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Abstract: Loop closure detection (LCD) can effectively eliminate the cumulative errors in simultane-
ous localization and mapping (SLAM) by detecting the position of a revisit and building interframe
pose constraint relations. However, in real-world natural scenes, driverless ground vehicles or robots
usually revisit the same place from a different position, meaning that the descriptor cannot give a
uniform description of similar scenes, failing LCD. Against this problem, this paper proposes a 3D
point cloud descriptor with Twice Projection (3PCD-TP) for the calculation of the similarities between
scenes. First, we redefined the origin and primary direction of point clouds according to their distri-
bution and unified their coordinate system, thereby reducing the interference in position recognition
due to the rotation and translation of sensors. Next, using the semantic and altitudinal information of
point clouds, we generated the 3D descriptor 3PCD-TP with multidimensional features to enhance
its ability to describe similar scenes. Following this, we designed a weighting similarity calculation
method to reduce the false detection rate of LCD by taking advantage of the property that 3PCD-TP
can be projected from multiple angles. Finally, we validated our method using KITTI and the Jilin
University (JLU) campus dataset. The experimental results show that our method demonstrated a
high level of precision and recall and exhibited greater performance in the face of scenes with reverse
loop closure, such as opposite lanes.

Keywords: autonomous driving; robotics; LiDAR; SLAM; loop closure detection; global descriptor

1. Introduction

Over the recent years, one of the key autonomous driving technologies, simultaneous
localization and mapping, has developed rapidly. The SLAM algorithm can provide
prior maps for autonomous vehicles and is also the basis of localization and navigation.
In SLAM systems, the odometry estimates or solves the current pose out of that in the
previous frame through a recursive process. It follows the errors from the recursion pass on,
hence accumulating frame by frame. Loop closure detection can detect whether a loop is
created by using current sensor data and historical data and can then build interframe pose
constraint relations, thereby eliminating the cumulative errors due to matching consecutive
frames [1] and generating a higher-precision map. At present, autonomous driving systems
have enormous application demands for reliable LCD algorithms. Accordingly, the research
on LCD algorithms is of considerable significance.

The earliest application of LCD dates back to the vision-based SLAM [2,3]. Due to the
higher-range accuracy of LiDAR than that of cameras, which is immune to both weather
and illumination changes, LiDAR-based LCD methods have received high attention from
researchers. Existing LiDAR-based LCD algorithms typically project the physical properties
of point clouds onto a 2D plane, extract the handcrafted features, and then calculate the
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similarities according to the features to detect whether the current position has ever been
visited. Examples include scan context (SC) [4], intensity scan context (ISC) [5], LiDAR
Iris [6], and other methods, which segment point clouds into multiple subregions at a fixed
distance and a fixed angle based on their polar coordinate system to project them onto a
bird’s eye view (BV) image. While boosting efficiency, such dimension-reducing methods
deprive point clouds of their original features on the z-axis and introduce a sequence
problem of the mapping relations between 3D point clouds and 2D plane coordinates. More
specifically, with the maximum height as a feature, SC can both detect a loop closure and
provide the initial reference value for the angle of rotation for the SLAM algorithm while
projecting 3D point clouds into a 2D descriptor. However, scan context is more vulnerable
to changes in viewpoint because the height information of objects around the vehicle is
susceptible to view and position changes. This means that the small range translation of
the vehicle will bring the change of pixel values in the local scope of the descriptor. Small
range translation means that the vehicle is translated within four meters in either the lateral
or vertical direction. When the vehicle translates in the lateral or vertical direction, the
relative position of the point cloud in the LiDAR coordinate system changes, which leads
to different descriptors even at the same place. Additionally, during the encoding process,
SC converts the problem of rotation in 3D space into a column-wise data sequence of 2D
descriptors. As a result, the descriptors generated from different angles at the same place
have to undergo similarity retrieval by brute-force matching. ISC uses intensity information
instead of maximum height information. Although the reflection intensities of objects of
the same material are theoretically the same, the intensity information would be interfered
with by distance, incident angle, sensor noise, and other factors. Therefore, ISC fails to
solve the inherent problems of such methods. LiDAR Iris encodes point clouds in 8-bit
binary codes and attempts to estimate the rotation between two descriptors via Fourier
transform, but the extracted features remain as height features. Iris attempts to estimate the
rotation between two descriptors via the Fourier transform. Fourier transform is susceptible
to noise, hence the unsatisfactory effect in detecting loop closures in real-world scenes.
The above methods are limited in both the proper coordinating system of sensors and the
dimension-reducing coding schemes. When the driverless system revisits the same place
from a different angle or lane, or from another different position within the same lane,
the relative positions of point clouds within the LiDAR coordinate system are caused to
change. This would lead not only to the translational changes of rows and columns in the
descriptors but also to the changes of pixel values in the descriptors. Furthermore, such
coding schemes of projecting 3D point clouds onto a 2D plane using single height, intensity,
and other properties could cause a huge loss of features, thereby reducing the abilities of
the descriptors in describing and discriminating the same scene.

In order to endow the descriptors with robustness against the rotational and trans-
lational changes of sensors, we determined the primary direction and the origin of the
point clouds in each frame employing Singular value decomposition (SVD), and after
calculating the centroid of these point clouds, we redefined the coordinate system accord-
ing to their distribution. To enhance the ability of the descriptor to describe scenes, we
designed a 3D point cloud descriptor with a twice projection (3PCD-TP). We first mapped
the pre-processed point cloud into a cylindrical coordinate system and then encoded the
mapping result, starting with the principal direction. Meanwhile, we performed semantic
segmentation on the point cloud to obtain the label of each point. The semantic information
is encoded into the voxel of each bin of the 3D descriptor. In addition, since our descriptors
are three-dimensional, we can preserve the height information of the point cloud in the
z-axis dimension. Subsequently, we take advantage of the multidimensionality of 3PCD-TP
to project it onto the xOz plane and the xOy plane, respectively, to produce its side-view
and top-view projections. A loop closure constraint is built in the following way: We store
the side-view projection of each point cloud frame into a KD Tree and select multiple candi-
dates. We weight the Hamming distance of the side-view projection and the cosine distance
of the top-view projection between the current frame and the candidates to measure the
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similarity between them. Lastly, we select the candidates that satisfy the threshold. The
main contributions of this paper are listed as follows:

1. A point cloud preprocessing approach has been introduced to weaken the rotational
and translational effect of sensors. The origin and primary direction of cloud points
have been redefined according to the distribution of point clouds, to render the new
point cloud coordinates independent of the sensor coordinate system.

2. The design of the 3D global descriptor 3PCD-TP combines semantic information
and height information. Thereinto, the abilities of the descriptors in describing and
discriminating scenes have been strengthened by using semantic information and
equivoluminal multilayer coding schemes.

3. A twice-projection-based weighted similarity algorithm has been proposed to measure
the similarity between scenes in terms of the weighted sum of the Hamming distance
of the side-view projection and the cosine distance of the top-view projection of the
descriptors and to reduce the probability of loop closure mismatching.

The follow-up structure of this paper goes as follows: Section 2 elaborates on the
related work to this study. Section 3 highlights the coding process and searching method of
3PCD-TP. Section 4 makes an evaluation over the dataset KITTI [7] and the self-collected
campus dataset, and applies 3PCD-TP to the existing SLAM algorithm for mapping.
Section 5 summarizes this paper’s current work and looks toward the follow-up work.

2. Related Work
2.1. Vision-Based LCD Algorithms

Currently, the LCD methods based on monocular, binocular, RGBD, structured light,
3D LiDAR, and other sensors have developed rapidly. Due to the compact arrangement
and ease of processing and two characteristics of images, most vision-based LCD methods
can extract image features directly from scenes, pinpoint the candidate positions using
a bag of words (BoW), and calculate the similarity between distinct positions using the
histogram. DBoW2 [8] first used BoW in vision-based LCD algorithms. They utilized
the feature detection algorithm FAST to select features and generate BRIEF descriptors
to construct a binary BoW. ORB-SLAM2 [9] utilized ORB features to generate a BoW and
used a norm to measure the similarity score between the current and historical frames.
M et al. [2] showed that Normal Distribution Transform (NDT) based features can capture
enough structures and match images to features. VINS-Mono [10] chose to introduce a two-
step geometrical verification method and triangulated visual features, thereby comparing
their similarity. Vision-based loop closure detection methods have a great advantage in
identifying objects because of the excellent imaging capability of cameras. However, the
camera is susceptible to external light and environmental changes [6,11]. This may lead to
changes in the brightness of the pixels of images, which to some extent affects the extraction
of visual features and can lead to a failure in the place recognition.

2.2. LiDAR-Based LCD Algorithms

Compared to cameras, LiDAR is not sensitive to the changes in external ambient light.
It has a wider detection range and a higher accuracy at long distance. In addition, LiDAR
can obtain accurate three-dimensional information [12,13] compared to cameras. Therefore,
LiDAR-based loop closure detection has received continuous attention due to its robustness
to environmental changes and its high accuracy of localization. Usually, LiDAR-based LCD
methods can be roughly generalized as local and global descriptors, depending on the
means by which they extract features.

Local descriptors usually extract key points from the point clouds in each frame using
a corner detector, separate the points near the key points, calculate the local features,
and match the current and historical frames with BoW. For example, Scovanner’s 3D-
SIFT [14] and J. Knopp’s 3D-surf [15] generated local descriptors by extracting key points
from point clouds and matching them. Sivic et al. [16] generated cylindrical coordinates
corresponding to each key point and then encoded the cells that segmented out of its
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nearby points into a histogram. S. Salti et al., proposed a feature descriptor SHOT based
on 3D point clouds [17] and generated a local descriptor by extracting the key points
and a normal from them. S. M. Prakhya et al., modified SHOT into B-SHOT [18], with
each sector expressed in terms of the cosine of the angle between one feature point and
its nearby point. J. Guo [19] utilized the intensity field returned by LiDAR sensors to
construct an intensity-increasing 3D key point descriptor ISHOT. However, the interior
structure of the scenes cannot be provided by extracting local descriptors directly to build
a histogram, which is prone to matching errors in the face of highly repeated key points.
The global descriptor in [20] extracted features from the geometrical relationship between
point clouds to facilitate a fast retrieval of loop closure from the global map. Compared
to local descriptors, global descriptors do without extracting corner points from mass
point cloud data, which greatly shortens the time. For instance, the fast point feature
histogram (FPFH) [21] used a normal to construct the histogram of point clouds and
effectively described the local geometrical structure near point clouds, but it is inefficient
in computational terms. ESF [22] generated a global descriptor according to three distinct
shape functions of a point cloud’s surface distance, angle, and area distribution. M2DP [23]
projected point clouds onto multiple planes, divided each plane into standalone storage cells
by radius and azimuthal angle, and compressed the descriptors by SVD. SegMatch [24]
divided point clouds into different sectors, extracted their features, and matched the
corresponding elements by the random forest algorithm. SegMap [25] extracted the data-
driven descriptors using a convolutional neural network [26] and identified the segmented
point clouds using semantic information. However, these above global descriptors are
lacking adequate rotation- and shift-invariances, and it is hard to abstract with accuracy
the features of point clouds in the current frame.

Among the existing methods, the one with the best overall performance is the projection-
based method to generate global descriptors. The procedure begins by mapping point
clouds onto a 2D picture. Next, a descriptor is constructed by extracting the geometric fea-
ture vector, thereby quickly screening multiple candidate pictures. Finally, the most similar
frames that satisfy the threshold are selected as the loop frames. For example, Kim et al. [4]
extracted a 2D global descriptor named scan context from the BV images of LiDAR point
clouds by using the maximum height feature. Seed [27] divided a certain number of point
clouds into two layers for clustering and encoded the topological information about the
segmented objects to generate a global descriptor. However, it is difficult for this method to
identify the current position with exactitude when there are a small number of segmented
objects. What the above two LCD methods adopt while encoding is the basic point cloud
information, with quite a limited ability in describing scenes. Li et al. [28] introduced
the semantic information instead of the height information about point clouds for global
encoding and introduced the global semantics ICP to improve the matching performance
in the algorithm. All projection-based global descriptors mentioned above project the point
cloud onto the ground plane. This downward projection provides a better description of
the current scene and summarizes the features of the current region. However, the above
descriptors encode the projection results into a matrix for determining similarity. In this
process, if the vehicle visits the same location from different directions or undergoes a
translation, a row or a column offset will occur during the projection from a point cloud to
a descriptor. This is because the above methods fail to unify the initial coordinate system.
These offsets will eventually affect the effect of loop closure detection.

2.3. Motivation of This Work

The foregoing review and analysis identifies two limitations in the existing LiDAR-
based LCD methods. First, the rotation and translation of sensors could make a difference in
the consistency of the generated descriptors. Second, encoding is performed by dimension-
reducing means, leading to the loss of mass information about the original point clouds
and thus, lowering the degree of distinction between descriptors. Therefore, in order to
upgrade the performance of LCD algorithms, on the one hand, we need to transform
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point clouds from the sensor coordinate system to the coordinate system based on the
intrinsic distribution characteristics of point clouds to eliminate the impacts of rotational
and translational changes. On the other hand, in the process of projecting the point cloud, a
kind of 3D global descriptor is generated, and its dimension in the z-direction can extract the
point cloud features in the vertical direction and preserve the semantic information of the
point cloud. Compared to two-dimensional descriptors, our method can store slightly more
information. Using the multidimensionality of descriptors, their ability to discriminate
between scenes can be promoted in light of the degree of similarity between projections in
different directions. On this basis, this paper proposes the 3D global descriptor 3PCD-TP
and the method to calculate its similarity.

3. Methods
3.1. Algorithm Overview

This section presents our method in three aspects: preprocessing of point clouds,
encoding and projection of 3PCD-TP, and similarity scoring. The pipeline of our proposed
framework is shown in Figure 1. First, we semantically segment the point cloud to obtain
the semantic information of the point cloud by obtaining the label of each point. To unify
the coordinate system of the point cloud, we find the center of mass of the point cloud and
use SVD to obtain the principal direction. We perform SVD on the covariance matrix of each
frame of the point cloud to obtain the new origin and principal direction, to establish the
new coordinate system of the point cloud. Subsequently, encoding is performed regarding
the height and semantic information about the point clouds to generate 3PCD-TP. On this
basis, the descriptor undergoes a side-view projection (onto the xOz plane) and a top-view
projection (onto the xOy plane) to give two 2D images. Next, the side-view projection is
stored in vector form in a KD tree for the preliminary search of a potential candidate frame.
Finally, the weighted distance between the two projections of the current frame and the
candidate frame is calculated as the similarity score between both frames for the judgement
of whether a loop closure is constituted.
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Figure 1. Pipeline of 3PCD-TP. The algorithm in this paper is broadly divided into three steps. Firstly,
we pre-process the point cloud. Secondly, the height and semantic information is encoded in the
processed point cloud to generate 3PCD-TP. Finally, we perform a twice projection of the descriptors,
the side-view projection is used to search for candidate frames, and the weighted distance of the
top-view and side-view projections are used to choose the loop closure.

3.2. Preprocessing of Point Clouds

The preprocessing involves two steps. The first step is to acquire semantic information
via SPVNAS [29]. The second step transforms the coordinates of point clouds using the
primary direction provided by SVD and the calculated centroid of point clouds to weaken
the interference to LCD introduced from the rotation and translation of sensors.
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3.2.1. Acquisition of Semantic Information

During the process of data collection, it is inevitable to record pedestrians, vehicles,
and other dynamic objects [30,31] into data. However, descriptors generated at similar
positions could lead to significant differences in local pixel values due to the existence of
such dynamic objects. Therefore, we classify the objects in point clouds via the semantic
information and introduce dynamic scores hereinbelow to rule out the dynamic objects in
point clouds. A voxel-based lightweight semantic segmentation model SPVNAS is selected
in this paper to acquire semantic information. We feed the original point clouds into the
pre-trained model to acquire the semantic information about each of them. We manually
set the priority of different semantics to show their representativeness. We believe static
objects in the scene are more representative. Figure 2 compares the original point clouds
with those from which semantic information has been extracted. On the left are the original
point clouds colored in terms of the intensity value; on the right are the semantic point
clouds colored in terms of the species of the represented objects.
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Figure 2. Comparison diagram between original point clouds and semantic point clouds. (a) and (c)
are two frames of raw data captured from KITTI dataset, and the color represents the intensity of the
point cloud; (b) is the semantic segmentation result of (a); (d) is the semantic segmentation result of
(c). In (c,d), yellow points mean road, green points mean sidewalk, orange points mean building, red
points mean car, light blue points mean vegetation, and blue points mean other ground.
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3.2.2. Unified Coordinate Axis

When a driverless vehicle revisits a region that it has ever visited from a different
angle or lane, or from another close position within the same lane, the positions of all
objects in the scene under the sensor coordinate system are changed with the changes
in the vehicle’s position and pose. This will disenable the descriptor to give a uniform
description of the same scene. To fix the above problem introduced by translation, we first
calculate the centroid of point clouds and then translate the origin of point clouds p in each
frame to their centroid position. Outliers, which would appear while LiDAR is scanning
through the point clouds, could affect the accuracy in calculating the centroid of the point
clouds. Therefore, the average Euclidean distance di between each point pi in p and m
adjacent points pj within its neighborhood is calculated by Formula (1). By assuming that
the distribution of the results is a Gaussian distribution with mean and standard deviation,
one can deem as outliers and filter from the point clouds the points for which the average
distance di goes beyond the interval defined by the global mean distance and the standard
deviation, namely the points beyond the given threshold. Else, if di falls within the range of
the threshold, then pi will be saved. The range of the threshold is defined by Formula (2).

di =
∑m

j=0

∣∣∣ ⇀
pi pj

∣∣∣
m

(1)

µ− σ ·mul ≤ di ≤ µ + σ ·mul (2)

where µ is the global mean distance of point clouds, σ is the standard deviation of global
mean distance, and mul is the coefficient of the standard deviation.

Furthermore, the point clouds at lower positions, such as the ground points, could inter-
fere with the centroid calculation. We filter the point clouds below the height z f (z f = 0.5 m
in this paper) in the z-axis. After screening, the center-of-mass coordinates of the point
clouds are used as the new origin for the holistic translation of the other points. Thus, even
though the driverless vehicle has translated a certain distance in an arbitrary distance over
the visited region, the similarity between descriptors would not be greatly affected.

p′ =
{

p′i
∣∣ p′i = pi − pm

}
(3)

where pm means the centroid of point clouds and p′ is what the point clouds have been
transformed into, with the point pm as the origin of the coordinate system.

During the loop closure detection of real-world scenes, vehicles inevitably revisit the
same place from different angles. This causes the coordinates of the point cloud to change
at the sensor coordinate system. In the process of encoding descriptors, this rotation will
change the order of the descriptor in column, affecting the performance of LCD. To solve
the above problem, we assign a uniform coordinate system to the point cloud. The principal
direction of this coordinate system is only related to the distribution of the point cloud and
is independent to the direction of the sensor’s coordinate system. In order to reduce the
interference between sensor rotation and descriptor generation, we introduce the SVD to
solve the covariance matrix and thus, find the principal direction of the point cloud for
each frame. SVD is close to the idea of PCA in solving a single principal direction. The core
idea of it lies in projecting the point cloud in three dimensions onto a plane to discover its
principal direction [32–35]. The plane is chosen based on the distribution of points with the
maximum variance. A plane with a more scattered distribution has a larger variance and is
more informative. The calculation is as follows: firstly, we obtain the covariance matrix
Σ̂ for the point cloud p′, and subsequently obtain the principal direction of this matrix
by SVD.

Through analysis of the SVD result, we can obtain the principal axis of the point clouds.
However, there are two cases of it: positive and negative. Accordingly, we need to vote the
remaining points, count the points in the two opposite directions, and take the direction
with more points as the final principal direction of the point clouds in the frame. Then,
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we can calculate the rotation matrix between the sensor coordinate system and the new
coordinate system and rotate the point clouds to the given coordinate system. Thanks to
the principal direction by means of SVD, even if the vehicle is rotated in the same position,
we can still obtain a point cloud in a uniform principal direction, which attenuates the effect
of the rotation of the sensor. The procedure of preprocessing is shown in Algorithm 1.

Algorithm 1 Preprocessing Algorithm

Input:
raw point cloud data p;
Output:
point cloud after preprocessing p′;
Algorithm:

1. Filter discrete points whose di is out of range;
2. Remove the point cloud generated after step 1 which has a z lower than zf with

pass-through filtering;
3. Calculate the centroid of the point cloud pm;
4. Move the origin of the point cloud (0,0,0) to the centroid of the point cloud pm;
5. Perform the SVD on the covariance Σ̂ of the point cloud;
6. Choose the direction with more data located in this area as main direction;
7. Mapping the whole point cloud p to the new coordinate and obtain the new point cloud p′

after preprocessing.

Return point cloud after preprocessing p′;

3.3. Construction and Twice Projection of Descriptors
3.3.1. Construction of Descriptors

In order to characterize point clouds more accurately, we design 3PCD-TP for LCD.
First, we divide the point clouds into regions. As shown in Figure 3, given a frame of point
clouds, first they are mapped onto the cylindrical coordinate system, and then segmented
at an angular resolution θ f into Ns equiangular sectors. Each sector is divided further
at a length of di in the radial direction. Furthermore, given that most projection-based
descriptors are centered at the position of LiDAR, the space is divided into a radial sector
with constant angle, distance, and height. At equal di, the sector would be divided into
multiple bins with unequal areas, small in proximity and large at a distance. One feature is
selected for each bin, so that a single feature at a distance can represent large-area regions
while that in proximity can only represent small-area regions. As a result, a difference
in the representativeness of point clouds in each region will appear, hence affecting the
encoding result. Therefore, a dynamic division method is designed in this paper to divide
the sector in equal areas. The dividing procedure is shown in Figure 3a,b.

Subsequently, we divide the point clouds evenly into Nh blocks in the z-axis at a height
resolution of h f . Thus, these point clouds are evenly segmented into Ns × Nr × Nh bins
with equal volume. These bins are denoted by Pijk, with which the point pt(xt, yt, zt) in
them each is related by Formula (11). We transform the results into the 3D rectangular
coordinate system. The results after segmentation are shown in Figure 3d.{

pt(xt, yt, zt) ∈ Pijk

∣∣∣∣ (i− 1) · 2π

Ns
− π ≤ arctan

yt

xt
<

i · 2π

Ns
− π,

rj−1 ≤
√

x2
t + y2

t < rj,

h f · (k− 1) ≤ zt ≤ h f · k
}

(4)

where 0 ≤ i ≤ Ns, 0 ≤ j ≤ Nr, 0 ≤ k ≤ Nh.
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Figure 3. 3PCD-TP construction process. (a) The segmentation process of point clouds; (b) top-view
projection of point clouds, the way to divide the ring is marked with a red arrow; (c) visualization
of bins. Red points mean car, green points mean road, blue points mean other ground; (d) the 3D
tensor generated from point clouds. The different colors mean 18 different tags that can represent the
current bin.

After completing the division of point clouds, it is time to perform feature selection
and encoding for the point clouds in each bin to generate a tensor of size Ns × Nr × Nh,
namely the 3PCD-TP descriptor. In this paper, we choose to extract the height and semantic
information about the point clouds to encode the descriptor. Since our descriptor is three-
dimensional, it already contains the height information in the z-direction. We could save the
semantic information about the point clouds within the region in the voxel value of each bin.
We begin by making statistics of the semantics in each bin and single out the semantic value
best representative of the region, i.e., the semantic value of the most significant number
of points with the same semantics as the semantics aijkI of the bin. We use aijk to save the
semantic values aijkI in each bin which can represent the voxel of our 3D descriptor.

3.3.2. Twice Projection

In order to improve the efficiency of calculating the similarity between descriptors, we
project 3PCD-TP twice in the side view direction and top view direction, thus downscaling
to generate two sets of two-dimensional descriptors. Figure 4d,f shows the two two-
dimensional sub-descriptors generated after twice projection of the 3D descriptor 3PCD-TP,
where (d) is the result of the side-view projection and (f) is the result of the top-view
projection. The part close to red in Figure 4 indicates that the height of the point cloud in
the region is high, while the blue part indicates that the height of the point cloud in the
region is below the ground or not observed due to occlusion.
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Figure 4. Display of the twice projection results of 3PCD-TP. (a) The point cloud; (b) the way
point clouds are divided; (c) 3D descriptor 3PCD-TP. Different colors mean 18 different types of
semantic information; (d) visualization of the side-view projection of 3PCD-TP. Different colors
mean 18 different types of semantic information; (e) D-Hash results of the side-view projection;
(f) visualization of the top-view projection of 3PCD-TP. The colors mean dynamic height of each bin
(from 0 to 5 m).

The rotational invariance of the descriptors is challenged by the fact that the principal
direction selected in the preprocessing stage, in very specific scenarios (e.g., when obscured
by objects in the near vicinity), causes a small magnitude rotation of the principal direction
of the descriptors in the same location. To strengthen the rotational invariance of our
descriptors, we introduce the side-view projection of 3PCD-TP. During the first projection
to the side direction, we project the data in the direction that preserves the annular data
acquired from a round of LiDAR scanning. This ring-wise information does not change
with rotation, which means that the projection has robust rotation invariance. During the
side-view projection, we project the descriptor in the direction Nr × Nh, and the result
of this projection is called the ring key. We statistically determine the most frequent
semantic values in the Ns direction and assign them to ajk as the pixel of each bin in the
side-view projection.

(Ns × Nr × Nh)proj ⇒ Nr × Nh (5)

ajk = f (S) ∈ RNr×Nh , S =
{

aI jk, a2jk, a3jk, . . . , aNs jk

}
(6)

where the symbol ‘⇒’ represents the projection onto a 2D plane. f (∗) represents a function
that is used to obtain the label with the highest frequency in the label set. In formula (6), S
means a set of semantic labels. The ring key calculated from the above formula possesses
rotation-invariance and saves the height and semantic information about the original point
clouds. We make a preliminary search for the current frame according to the side-view
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projection result of 3PCD-TP, reading the pixels ajk of the ring key on a column-wise basis,
and converting them into a set of vectors to save in the KD tree for coarse search. Since the
result of the primary projection retains the feature of the original point clouds, the number
of candidate frames can be reduced appropriately. Therefore, this projection method slightly
improves the efficiency of the initial search.

In the secondary projection, 3PCD-TP is projected to the Ns × Nr direction, which
is called the sector key. The frequent occurrence of moving dynamic objects during the
driving process leads to a decrease in the accuracy of loop closure detection as well as
positional estimation. So, we classify each point according to the semantic information and
determine whether it is a dynamic object. If yes, a small weight is assigned to that point,
which is called the dynamic score ϕ. ϕ indicates the expected weight that we anticipate in
the computation. We introduce the concept of dynamic score for two reasons: to reduce the
impact of dynamic objects on descriptor calculation [36], and to not completely deprive
dynamic objects of their features and let them participate in the computation. We consider
the information of dynamic objects as a kind of information and therefore, do not delete it
completely. Each pixel in the sector key stores the dynamic height aij. We use Equation (9)
to reduce the impact of dynamic objects on our scene recognition, rather than eliminating
the presence of dynamic objects altogether. The reason for encoding the height information
is also that this feature can better represent the structural information in the current scene.
The dynamic height can be obtained by multiplying the dynamic score by the height in the
projection direction (z-direction).

(Ns × Nr × Nh)proj ⇒ Ns × Nr (7)

ϕ(p) =


1, i f (p) is not dynamic.
0.1, i f (p)is dynamic.
0, i f (p)is none.

(8)

aij = max
[
ϕ
(

pij
)
· h
(

pij
)]
∈ RNs×Nr (9)

where pij means the set of points in row i and column j, h
(

pij
)

means the set of the points’
height. This projection of 3D descriptors onto two groups of 2D descriptors proposed in
this paper can preserve more point cloud features and better represent the point cloud of
the current frame compared to a single 2D descriptor.

3.4. Generation of the Weighted Distance Function

To enhance the precision of descriptor similarity calculation, we adopt a calculation
method using the weighted distance instead of the single distance. As shown in Figure 4e,
we utilize the D-Hash algorithm, an image similarity algorithm used for binary encoding
of the side-view projection result of 3PCD-TP. In our method, the D-Hash of each side-view
projection is generated only once and is then stored. Only the Hamming distance between
frames is calculated for the subsequent similarity calculation. The efficiency of D-Hash
is higher than other similarity calculation algorithms in our method. If the pixel ajk in a
certain region of the side-view projection is greater than the pixel a(j+1)k in its right-hand
side regions, then the binary hash code for this region shall be set as 1, else 0, to generate
a 2D matrix M consisting only of 0 and 1. Using M as the “fingerprint” of the side-view
projection for coarse search, we finally retrieve N candidate frames most similar to the
current frame.

M(j, k) =

{
1, i f ajk > a(j+1)k
0, i f ajk ≤ a(j+1)k

(10)

We denote the 3PCD-TP of the current frame and the ith candidate frame by lc and lpi,
respectively, where lpi was taken from the set {lp1, . . . , lpN}. For the 3PCD-TP of the current
and candidate frames, we make an initial attempt to use the cosine distance between their
top-view projections as the result of fine search. However, the cosine distance turns out to
be very sensitive to even a tiny displacement. The translational motion of a point of view
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could cause a dramatic decrease in cosine similarity. To evaluate the effect of LCD more
accurately, a weighted distance function is proposed in this paper to weight the Hamming
distance of the side-view projection and the cosine distance of the top-view projection of
each descriptor. We denote the similarity between lc and lpi by the weighted distance dm.
The smaller the value of dm, the closer the distance, hence the higher the similarity between
lc and lpi, and the greater the possibility of forming a loop closure. The weighted distance
can be calculated as below:

dh
(
lc, lpi

)
=

∑Nh
k=1 ∑Nr

j=1

(
lc(j,k) ⊕ lpi(j,k)

)
Nr·Nh

(11)

dcos
(
lc, lpi

)
= 1−

cpi
j · c

c
j

‖ cpi
j ‖·‖ cc

j ‖
, j ∈ [0, Ns] (12)

dm
(
lc, lpi

)
= β · dcos

(
lc, lpi

)
+ (1− β) · dh

(
lc, lpi

)
(13)

where: ⊕ denotes XOR; lc(j,k) and lpi(j,k) denote the binary values of the side-view pro-
jections of lc and lpi, respectively, at the pixel point at the position (j, k); dh

(
lc, lpi

)
is the

Hamming distance between lc and lpi; cc
j and cpi

j are the vectors for the jth column under
the secondary projections of lc and lpi, respectively; β is the weight. We use the Hamming
distance of the primary projection and the cosine distance of the secondary projection to
calculate the similarity of two frames of point cloud. These two approaches show the
differences between descriptors from different projection angles. We select the frame lPi
with the minimum weighted distance as the closest candidate frame matching the current
frame lc.

lPimin = argmin
i∈N

(
dm
(
lc, lpi

))
, dm ≤ γ, lpi ∈

{
lp1, . . . , lpN

}
(14)

where γ is the threshold of distance used to judge whether a loop closure is constituted, the
set N are the candidate frames retrieved from the cursory search through the KD tree. If
the weighted distance dm between lPimin and lc is greater than the given threshold, then the
corresponding frame would not be assumed as a loop frame. To avoid matching errors,
we adopt ICP for registration of the closest candidate frame lPimin for which the weighted
distance is smaller than the threshold. If the result in the algorithm is convergent, then it
would be accepted as a right loop closure.

4. Experiments

This section elaborates on our experiments using the public dataset KITTI and another
dataset collected from the Jilin University (JLU) campus and makes a comparison with
the currently mainstream LCD methods such as SC [4], ISC [5], M2DP [23], and ESF [22].
All the above algorithms are implemented based on C++. In the method of this paper, the
dimensions of the division of 3PCD-TP are set as Ns = 60, Nr = 20, and Nh = 10, the angular
resolution as θ f = 6◦, the z-axis resolution as h f = 0.5 m, and the number of nearest loop
frames searched through the KD tree as 5. The 50 frames are set at the closest distance to the
current frame to avoid being searched during loop closure search. All above experiments
are conducted on a machine with mainboard ASUS Z9PE-D8 WS, CPU Inter Xeon E5-2680
v2 @2.20 Ghz*2, graphics card GTX1060, and 8 GB memory.

4.1. Experimental Results over the Public Dataset
4.1.1. Introduction to the Dataset KITTI

KITTI [7] Odometry is a classic public dataset widely applied in SLAM, visual odom-
etry, and other tasks. A vehicle-borne 64-line LiDAR collected it (Velodyne HDL-64E),
containing a total of 11 sequences (00–10) with the ground truth, among which the se-
quences containing loop closures are 00, 02, 05, 06, 07, 08, and 09; the sequences 00, 05, 06,
07, and 09 contain only unidirectional loop closures, the sequence 08 contains only reverse
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loop closures, and the sequence 02 contains both unidirectional and reverse loop closures.
Figure 5 shows the regions of loop closure ground truth for sequences 00, 02, 05, 06, 07,
and 08 in KITTI dataset. The obverse loop closure regions are marked by solid boxes, as
shown in Figure 5a–e. In Figure 5b,f, the region marked with a dashed box is the reverse
loop closure, where the vehicle revisits from the opposite direction.
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(b) KITTI-02; (c) KITTI-05; (d) KITTI-06; (e) KITTI-07; (f) KITTI-08. Different colors indicate different
loop closure regions. Solid box and dotted box indicate obverse loop closure and reverse loop
closure, respectively.

4.1.2. P-R Curves over the Dataset KITTI

In order to weigh the LCD effectiveness in the algorithm in this paper, we calculate
the precision (P) and recall (R) of 3PCD-TP and the other mainstream LCD methods over
the public dataset and plot their P-R curves for comparison. Here, the precision refers to
the probability that all loop closures detected by the algorithm are true ones, namely the
ratio of the number of positive samples of the right loop closures to that of the detected
loop closures; the recall refers to the probability that all true loop closures are detected to
be the right ones, namely the ratio of the number of the positive samples that are detected
to be the right ones to the number of all positive samples.

Figure 6 presents the P-R curves of our method and the four algorithms SC, ISC,
M2DP, and ESF over the sequences 00, 02, 05, 06, 07, and 08 for the dataset KITTI. The
larger the area enclosed between the P-R curve and the coordinate axis, the greater the
effectiveness of LCD. Overall, the method in this paper exhibits the top performance in
most of the sequences except for the sequence 06, as compared to the other four algorithms.
The area covered under the P-R curve of the method ESF is the smallest in most cases, with
P showing a significant downtrend with the increase of R. The method M2DP has quite
an unstable behavior over these six sequences: it has excellent LCD effectiveness over all



Remote Sens. 2023, 15, 82 14 of 29

the sequences 00, 02, 05, and 06, but the curve shows an abrupt decline over the sequences
07 and 08. The main reason for the above phenomena is that neither the algorithm ESF
nor M2DP possess a perfect rotation-invariance. When the sensors undergo a change in
angle of view, a significant difference appears in the descriptors generated by them, thereby
leading to the incidence of loop closure misdetection. Both SC and ISC demonstrate high
level of performances in the graph, except that the main algorithmic difference between
both is that the former uses maximum height, while the latter adopts intensity values for
encoding. Over the four sequences 00, 05, 06, and 07 containing only unidirectional loop
closures, these methods have the most similar effectiveness to the method proposed in
this paper. However, over the sequence 02, there appears a significant gap between these
two methods and ours. The main reason is that there are unidirectional loop closures
and reverse ones in sequence 02. Both rotation and translation could change the column
orders and local pixel values of the descriptors generated by them, affecting the precision
of LCD. This effect is more obviously manifested over the sequence 08, which only contains
reverse loop closures. However, the method in this paper had redefined the origin of
coordinates and the principal axis direction of point clouds according to their distribution
at the preprocessing stage of point clouds, mitigating the effects of vehicle rotation and
translation on the encoding process. Therefore, it turns out with better LCD effectiveness
and a greater area covered under the P-R curve in the face of the reverse loop closure scenes
in the sequences 02 and 08.
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4.1.3. Maximum F1-Score and EP Value Results over the Dataset KITTI

In addition to the P-R curve plots, we also use maximum F1-score and extended
precision (EP) to weigh the performance of this algorithm quantitatively. Maximum F1-
score is the harmonic mean of precision and recall, which is used to weigh the overall
performance of LCD. A greater F1 value coincides with a greater effectiveness of LCD. EP
is designed exclusively for LCD algorithms and is used to reflect the robustness of LCD
methods. Maximum F1-score is defined as:

F1 = 2× P× R
P + R

(15)
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Extended precision is defined as:

EP =
P0 + R100

2
(16)

where P is precision, R is recall, P0 is the precision at the minimum recall, and R100 is the
recall at the maximum precision.

Table 1 lists the maximum F1-scores and EPs of different methods. Evidently, the
F1-scores and EPs of 3PCD-TP are both higher than their counterparts of the other four
mainstream methods over most of the sequences. The average maximum F1-score of our
method is 0.947 over the dataset KITTI, approximately 7.5% higher than that (0.881) of
SC, which has the best performance among the remaining algorithms. The average EP
value of 3PCD-TP also reaches 0.857, approximately 11.6% higher than that (0.768) of the
second-ranking method SC. Our methods’ F1-score and EP value are higher than their
counterparts in the other four algorithms over the sequences 00, 02, 05, and 07. The F1-score
is slightly lower than that in the algorithm SC over the sequence 06, but the highest EP
value is maintained among the five algorithms. Our method has the highest F1-score over
the sequence 08 but an EP value slightly lower than that in the algorithm ISC. The data in
Table 1 quantitatively demonstrate that our proposed method is superior in performance
and stability to the currently prevailing methods. This coincides with their behaviors in
P-R curves, further showing the effectiveness of our proposed method.

Table 1. F1 max scores and EP on KITTI dataset.

Methods M2DP ESF SC ISC Ours

00 0.924/0.491 0.580/0.482 0.961/0.796 0.870/0.638 0.973/0.906
02 0.812/0.472 0.575/0.438 0.901/0.892 0.857/0.703 0.913/0.898
05 0.897/0.484 0.481/0.250 0.931/0.746 0.883/0.647 0.967/0.886
06 0.930/0.717 0.623/0.547 0.976/0.800 0.941/0.812 0.965/0.931
07 0.436/0.062 0.075/0.017 0.857/0.875 0.800/0.833 0.960/0.917
08 0.221/0.026 0.303/0.143 0.657/0.501 0.712/0.614 0.902/0.601

Avg 0.703/0.375 0.440/0.313 0.881/0.768 0.843/0.709 0.947/0.857
Notes: On the left-hand side are maximum F1-scores, and on the right-hand side are EPs. The best scores are
marked in bold.

4.2. Experimental Results over the Campus Dataset
4.2.1. Introduction to the Campus Dataset

The team JLUROBOT owns multiple data-collecting platforms that can be applied in
data-collection tasks under different road conditions. Figure 7 displays some of such col-
lecting platforms designed and set up by the team, among which the collecting platforms J5
and Avenger are dedicated to data collection in separate environments, such as mountains,
forests, and cross-country roads. In order to verify the effectiveness of the algorithm in this
paper when the sensors undergo a wide-angle rotation and a small-range translation, our
team designs specific data collection routes and collects data from the campus environment
using the mobile platform of Shanghai Volkswagen Tiguan, which is equipped with a
rotation-type LiDAR VLP16 of Velodyne and an inertial navigation system (INS) npos220s.
Figure 8 displays our vehicle and related devices. During the data collection process, the
vehicle was traveling at a speed of 30 km/h, the LiDAR was collecting point cloud data at
a frequency of 10 Hz, and the INS was collecting (longitude, latitude, and altitude) data at
a frequency of 125 Hz, to provide the ground truth for LCD.
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with sensors; (b) arrangement of the vehicle-borne sensors; (c) LiDAR sensors surrounding Velodyne
VLP-16E; (d) INS npos220s.

4.2.2. P-R Curves over the Campus Dataset

In order to verify the LCD effectiveness of our algorithm in real-world scenes, we
collect four segments of data from the JLU campus. Among them, School-01 contains
loop closure data of visiting a same position from different angles and lanes, the data
of School-02 and School-04 contain multiple segments of reverse loop closures, and the
data of unidirectional loop closures predominate School-03. The above four segments of
data cover all possibilities of loop closures mentioned in the motivation of this paper. The
four graphs in Figure 9 display the effectiveness of each algorithm over the four segments
of data. Overall, the trends of P-R curves in all algorithms over the campus dataset of
Jilin University are roughly the same as those over the dataset KITTI. The area covered
under the P-R curve of our algorithm is the largest in whichever of the four graphs. The
algorithms ESF and M2DP remain the poorest performing two of all, and the behavior of
M2DP remains quite unstable. Both algorithms SC and ISC still keep good effectiveness in
real-world scenes, and they are the two which have P-R curves similar to our algorithm.
Specifically, over the segment of data School-03 containing only unidirectional loop closures,
the effectiveness of SC and ISC is basically consistent with that of our algorithm over the
sequences KITTI-00, 05, 06, and 07. The P-R curves of the three algorithms are quite similar,
each covering a great area, while our algorithm is particularly outstanding. Over the data
of School-02 and 04 containing only reverse loop closures, a gap starts to appear between
the effectiveness of the algorithms SC and ISC and that of our algorithm, the same case as
that over the sequence KITTI-08. Over the data of School-01, the behavior of our algorithm
remains stable, with the P-R curve always residing on the top. From the perspective of
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data, it is a relatively simple problem to detect unidirectional loop closures in LCD tasks.
The revisiting of the vehicle to a previously visited region is a continuous process. With
no rotation but only small-range translation, the probability that similar point clouds will
appear in two data fragments is very great. As long as the descriptor has good ability in
describing scenes, it can still achieve satisfactory detection results even lacking adequate
rotation- and shift-invariances, for example, SC and ISC. However, when the vehicle returns
to the visited region from a different angle and/or a different lane (e.g., School-01, 02, and
04), rotation and translation do not change the distribution of the objects around the vehicle,
but only change their positional relationship in the sensor coordinate system. At this
moment, the descriptor is required to have the ability to keep the data content and structure
unchanged or the ability to copy with rotational and translational changes. Evidently, the
descriptor proposed in this paper has a stronger ability than all the other four algorithms
in coping with such scenes.
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4.2.3. Evaluation of Maximum F1-Score and EP Value

We conducted a quantitative analysis of the five algorithms still using maximum
F1-score and EP value over the campus dataset. It is also evident from Table 2 that the
average maximum F1-score of 3PCD-TP over the four segments of data is 0.922, 5.25%
higher than that (0.876) of the second-ranking algorithm SC and 10.29% higher than that
(0.836) of the third-ranking algorithm ISC. The average EP of our algorithm is 0.775, 15.50%
higher than that (0.671) of SC and 16.37% higher than that (0.666) of ISC. In the dataset
School-03, our method has a very close F1-score and an EP value to their counterparts of
SC and ISC, indicating that all these three solutions demonstrate very great robustness in
coping with a single unidirectional loop closure. Compared to the other four, our method
is particularly outstanding over the datasets School-01, School-02, and School-04 with
considerable changes in angle or view of the sensors. Quantitative analysis from the above
results reveals that our algorithm has better effectiveness in real-world scenes than the other
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four algorithms. Combining the above P-R curves for qualitative analysis, the descriptor
3PCD-TP in this paper can effectively address the issue of rotation and translation of
sensors, especially in the case of reverse loop closures, due to visiting the same scene
from a different direction or lane or from adjacent positions within the same lane. This is
owing mainly to the fact that 3PCD-TP transforms the coordinate system of point clouds by
analyzing their distribution, thus addressing the difficulty of rotation- and shift-invariances
of descriptors. Meanwhile, the semantic information and multilayer coding method retains
the content and structure of point clouds to the maximum extent, ensuring a strong scene
description ability of descriptors. Our method demonstrates the best effectiveness among
the other mainstream methods over the campus dataset and very strong anti-interference
and generalization abilities.

Table 2. F1 max scores and EP on School dataset.

Methods M2DP ESF SC ISC Ours

School-01 0.242/0.441 0.365/0.300 0.834/0.671 0.801/0.671 0.915/0.901
School-02 0.963/0.453 0.337/0.083 0.890/0.513 0.888/0.572 0.924/0.613
School-03 0.767/0.243 0.470/0.503 0.965/0.967 0.929/0.820 0.983/0.983
School-04 0.772/0.508 0.391/0.250 0.816/0.531 0.727/0.602 0.867/0.603

Avg 0.686/0.411 0.391/0.284 0.876/0.671 0.836/0.666 0.922/0.775
Notes: On the left-hand side are maximum F1-scores, and on the right-hand side are Eps. The best scores are
marked in bold.

4.2.4. Rotation-Translation Comparative Experiment

In order to further verify that our method could effectively cope with the issues of
rotation and translation, we visualized the top-view projection of 3PCD-TP and the 2D BV
image of SC and made a comparison. We translated the point clouds to differing degrees in
the x- and y-directions, then rotated them clockwise by 10◦, and compared the descriptors
generated from the two cases. The four-point cloud maps on the left-hand side of Figure 10
are a random frame in the datasets. They underwent the separate operations of rotation by
30◦, translation by 5 m, and translation by 5 m at the same time of rotation by 30◦. The forms
on the right-hand side of Figure 10 are the results after visualizing the descriptor 3PCD-TP
of these point clouds and the descriptor of SC. SC has changed to a large extent relative to
its initial state under the circumstances of translation, rotation, and both translation and
rotation. When translation occurs, the pixel value of SC will change in the row direction,
and the visualized result of the 2D matrix will differ from the original point clouds. When
rotation occurs, the pixel value of the SC descriptor would have little change, but the
order of columns would vary somewhat from that of the descriptor generated from the
original point clouds. When both rotation and translation concur, the change in SC is a
combination of the two results mentioned above, including both the variation in pixels
and the change in column orders. For 3PCD-TP, the top-view projection drawings via the
three operations mentioned above are roughly the same. Therefore, in extreme cases, say
the vehicle revisits the same position from the opposite lane, the vehicle will translate and
rotate. The descriptor generated by SC would look much like what is shown in the fifth
row on the right-hand side of Figure 10, bearing low similarity to the descriptor generated
from the original point clouds, bringing down the success rate of loop closure matching. In
contrast, our method sets up a uniform coordinate system and prescribes its center and
primary direction for 3PCD-TP according to the distribution of point clouds. The results of
encoding are immune to rotation or translation. Therefore, our method is more superior to
the prevailing ones in the event of translation or rotation.

In addition, we captured two frames of the point cloud from KITTI-08 (frame 756
and 1452) with reverse loop closure from each other, and generated descriptors with SC
and our method. As shown in Figure 11, we can see that the point cloud will undergo
a small lateral shift as well as a 180◦ rotation when the reverse loop closure occurs. In
this scenario, the SC changes considerably, while the top-view projection generated by
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our method changes relatively little. This is due to the ability of our method to cope with
rotations as well as translations. Furthermore, the descriptors are encoded with better scene
differentiation capability.
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Figure 10. Comparison of the descriptors generated after the translation, rotation, and both rotation
and translation of point clouds. (a) Point clouds with different transformations. The red color means
origin point cloud and the green one means transformed point cloud. (b) The descriptors generated
by SC and the top-view projection of 3PCD-TP; the second column with different colors means the
maximum height (from 0 to 5 m), and the third column with different colors means the dynamic
height (from 0 to 5 m).
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Figure 11. Descriptors in real scenarios. (a) The point cloud at frame 756 of KITTI-08. (b) The
descriptor generated by SC of (a) and different color means max height (from 0 to 5 m). (c) The
top-view projection of 3PCD-TP of (a) and different color means dynamic height (from 0 to 5 m).
(d) The point cloud at frame 1452 of KITTI-08 which can form loop closure with frame 756. © The
descriptor generated by SC of (d). (e) The descriptor generated by SC of (d). (f) The top-view
projection of 3PCD-TP of (d).
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4.2.5. Application of 3PCD-TP in SLAM

We map over the campus dataset to verify the real-world application effect of our
algorithm in SLAM. We add our LCD method into the framework LIO-SAM [37] to judge
whether the current frame can construct a loop closure with the historical frames. Our
mapping results over the campus data School-01, 02, and 03 are shown in Figure 12, where
(a), (e), and (i) display the coincidence between the mapping trajectories with the three
segments of data and the aerial photos of real roads. Due to cumulative errors in the
odometry, the SLAM algorithm is prone to map drift and deformation over such data with
long and complicated trajectories. However, it is evident from the figures that our mapping
trajectories are highly coincident with the patterns of real roads. This is mainly because
our method can pinpoint and build interframe relations, correct mapping trajectories, and
eliminate the effect of cumulative errors on the mapping process. Figure 12b,f,j display the
visualized results of the point cloud maps. It is clear from them that the built maps are
free of drift, ghosting, and fracture, and the overall layout of buildings and the stretching
directions of roads in them are one-to-one, corresponding to the scenes in the three BV
images of (a), (e), and (i). Figure 12c, (g), (k), (d), (h), and (l) display the information about
local LCD and loop closure position distribution, respectively. (c), (g), and (k) are enlarged
views of the positions circled in (b), (f), and (j), all of which are evidently located at the
loop closure sections marked in red in (d), (h), and (l). Moreover, it remains possible to
pinpoint the connection between the current and historical frames (as shown by the yellow
line segment) from the subfigures without coincidence between trajectories. As shown
from all the above phenomena, the SLAM algorithm with 3PCD-TP as the LCD module
can accurately detect loop closures, without errors and oversights, in real-world scenes.
Moreover, it can build high-precision maps with the aid of 3PCD-TP.
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Figure 12. Application of 3PCD-TP in SLAM. (a) BV images of School-01; (b) Point cloud map of
(a); (c) Enlarged figure circled in (b); (d) Actual trajectory diagram of (a); (e) BV images of School-02;
(f) Point cloud map of (e); (g) Enlarged figure circled in (f); (h) Actual trajectory diagram of (e); (i) BV
images of School-03; (j) Point cloud map of (i); (k) Enlarged figure circled in (j); (l) Actual trajectory
diagram of (i).



Remote Sens. 2023, 15, 82 21 of 29

4.2.6. Reverse Loop Closure Detection in Real-World Scenes

In order to verify the effectiveness of our algorithm in the scenes with reverse loop
closures, we truncate a segment of data containing reverse loop closures from School-
01 and School-02 each. As shown in Figure 13, it can be seen from the parts circled by
the blue dotted lines in (b) and (d) that there are multiple yellow connecting lines at
adjacent positions of two parallel trajectories, all being the loop closures detected by the
algorithm in this paper. Although the vehicle was in a different lane with certain translations
when revisiting the region, our algorithm remains capable to correctly recognizing loop
closures. The connecting lines between loop closures are neat and well-aligned, further
demonstrating that our algorithm is free of oversights and errors in detection. Furthermore,
as shown in Figure 14, we plot the level of similarity between loop frames and their
level of similarity fluctuation under these segments of data for 3PCD-TP and SC. In the
figure, the abscissa axis denotes the order of loop frames, and the vertical axis denotes the
minimum distance between the current frame and the nearest candidate loop frame. In
addition, the SC method is in orange, and our method is in blue. The smaller the distance
between frames, the higher the similarity between them, and the more likely it is that a loop
closure is constituted. From the two histograms of Figure 14a,b, the inter-frame distances
calculated by our method are much smaller than those by SC, suggesting that the descriptor
generated by our method has higher consistency and turns out to be more effective in
detecting reverse loop closures than SC. From the overall fluctuation in the histograms,
the fluctuation of similarity between our descriptors is smaller and steadier than that of
the SC method, showing that the proposed method has higher robustness in coping with
the issue of reverse loop closures. The above results indicate that this paper’s innovation
is effective in preprocessing and encoding point clouds. According to the distribution of
point clouds, translating the origin of point clouds and redefining the coordinate system
can effectively promote the rotation- and shift-invariances of descriptors. 3D descriptors
can reduce the problem of loss of point cloud information during the encoding process
to some extent. Twice projection can also enhance the algorithm’s ability to discriminate
between the same scene.
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Figure 13. Effectiveness of the algorithm on reverse loop closures. (a,c) are the aerial photos of these
segments of data; (b,d) are the effects of reverse loop closure detection by the 3PCD-TP algorithm
over these two segments of data. The loop closure we mark with blue dashed line, and the yellow
connecting line represents the loop closure constraint.
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x-axis represents the frame ID, and the y-axis represents the distance between current frame and
the candidate that is the most similar to it. (a) Results for a section of the reverse lane in School-01;
(b) results for a section of the reverse lane in School-03.
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4.3. Analysis of Computation Time
4.3.1. Time Comparison Experiment

To evaluate the real-time performance and computational complexity of the proposed
method, we adopt the following methods for analysis:

By analysis, the computation complexity of our method is O(Nr × Nh + n). Where Nr
is the number of rings, Nh is the number of layers of the descriptors, and n is the number of
the frames of the point cloud.

In order to evaluate the real-time performance and efficiency of our proposed method,
we design the following experiment. For each dataset, we calculate and accumulate the
processing time of each frame of the point cloud from the beginning of the generation of
descriptors to the final judgment of the loop closure. Furthermore, we divide the total
processing time above by the total number of frames to obtain the average time. Table 3
shows the average time calculating the loop closure per frame of our method and the
compared methods. In Table 3, the average time required for our method is slightly
less than the other methods in KITTI-02, KITTI-05, KITTI-08, School-02, School-03, and
School-04. Even though our method is slightly slower than the other methods in KITTI-00,
KITTI-06, KITTI-07, and School-01, it is still within the acceptable range, satisfying the
real-time nature of loop closure detection.

Table 3. Average execution time over KITTI dataset and JLU campus datasets.

Methods
Avg Execution Time(s/Query)

M2DP ESF SC ISC Ours

KITTI-00 0.3655 0.0728 0.0867 0.0697 0.0711
KITTI-02 0.3871 0.0784 0.0861 0.0687 0.0675
KITTI-05 0.3869 0.0785 0.0885 0.0678 0.0663
KITTI-06 0.3827 0.0664 0.0846 0.0656 0.0701
KITTI-07 0.3451 0.0571 0.0748 0.0608 0.0631
KITTI-08 0.3628 0.0751 0.0772 0.0640 0.0618

School-01 0.3427 0.0492 0.0608 0.0530 0.0589
School-02 0.3468 0.0552 0.0611 0.0537 0.0502
School-03 0.3431 0.0725 0.0604 0.0533 0.0529
School-04 0.3455 0.0732 0.0509 0.0482 0.0479

Notes: The best results are marked in bold.

4.3.2. Distance Function Efficiency Comparison

In addition, we compare the efficiency of the D-Hash algorithm with other non-
binary image distance functions, such as mean absolute differences (MAD), sum of absolute
differences (SAD), and sum of absolute differences (SAD). We design two sets of comparison
experiments. As shown in Table 4, we calculate the time spent on D-Hash for a single
frame-to-frame side-view projection and compare it with other non-binary image functions.
We select 100 sets of side-view projection maps (20 × 10 size images) from each dataset,
calculate the time, and take the average. From Table 4, the D-Hash algorithm in this
paper takes 0.00499 ms, which is slightly higher than 0.00480 ms for MAD and 0.00488
ms for SAD, and lower than 0.00929 ms for SSD. In addition, it can be seen in Table 4
that most of the D-Hash time is spent on the hashing process of the projections. The
calculation of the Hamming distance process only accounts for 19.7% of the total process of
the single calculation.
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Table 4. Time comparison of different distance functions.

Methods Time (ms)

MAD 0.00480
SAD 0.00488
SSD 0.00929

Ours Hamming Distance 0.000982
Ours D-Hash Generation 0.00401

Ours Total 0.00499

When we detect loop closures, we need to calculate the similarity between the current
frame and each candidate (5 candidates are selected in this paper). Each frame with D-Hash
only needs to be hashed once and saved for subsequent calculations, so that the similarity
search can save time and only calculate the Hamming distance between the current frame
and the candidate frames. In contrast, other non-binary image distance functions need to
calculate the distance five times, frame by frame. Table 5 shows the time computed by D-
Hash and the remaining three algorithms for single-frame descriptor side-view projection
on different datasets. From Table 5, D-Hash takes the least time to retrieve the loop closure
frames of single-frame descriptors in the actual loop closure detection process, which is only
37.4% of the time required by MAD (the best performer among the other three methods).

Table 5. Time comparison of different distance functions in the actual loop closure detection.

Methods
Avg Time (ms/Query)

MAD SAD SSD Ours (D-Hash)

KITTI-00 0.0243 0.0247 0.0467 0.00900
KITTI-02 0.0241 0.0244 0.0463 0.00899
KITTI-05 0.0240 0.0244 0.0464 0.00897
KITTI-06 0.0240 0.0243 0.0463 0.00901
KITTI-07 0.0243 0.0249 0.0468 0.00899
KITTI-08 0.0239 0.0242 0.0464 0.00900

School-01 0.0239 0.0244 0.0461 0.00897
School-02 0.0232 0.0236 0.0467 0.00897
School-03 0.0239 0.0241 0.0459 0.00899
School-04 0.0242 0.0250 0.0470 0.00899

Avg 0.0240 0.0244 0.0465 0.00899
Notes: The best results are marked in bold.

4.4. Effectiveness Evaluation Experiment
4.4.1. Comparison Experiment

In order to analyze the robustness of our descriptors from multiple perspectives, we
add the same preprocessing operations to all four algorithms, SC, ISC, M2DP, and ESF,
to specify the center of mass and principal direction of the point cloud, thus unifying
the coordinate system. We then compare these methods with 3PCD-TP in KITTI and the
campus dataset. As shown in Figures 15 and 16, we plot the PR curves for the five methods.
Our algorithm still obtains the best results in most sequences. SC and ISC become more
competitive after the same coordinate transformation. Especially on the KITTI-02 and
KITTI-08 sequences with reverse loops, it shows a better loop closure detection result. This
shows that our preprocessing approach can effectively improve the detection of reverse
loop closure. In addition, we also list the F1 scores and EP values corresponding to these
methods in Table 6. The above experiments show that: our method still maintains a high
level of performance among all methods. On the one hand, our proposed preprocessing
scheme has good results and is adaptable to other projection-based algorithms, which can
help other algorithms improve the detection of reverse loop closure. On the other hand,
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it indicates that, besides the preprocessing mechanism, other parts of the algorithm also
contribute to the improvement of the effect.
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Table 6. F1 max scores and EP on KITTI and campus dataset.

Methods M2DP ESF SC ISC Ours

KITTI-00 0.856/0.487 0.570/0.450 0.968/0.811 0.908/0.810 0.973/0.906
KITTI-02 0.776/0.455 0.527/0.417 0.911/0.898 0.889/0.729 0.913/0.898
KITTI-05 0.816/0.469 0.460/0.308 0.946/0.576 0.948/0.623 0.967/0.886
KITTI-06 0.841/0.450 0.615/0.484 0.977/0.577 0.976/0.524 0.965/0.931
KITTI-07 0.490/0.100 0.137/0.042 0.880/0.875 0.870/0.875 0.960/0.917
KITTI-08 0.250/0.080 0.305/0.174 0.865/0.517 0.829/0.562 0.902/0.601
School-01 0.735/0.375 0.385/0.308 0.914/0.707 0.739/0.554 0.915/0.901
School-02 0.864/0.468 0.487/0.400 0.897/0.503 0.891/0.572 0.924/0.613
School-03 0.770/0.300 0.458/0.313 0.822/0.590 0.799/0.507 0.983/0.983
School-04 0.725/0.455 0.406/0.389 0.811/0.512 0.744/0.604 0.867/0.603

Notes: The best results are marked in bold.

4.4.2. Ablation Experiment

We delete the side-view projection from our method and generate only a single top-
view projection, using the top-view projection to search for and compute similarities in
KITTI datasets. As shown in Figure 17, our method with the twice projection is better
than the single projection in different datasets. This is because the result of our secondary
projection generates two sets of sub-descriptors. The side-view projection has rotational
invariance, so we can quickly search for candidates by the results of the side-view pro-
jection. While the top-view projection has a good representation of the current frame, it
can better characterize the structural information of the point cloud. Thus, the side-view
projection and the top-view projection work together to enhance the LCD effectiveness of
our descriptor.
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5. Conclusions

In this paper, a 3D descriptor with twice projection named 3PCD-TP has been proposed
and consequently used to calculate the similarity between scenes. We have conducted
separate comparative experiments with the mainstream LCD methods over the dataset
KITTI and the campus dataset of Jilin University. Our method proves superior to the
prevailing LCD methods, with an average precision of 0.947 and an average recall of 0.857
over the dataset KITTI, and an average precision of 0.922 and an average recall of 0.775 over
the campus dataset. Through evaluation over different datasets, our method has demon-
strated a strong competitiveness in solving LCD problems; moreover, it possesses a good
generalization performance, robustness, and practicability. Particularly, over the campus
dataset, our method kept a very high precision of LCD as the driverless vehicle visited
the same scene from a different lane and a different direction. To verify the robustness of
3PCD-TP responding to the change in point of view of the sensors, we performed rotation
and translation on the point clouds. As a result, 3PCD-TP would still give a uniform
description of the current scene during the rotational and translational changes in angle of
view. Lastly, we applied 3PCD-TP to the SLAM algorithm in real-world scenes, which has
exhibited good LCD performance and can handle highly difficult scenes such as reverse
loop closures between adjoining lanes. These results have shown that the proposed method
can weaken the interference caused by rotation and/or translation on descriptors and
strengthen the ability of descriptors to describe scenes. In future works, we will continue
to improve 3PCD-TP for it to be applicable in large-scale scenes (e.g., cross-country roads,
sandy lands, etc.) with hard-to-distinguish features and further boost the precision and
efficiency of 3PCD-TP.
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