
out the work of a human manually tuning a neural network significantly faster and more
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effectively. NAS belongs to a deep learning methods group known as meta-learning. Meta-
learning includes an auxiliary search algorithm to design the characteristics of a neural
network. These characteristics are inside of the neural network, such as activation functions,
hyperparameters, or a cell-level architecture itself.

A NAS search space is used to find the best architecture, while a performance estima-
tion method is used to score the performance of a network. Various search algorithms such
as reinforcement learning (RL) [51], the evolutionary algorithm (EA) [52], the Bayesian
optimization method [53], and the gradient-based method [54] have been used. For the
first attempts, most NAS algorithms were based on RL or EA. A controller produces new
architectures in RL-based methods, and the controller is updated with the accuracy of the
validation dataset as the reward. However, RL-based methods typically require signifi-
cantly higher computational resources [55]. The gradient-based methods use the search
space as a continuous space and search the architectures based on the gradient information.
The gradient-based algorithms are more efficient than the RL-based algorithms. The EA-
based algorithms apply evolutionary computation to solve the NAS issue. For a detailed
review of EA-based NAS works, we refer to the paper [15].

Thus far, NAS research has been conducted predominantly on image classification
problems [21]. Several papers have proposed methods introducing NAS search space for
encoding–decoding-based architectures similar to UNET for medical image segmentation.
NAS-UNET [24] selects primitive operation sets within cells by using Differentiable Archi-
tecture Search (DARTS) [56], while C2FNAS [57] tries to find the best topology followed
by the convolution size within cells by using a topology-similarity-based evolutionary
algorithm. In the paper [58], the authors first create a configuration pool from advanced
classification networks for better cell configuration instead of searching for a cell from
scratch. Thus, it prevents overgrowth of the search space caused by searching from scratch
while adding well-known methods to the search pool. However, it should be noted that
this method is dependent on the selected network types in one respect. Considering that
different network types can give better results in different problems, it can also cause a
disadvantage depending on the problem. It is called Mixed-Block NAS (MB-NAS), and
a topology-level search is followed by a cell-level search in this method. It uses a search
algorithm called Local Search [59].

DARTS uses an efficient strategy over a continuous domain by gradient descent.
However, its performance often drops due to overfitting in the search phase. To avoid this,
NAS-HRIS [60], GPAS [61], and Auto-RSISC [62], which are based on a gradient descent
framework, have been proposed for remote sensing scene classification issues. NAS-HRIS
uses the Gumbel-Max trick [63] to improve the efficiency of searching. It is evaluated for
remote sensing image segmentation problems and outperforms the methods proposed
in the literature. GPAS applies a greedy and progressive search strategy for a higher
correlation between the search and evaluation stages. The auto-RSISC algorithm aims
to decrease the redundancy in the search space by sampling the architecture in a certain
proportion. Thus, Auto-RSISC requires fewer computational resources, but it limits the
performance of the model by reducing the architecture diversity. RS-DARTS [64] adds noise
to suppress skip connections and aims to close the gap between training and validation. It
applies the same approach as Auto-RSISC to speed up the search processing. RS-DART
reaches a state-of-the-art performance in remote sensing scene classification while reducing
computational overload in the search phase.

In our research, we capture the recommendations made for effective semantic segmen-
tation tasks [24] and develop a NAS-MACU search methodology as an effective NAS for
remote sensing.

3. Evaluation of Top-Performing CNNs

In order to develop NAS for a certain type of network, we recreated and adapted
the top-performing convolutional neural networks to date (as discussed in Section 2.1)
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and conducted thorough experimentation of its performance in object recognition via a
semantic segmentation task on the satellite imagery dataset.

We derive object recognition results using semantic image segmentation results by
overlaying those ‘light vehicle’ pixels against masks in the training, validation, and testing
sets to derive which objects have been correctly recognized. At least 25% of pixels of an
object have to be identically overlaid in order for an object to be considered as correctly
recognized. Once the object is correctly recognized, it is then counted as a True Positive
object (TP) or otherwise appropriately classified as either a False Positive object (FP), False
Negative object (FN), or True Negative object (TN). Based on these fundamental numbers,
other performance metrics were also derived that reflect performance in both semantic
segmentation and object recognition (see Section 3.2).

To measure network performance, we used both semantic segmentation metrics as
well as derived object recognition metrics. Masks were manually drawn by a professional
human annotator [65]. We conducted experiments with these four networks, MACU,
FastFCN, UNET, and DeepLabv3, under three different information intensity environments
to test their sensitivity to the quantity of the training data.

3.1. Considered Satellite Imagery Dataset

The underlying imagery in the dataset was produced by the DigitalGlobe WorldView-3
satellite and is available via an open-source raw satellite imagery database SpaceNet. The
satellite imagery dataset [65] used in experimentation was derived and augmented from
SpaceNet. A total of 250 (125 augmented) high-resolution (30 cm per pixel) multi-spectral
satellite images, equivalent to a 50 km2 area of interest (AOI) of Paris, Shanghai, Las Vegas,
and Khartoum, were used for training and validation (80% of total) and 20% for testing.
In order to challenge the training set to the desired invariance and ensure the model is
robust, the following data augmentation was implemented: random brightness, rotation,
perspective distortion, and random noise addition.

Due to practical GPU/TPU memory limitations, training a neural network using raw
satellite images of full size would cap the training batch size to a minimum and prevent the
network from training effectively [66]. Thus, satellite images with large AOIs are cropped
into patches and then consolidated into smaller pixel frame patches (160 × 160 pixels)
for training and validation [13]. The sampling method selects training and validation
frames at random and rejects the pixel frame if it duplicates. Smaller pixel frames/images
allow larger training batches as well as a wider context variability in each backpropagation
cycle [65].

3.2. Experimental Investigation

We adapted the networks to the Google Cloud Platform (https://cloud.google.com/,
accessed on 23 December 2022) (GCP) architecture that was used for the experimental
investigation to be compatible with the satellite imagery dataset. We used these multiple
information intensity environments (Table 2) to test and compare top-performing networks.
We recorded individual performance using the metrics described below.

To derive the most optimal NAS-MACU architecture for applications, we conducted
experiments with network configuration, complexity, and hyperparameters. Experiments
were executed on the custom-built Google Cloud Platform (GCP) architecture specifically
developed for our research problem, and GPU NVIDIA Tesla P100 64 GB (1 core) was
deployed on the system.

https://cloud.google.com/
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Table 2. Performance of four neural networks in three different training environments.

Segmentation
Metrics Object Recognition Metrics (Derived)

Environment # of Patched
Images Epochs Batch

Size Jaccard Index Recall Precision FPO
(%) F1

Env 1 20,000 20 4

MACU 0.659 0.956 0.942 5.820 0.949

FastFCN 0.609 0.955 0.933 6.687 0.944

DeepLabv3 0.484 0.868 0.961 3.944 0.912

UNET 0.647 0.94 0.931 6.928 0.935

Env 2 30,000 30 4

MACU 0.661 0.948 0.945 5.501 0.946

FastFCN 0.615 0.958 0.926 7.383 0.942

DeepLabv3 0.441 0.82 0.968 3.156 0.888

UNET 0.652 0.955 0.923 7.691 0.939

Env 3 30,000 30 8

MACU 0.667 0.953 0.933 6.675 0.943

FastFCN 0.506 0.828 0.972 2.833 0.894

DeepLabv3 0.538 0.918 0.950 4.993 0.934

UNET 0.658 0.960 0.919 8.099 0.939

To quantitatively evaluate vehicle recognition results, the following metrics were
adopted: True Positive objects (TP), False Positive objects (FP), True Negative objects (TN),
False Negative objects (FN), Jaccard index, recall, precision, overprediction error (FPO),
and F1 as the overall accuracy metric. These metrics are categorized into two categories:
one is for image segmentation metric (Jaccard Index), and the second is for derived object
recognition metrics as described in the Introduction section. Table 2 summarizes the
experimental results using these metrics.

Metrics overview:

• TP reflects the number of objects (‘light vehicles’) correctly detected as compared to
the ‘ground truth’;

• FP reflects the number of objects (‘light vehicles’) incorrectly detected as compared to
the ‘ground truth’;

• TN reflects the number of object size polygons that were correctly identified as area
without any object;

• FN reflects the number of objects that were not detected by an algorithm, but object
(‘light vehicle’) existed;

• Jaccard index is a pixel-level segmentation accuracy metric of semantic segmentation:

Jaccard index =
TP

TP + FP + FN
(1)

• Recall (sensitivity) is the ratio of correctly predicted objects to all observations in the
actual class:

Recall =
TP

TP + FN
(2)

• Precision (positive predictive power) is the relation between true positives and all
positive predictions:

Precision =
TP

TP + FP
(3)
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• FPO measures overprediction error, i.e., the percentage of objects recognized by the
network, not by the annotator:

FPO =
FP × 100
TP + FP

(4)

• F1 combines the precision and recall of a classifier into a single metric by taking their
harmonic mean. It is considered the best overall accuracy performance identifier:

F1 =
2TP

2TP + FP + FN
(5)

The maximal target value of the Jaccard index, recall, precision, and F1 metrics is
equal to 1, and the maximal target value of FPO is equal to 0. Table 2 shows results from
experimentation conducted in three different information intensity environments defined
by the training set side (# of patched images); the number of epochs, and the number of
images within a single batch per training epoch (batch size). The batch size was limited
to max 8 due to operational memory limitations. Information intensity is a term used to
identify the quantity and completion of the training data that are used for the supervised
learning of the network. A training environment that is sufficient for a network to be
sufficiently trained (i.e., low validation loss) is considered to be a high-information intensity
environment, while a low-information intensity environment is defined as conditions where
the network training data and the raining-related hyperparameters contain at least one of
the following constraints, such as the quantity of images <30,000 (sized 160 × 160 pixels),
batch size <8, and epochs <30.

During this experimental investigation, we identified that the MACU network has
the best overall performance defined by the F1 score, which is the balance between recall
and precision across three different information ratio/training intensity environments. In
addition, MACU also performed best in all three environments on the pixel accuracy metric,
the Jaccard index. UNET, however, provides the best recall as it is particularly useful in use
cases where the objective is to recognize the maximum universe of objects within the given
satellite imagery. The F1 score is an improved representation of the overall performance of
the network, especially when used in assessing the practical application of the network to
real-world problems. Precision allows understanding the targeted accuracy of correctly
predicted objects.

DeepLabv3 and FastFCN provide a modest accuracy performance with the lowest
quantity of objects, yet it is conservative and therefore has the lowest overprediction error
in two of three information intensity scenarios. A visual comparison between the results
obtained by the four networks is depicted in Figure 1.

Finally, we selected MACU architecture as the state-of-the-art, best-performing, manu-
ally designed architecture for semantic segmentation as the core architecture for our further
cell-level NAS research in developing the NAS-MACU.
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4. The Proposed NAS-MACU Development Process

One of the most challenging components in solving real-world object recognition prob-
lems is to design a well-performing deep learning architecture able to tackle remote sensing
data-specific challenges such as dispersed scenery, variable satellite imagery resolution
(e.g., 25 cm per pixel–5 m per pixel), type of the sensors (e.g., optical vs. synthetic aperture
radar (SAR)), object class(-es), and other specificities of the training data. As previously
identified in our empirical research, MACU architecture overall provides promising perfor-
mance results compared to others such as UNET, FastFCN, and DeepLabv3 on standard
publicly available datasets that took a long time to construct and still contained limitations
for real-world applications [40]. Due to the fact that even a manually calibrated network
without an optimized cell-level architecture provided top-performing results, it is assumed
that the usage of MACU network architecture as the backbone for the NAS procedure will
provide more promising results.

In this paper, we designed, implemented and conducted empirical experimentation on
the novel NAS-MACU, which automatically adapts to the specificities of the remote sensing
problem at hand. In order to deploy an effective NAS-MACU network, we followed the
NAS-MACU construction process illustrated in Figure 2.

Figure 2 depicts the process used to deliver the state-of-the-art performing, self-
designing-topology, NAS-MACU network that adapts to a high dispersity of datasets
without human expertise in the problem space or manual intervention. The NAS-MACU
topology-design framework follows the iteration cycle until it reaches the max performance
given the constraints. Those constraints are expressed in the form of operations (Step 2 in
Figure 2) and are further discussed in Sections 4.1 and 4.2. The research on NAS focuses on
three aspects: search space (Step 3.a and 3.b in Figure 2), search strategy (Step 3.a and 3.b
in Figure 2), and performance estimation strategy (Step 3.c in Figure 2).

The search space parameters determine which architectures can be represented. The
search strategy also describes how to explore the search space. The objective is to find
architectures with highly evaluated performance on unseen data. Performance estimation
is divided into two parts. Firstly, the performance is evaluated to determine whether the
candidate architecture is to be kept (or expanded) for the next update. Secondly, candidate
cell architecture is added to a network stacked by the cells, and then the final performance
is evaluated on a training dataset.



Remote Sens. 2023, 15, 91 11 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 23 
 

 

results, it is assumed that the usage of MACU network architecture as the backbone for 
the NAS procedure will provide more promising results.  

In this paper, we designed, implemented and conducted empirical experimentation 
on the novel NAS-MACU, which automatically adapts to the specificities of the remote 
sensing problem at hand. In order to deploy an effective NAS-MACU network, we fol-
lowed the NAS-MACU construction process illustrated in Figure 2. 

 
Figure 2. NAS-MACU construction process. 

Figure 2 depicts the process used to deliver the state-of-the-art performing, self-de-
signing-topology, NAS-MACU network that adapts to a high dispersity of datasets with-
out human expertise in the problem space or manual intervention. The NAS-MACU to-
pology-design framework follows the iteration cycle until it reaches the max performance 
given the constraints. Those constraints are expressed in the form of operations (Step 2 in 
Figure 2) and are further discussed in Subsections 4.1 and 4.2. The research on NAS fo-
cuses on three aspects: search space (Step 3.a and 3.b in Figure 2), search strategy (Step 3.a 
and 3.b in Figure 2), and performance estimation strategy (Step 3.c in Figure 2).  

The search space parameters determine which architectures can be represented. The 
search strategy also describes how to explore the search space. The objective is to find 
architectures with highly evaluated performance on unseen data. Performance estimation 
is divided into two parts. Firstly, the performance is evaluated to determine whether the 
candidate architecture is to be kept (or expanded) for the next update. Secondly, candidate 
cell architecture is added to a network stacked by the cells, and then the final performance 
is evaluated on a training dataset. 

  

Figure 2. NAS-MACU construction process.

4.1. Cell-Level Topology Search

The set of operations was developed within the search space to conduct a search
procedure and automatically find topologies for two types of cells: down-sampling cells
(DownSC) and up-sampling cells (UpSC). All convolution operations are limited to
3 × 3 size, and pooling operations are limited to 2 × 2 to minimize an available search
space and avoid combinatorial explosion.

A directed acyclic graph (DAG) in Figure 3 depicts the framework and basic structure
for cell topology. Additionally, the diagram in Figure 4 illustrates the example of the cell
architecture searched when the intermediate nodes in the DAG are three. We use three
types of operations: down–up, normal, and concatenate operations. The input nodes
Ck−1 and Ck−2 are defined as the cell outputs in the previous two layers. Every unit of
intermediate nodes represents an input image or a feature map layer. An edge defines
an operation between DAG nodes that the search space algorithm is tasked to find. The
resulting framework of the cell is shared by the entire network. In this research, the DAG
generation method was restricted to avoid huge search space and searched only for cell-
based architecture. After determining the best cell architecture, the cells are stacked into a
deeper network on the backbone MACU architecture.
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An example of the overparametrized cell architecture is depicted in Figure 4.
In cell architecture search, we place each edge in DAG to be a mixed operation, denoted

as MixO. We use N candidate operations, denoted as O = oi, which created N parallel
paths. The output of a mixed operation MixO is defined based on weights wi and operation
oi result in all paths:

MixO(x) =
N

∑
i=1

wioi(x) (6)

4.2. Algorithm That Generates Cell Genotype

NAS helps to automatically design two types of cell architectures called down-
sampling cells (DownSC) and up-sampling cells (UpSC) based on MACU backbone
(Figures 5 and 6). We improved the NAS-MACU cell genotype algorithm (see Algorithm 1).
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We describe the high-level logic of the underlying algorithm defining the cell topology
design and iteration process, with E-total epochs and N-total nodes in a cell. The algorithm
corresponds to steps from 3.a to 3.d in Figure 2.
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Algorithm 1. Nas-macu cell genotype generation

1. Generate a random initial Weights1 and Weights2 values.
2. for e := 1 to E
3. genotype := []
4. n := 2
5. start := 0
6. if cell_type == ‘down’:
7. dim_change := 2
8. else:
9. dim_change := 1
10. Mask1[0:Weights1.shape [0]] := False
11. Mask2[0:Weights2.shape [0]] := False
12. for i := 1 to N
13. normal_op_end := start + n
14. up_or_down_op_end := start + dim_ change
15. if cell_type == ‘down’:
16. Mask1[up_or_down_op_end:normal_op_end] := True
17. Mask2[start:up_or_down_op_end] := True
18. else:
19. Mask1[up_or_down_op_end + 1:normal_op_end] := True
20. Mask1[start:up_or_down_op_end] := True
21. Mask2[up_or_down_op_end] : = True
22. Assign values to W1 and W2 from Weights1 and Weights2 masked by Mask1

and Mask2
23. edges1 = assigns the sorted array of W1 row indexes, sorted by row max weight

values.
24. L1 := edges1.length
25. for j := 1 to L1
26. k_best := assigns the index of the biggest value from W1j

27. gene_items1 array appends (W1j,k_best, down_up_operations[k_best], edge index j)
28. edges2 := assigns the sorted array of W2 row indexes, sorted by row max

weight values.
29. L2 := edges2.length
30. for j := 1 to L2
31. k_best := assigns the index of the biggest value from W2j

32. gene_items2 array appends (W2j,k_best, normal_operations[k_best], edge index j)
33. genotype array appended with the best item from gene_items1 and gene_items2
34. start = normal_op_end
35. n := n + 1
36. if genotype_repeats(genotype) > MAX_PATIENCE :
37. Stop training

At the start of the algorithm, matrices of path weights (Weight1 and Weight2) are
initiated with random values from a normal distribution with mean 0 and variance 1. Due
to the nature of the NAS process, the impact of initial random values is minimal. Weight1 is
dedicated to up or down operation edges, and Weight2 stores values for normal operation
edges (see Figure 3). On every i step for N nodes, n paths are sampled, and all the other
paths are masked (Mask1 and Mask2). The NAS approach demands a lot of computational
resources; therefore, only a small value of n is possible. Our method uses n = 2, and two
paths are updated at each step. The edges1 array is created, which is a sorted array of row
indexes from masked weight matrices (denoted as W1) and sorted by row max weight
values. Subsequently, the best down_up operation (see Table 3) is selected and appended to
a candidate genotype items array (gene_items1).
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Table 3. Primitive operations by type: down, up, and normal operations.

Type Operations

down_operations ‘avg_pool’, ‘max_pool’, ‘down_cweight’, ‘down_dil_conv’,
‘down_dep_conv’, ‘down_conv’

up_operations ‘up_cweight’, ‘up_dep_conv’, ‘up_conv’, ‘up_dil_conv’

normal_operations ‘identity’, ‘none’, ‘cweight’, ‘dil_conv’, ‘dep_conv’, ‘shuffle_conv’,
‘conv’

The same selection process repeats for normal operations, and gene_items2 is ap-
pended. When the cycle is finished, the best genotype is formatted from gene_items. The
process repeats on every epoch while reaching the max number of total epochs (E) or geno-
type repeats, and constant MAX_PATIENCE is reached. This constant defines maximum
iteration times when the best genotype in the last iteration is the same as in the previous
iteration and set to 40.

4.3. MACU and NAS-MACU Comparison

Based on UNET and asymmetric convolution block, multi-scale features are generated
by different layers of UNET. We use a multi-scale skip-connected architecture MACU, for
semantic segmentation, as illustrated in Figure 5. This standard MACU design has the
following advantages: (1) the multi-scale skip connections combine and realign semantic
features that do persist in high- and low-level feature maps with different scales; and
(2) the asymmetric convolution block advances the representative capability of a standard
convolution layer [14].

Channel attention blocks (CAB) are used to decrease the enormous number of channels
coming from five feature maps of equal size and resolution and to realign channel-wise
features [40]. Colored dotted arrows represent the multi-scale skip connectors to each CAB.

NAS-MACU leverages the backbone of the MACU network described above, and
within the cell structure, we implement the following DownSC (down-sampling cell) and
UpSC (up-sampling cell) cells, as illustrated in Figure 6. The difference between NAS-
MACU and MACU is inside the cellular level of the network layers and cell topology that
is designed using NAS techniques automatically vs. manually.

4.4. NAS-MACU Cell Genotypes

As a result, we were able to conduct experimental cycles, and different genotypes
of NAS-MACU were produced. The search and performance validation space of this
experimentation was limited by the depth of search (up to 4 and up to 5 levels), the number
of epochs in training (up to 500), batch size (up to 16), training duration, and a number of
iterations to validate the best network (each winning cell structure was stress-tested up
to 500 times that can also be expanded). These hyperparameters and limitations at each
genotype are detailed in Table 4. In total, eight cycles were concluded, obtaining a new
NAS-MACU genotype each time. The relative performance of each genotype is showcased
in Table 5.
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Table 4. NAS-MACU genotypes list, detailed by structure and hyperparameters.

Genotype Version
Structure (Down
Operation, Parent
Node Number)

Structure (Up
Operations, Parent
Node Number)

Hyperparameters
(Epochs, Batch Size,
Cellular Level
Depth, Training,
Validation Cycle)

NAS-MACU-V1

(‘down_cweight’, 0),
(‘down_conv’, 1),
(‘down_conv’, 1),
(‘conv’, 2),
(‘down_conv’, 0),
(‘conv’, 3)

(‘cweight’, 0),
(‘up_cweight’, 1),
(‘identity’, 0),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3)

Epochs 300, batch 4,
depth 4, training set
1000, validation set
100, max patience not
reached

NAS-MACU-V2

(‘down_conv’, 0),
(‘down_deep_conv’,
1),
(‘down_conv’, 1),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3)

(‘up_cweight’, 1),
(‘identity’, 0),
(“up_conv’, 0),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3

Epochs 300, batch 4,
depth 4, training set
1000, validation set
100, max patience not
reached

NAS-MACU-V3

(‘down_dep_conv’, 0),
(‘down_conv’, 1),
(‘down_conv’, 1),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3)

(‘up_cweight’, 1),
(‘identity’, 0),
(‘identity’, 0),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3)

Epochs 500, batch 4,
depth 4, training set
1000, validation set
100, max patience not
reached

NAS-MACU-V4

(‘down_dil_conv’, 0),
(‘down_conv’, 1),
(‘down_conv’, 1),
(‘conv’, 2),
(‘conv’, 3),
(‘shuffle_conv’, 2)

(‘up_conv’, 1),
(‘identity’, 0),
(‘identity’, 0),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘identity’, 0)

Epochs 500, batch 8,
depth 4, training set
1000, validation set
100, max patience not
reached

NAS-MACU-V5

(‘down_dep_conv’, 0),
(‘down_conv’, 1),
(‘down_dep_conv’, 1),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3)

(‘identity’, 0),
(‘up_conv’, 1),
(‘identity’, 0),
(‘conv’, 2),
(‘shuffle_conv’, 2),
(‘conv’, 3)

Epochs 500, batch 32,
depth 4, training set
1000, validation set
100, max patience not
reached

NAS-MACU-V6

(‘down_dep_conv’, 0),
(‘down_conv’, 1),
(‘shuffle_conv’, 2),
(‘down_conv’, 1),
(‘cweight’, 3),
(‘down_cweight’, 1)

(‘conv’, 0),
(‘up_conv’, 1),
(‘identity’, 0),
(‘shuffle_conv’, 2),
(‘cweight’, 3),
(‘identity’, 0)

Epochs 500, batch 32,
depth 4, training set
1000, validation set
100, max patience not
reached

NAS-MACU-V7

(‘down_cweight’, 0),
(‘down_conv’, 1),
(‘down_conv’, 1),
(‘conv’, 2),
(‘down_conv’, 0),
(‘conv’, 3)

(‘up_cweight’, 1),
(‘identity’, 0),
(‘identity’, 0),
(‘conv’, 2),
(‘conv’, 3),
(‘identity’, 0)

Epochs 500, batch 16,
depth 4, training set
2500, validation 500.
Stopped after 204
max patience reached

NAS-MACU-V8

(‘down_cweight’, 0),
(‘down_conv’, 1),
(‘conv’, 2),
(‘down_conv’, 1),
(‘down_dep_conv’, 0),
(‘max_pool’, 1),
(‘max_pool’, 1),
(‘identity’, 3)

(‘conv’, 0),
(‘up_conv’, 1),
(‘up_conv’, 1),
(‘conv’, 2),
(‘identity’, 3),
(‘conv’, 2),
(‘cweight’, 4),
(‘identity’, 3)

Epochs 500, batch 16,
depth 5, training set
2500, validation set
500
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Table 5. Performance comparison by object recognition metrics (recall, precision, FPO, F1) across
genotypes.

Object Recognition Metrics (Derived)

Genotype Version Recall Precision FPO (%) F1

MACU 0.969 0.858 14.16 0.910

NAS-MACU-V1 0.949 0.880 12.038 0.913

NAS-MACU-V2 0.939 0.893 10.704 0.915

NAS-MACU-V3 0.951 0.901 9.865 0.926

NAS-MACU-V4 0.945 0.904 9.552 0.924

NAS-MACU-V5 0.964 0.824 17.626 0.889

NAS-MACU-V6 0.965 0.872 12.835 0.916

NAS-MACU-V7 0.957 0.924 7.616 0.931

NAS-MACU-V8 0.953 0.920 8.544 0.934

The best performance was reached by NAS-MACU-V7 and NAS-MACU-V8. An
additional parameter specific to NAS is the cellular level depth, which represents the
number of layers of operations within the cell.

In order to illustrate the cell-level topology generated through the process of cell
search described above, we created Figures 7 and 8 to cover the NAS-MACU cell genotypes
NAS-MACU-V7 and NAS-MACU-V8. Figures 7 and 8 reflect a graphical representation of
NAS-MACU cell genotypes. The cell can be considered a special block where layers are
piled in the same way as any other model. These cells apply many convolution operations
to obtain feature maps that can be passed over to other cells. Ck−1 and Ck−2 represent the
output from previous cells. Ck is the output of the present cell. A complete model is made
by stacking these cells in a series.
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It is important to mention that hyperparameters of the potential NAS-MACU geno-
types’ search space can be expanded. For the purpose of this research and due to com-
putational limitations, we limited the cell search space, as illustrated in Table 4. There
are techniques for hyperparameter optimization that are applied to neural network cali-
bration outside of NAS that could potentially be implemented here in NAS construction
too, instead of manual selection. Even with these limitations, the computational time for
each of the eight NAS-MACU experimentation cycles took 36 h on average. With addi-
tional computational resources, these NAS hyperparameters can be expanded, and further
research could be conducted in order to achieve validation and potentially achieve even
better performance.

5. NAS-MACU Performance Evaluation

To evaluate the performance of NAS-MACU on the full dataset, eight genotypes
were generated on the back of the different configurations, as described in Section 4.4.
Results improved across the spectrum of metrics when comparing the NAS-MACU-V1 to
NAS-MACU-V7 and NAS-MACU-V8 (see Table 5).

NAS-MACU-V7 and NAS-MACU-V8 showed similar performance. NAS-MACU-
V8 achieved the best F1 score. Moreover, it is worth mentioning that the NAS-MACU
was able to uptrain itself much faster compared to manually designed networks with
low-information intensity for training, making it useful in settings where the training set
is hard or expensive to acquire (e.g., high-resolution satellite imagery). In addition, our
experiments show that it takes only 15–20 thousand epochs to reach top performance.
Figure 9 illustrates this performance.
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Figure 9. NAS-MACU-V7 and NAS-MACU-V8 comparison by validation accuracy.

NAS-MACU performance has been proven to surpass the manually designed MACU
for this particular object recognition task and on this dataset. It performed especially well
in the low-information intensity environment, as illustrated in Table 5.

It took a few hours of AutoML work and GCP computation to produce this high-
performing NAS-MACU infrastructure compared to the months of work it would take
researchers and practitioners to solve object recognition and semantic segmentation tasks
and to design neural networks manually. Moreover, using these brand-new AutoML
techniques, it is possible to run and calibrate this process for high performance and a very
wide range and dispersity of problems, object types, dataset specifications, and resolution
limitations.

Table 6 illustrates the performance comparison of NAS-MACU-V8 and MACU across
the main five performance metrics when trained using four different training set sizes.
We can see that the performance of NAS-MACU-V8 compared to MACU increases as the
training set size decreases, indicating the superiority of NAS-MACU-V8 over MACU in
low-information environments.

Table 6. NAS-MACU-V8 vs. MACU in the variable information environments.

Object Recognition Metrics (Derived)

Training Set Size Network Recall Precision FPO (%) F1

5000
MACU 0.968 0.83 16.96 0.894

NAS-MACU-V8 0.93 0.893 10.67 0.911

10,000
MACU 0.96 0.87 13.03 0.913

NAS-MACU-V8 0.938 0.908 9.17 0.923

20,000
MACU 0.969 0.858 14.16 0.910

NAS-MACU-V8 0.953 0.915 8.54 0.934

30,000
MACU 0.953 0.933 6.675 0.943

NAS-MACU-V8 0.941 0.917 8.321 0.929
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After an empirical investigation, we can confirm that NAS-MACU-V8 outperforms
the MACU network, especially once the information intensity is reduced. The two most
important metrics to measure are F1 (overall performance) and precision. The NAS-driven
genotype outperforms a human-invented MACU network in both overall accuracy per-
formance (F1) and precision metrics in any information constraint environment and with
an increasing difference as the training set size reduces (Figures 10 and 11). Conducting
NAS operation took from 4 h to 58 h of training and search time across the NAS-MACU-
V1–NAS-MACU-V8 genotypes. This was carried out automatically and without human
intervention, making this solution applicable at scale and for a vast range of real-world
applications. Figure 12 depicts a visual representation of segmentation obtained by MACU
and NAS-MACU-V8 on two example satellite images (A and B). As you can see from these
images, NAS-MACU-V8 outperforms MACU particularly well when applied in a low-light
scene and when the objects are darker and similar to the surroundings.
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per-pixel prediction result.

6. Conclusions and Future Works

This paper proposes and explores a novel NAS-MACU network where NAS is ap-
plied to a CNN cell-level topology search in the MACU backbone. We experimentally
evaluated the top four performing neural networks for object recognition in satellite im-
agery: FastFCN, DeepLabv3, UNET, and MACU. Then we selected the best-performing
manually designed MACU as a backbone architecture for the NAS procedure. The NAS
procedure allowed us to obtain a new well-performing network configuration without
human manual intervention. Currently, the lack of publicly available satellite imagery
data is a limitation for the deep learning models to be effectively researched and applied
to real-world problems. The constructed NAS-MACU performed exceptionally well in a
low-information environment compared to other popular manually designed networks. It
is a valuable achievement for the remote sensing field due to the limitations of the available
training sets of satellite imagery. Several NAS-MACU configurations were obtained that
outperformed the MACU network. In all low-information cases analyzed (training set
size was up to 20,000), the NAS-MACU-V8 network achieved better object recognition
performance compared to the MACU network on the precision, FPO, and F1 metrics. NAS-
MACU-V8 achieved the best performance according to the F1 metric (0.934) when the
training set size was 20,000, also having better precision (0.915) and FPO (8.54) than MACU.
An effective NAS implementation in the MACU network is capable of self-discovering
the well-performing cell topology and architecture optimized for object recognition in
multi-spectral satellite imagery.

The experimental research in this work was conducted on the Google Cloud Platform
(GCP) and with limited computational resources. Although these experiments took a large
number of computing hours, the computational resources could be increased in future
works. In such a way, we could expand the search space of the cell infrastructure and in-
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crease the cell depth, and also expand the limiting hyperparameters such as ‘max_patience’
and ‘Total Epochs’. As a potential result, better-performing NAS-MACU architectures
could be found. In this work, the binary classification performance indices F1 score, recall,
precision, FPO and Jaccard index were used. Given that the costs associated with FP or FN
errors are a priori unknown, thus, an optimal output detection threshold working point of
the classifier cannot be determined. Therefore, the computation and plotting of precision–
recall curves, and also ROC curves analysis on the {sensitivity, 1-specificity} plane, as well
as the computation of their corresponding area under the curve (AUC) values, pr-AUC and
ROC-AUC, could be considered to complement the comparison of the different classifiers’
performance and validation of the numerical results. Moreover, further exploration of other
neural network backbone architectures using NAS could be considered in future works.
Finally, this research could be applied to other fields outside of object recognition in satellite
imagery: medical image analysis (e.g., tumor detection), aerial image processing (e.g., se-
mantic segmentation in UAV imagery), forensics (e.g., handwriting detection), autonomous
machinery (e.g., machinery navigation in a specific environment), and others.
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