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Abstract: Wildfire is essential in altering land ecosystems’ structures, processes, and functions. As
a critical disturbance in the China–Mongolia–Russia cross-border area, it is vital to understand the
potential drivers of wildfires and predict where wildfires are more likely to occur. This study assessed
factors affecting wildfire using the Random Forest (RF) model. No single factor played a decisive
role in the incidence of wildfires. However, the climatic variables were most critical, dominating the
occurrence of wildfires. The probability of wildfire occurrence was simulated and predicted using
the Adaptive Network-based Fuzzy Inference System (ANFIS). The particle swarm optimization
(PSO) model and genetic algorithm (GA) were used to optimize the ANFIS model. The hybrid
ANFIS models performed better than single ANFIS for the training and validation datasets. The
hybrid ANFIS models, such as PSO-ANFIS and GA-ANFIS, overcome the over-fitting problem of
the single ANFIS model at the learning stage of the wildfire pattern. The high classification accuracy
and good model performance suggest that PSO-ANFIS can be used to predict the probability of
wildfire occurrence. The probability map illustrates that high-risk areas are mainly distributed in
the northeast part of the study area, especially the grassland and forest area of Dornod Province of
Mongolia, Buryatia, and Chita state of Russia, and the northeast part of Inner Mongolia, China. The
findings can be used as reliable estimates of the relative likelihood of wildfire hazards for wildfire
management in the region covered or vicinity.

Keywords: ANFIS; wildfire; China–Mongolia–Russia cross-border area; genetic algorithm (GA);
particle swarm optimization (PSO); random forest

1. Introduction

Wildfire, as a critical driver for many natural landscapes and the delivery of ecosystem
services, is also one of the most severe natural disasters [1]. Influenced by global warming,
the intensity and frequency of wildfires and their impacts have increased at an alarming
rate worldwide in past decades [2,3]. Wildfire may lead to disruptive changes to the
ecological environment, loss of the natural resource, the increasing cost of extinguishing
and preventing, and even endangering human lives and property [4–6]. There is a great
need for an improved understanding of interactions and feedback that control wildfires
and their underlying spatial patterns in different environmental settings [7].

Wildfire was affected by both natural and anthropogenic factors. Studies have found
climate change as a critical factor causing the upward trend of wildfires [8]. The severe
drought induced by global warming may lead to more severe and frequent wildfires [9].
Topography is another factor that may serve as a barrier between ecological regions to pre-
vent the spreading of wildfires or facilitate it [10]. In addition, as a significant disturbance,
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human activities also affect the occurrence of wildfires. In many cases, human activities of-
ten negatively impact the occurrence of wildfires, further changing the temporal and spatial
extent of wildfires [11]. It was challenging to accurately predict and control the occurrence
of wildfires in a region influenced by both natural and anthropogenic disturbances.

Since the 1980s, regression models have been used to analyze and predict wildfires and
associated factors [12–16]. However, regression models have suffered limitations in predict-
ing wildfires due to the multiscale, complex, and nonlinear processes of wildfires [17–20].
Therefore, new methods with higher precision and accuracy are needed to predict the
occurrence of wildfires.

In recent decades, machine learning has become possible in wildfire risk assessment
with the development of artificial intelligence [21]. Many machine learning methods,
such as adaptive neuro-fuzzy interface systems (ANFIS) [22], artificial neural networks
(ANN) [23,24], support vector machines (SVM) [25], random forests (RF) [18,25], classifica-
tion and regression tree (CART) [26], genetic algorithms (GA) [27,28], and firefly algorithm
(FA) [27], etc., have been used to predict the occurrence of wildfire with improved perfor-
mances. The machine learning method can aggregate all wildfire risk factors and employ
them in a more complex analysis, which may significantly improve wildfires’ prediction
accuracy and precision [21].

A simulation of wildfire occurrence in the Chaharmahal-Bakhtiari province of Iran
found that the alternative decision tree (ADT) has a good prediction effect [26]. A study
evaluating the wildfire risk factors in Fujian province, China using the random forest (RF)
and logistic regression methods showed that RF has better prediction ability [29]. In Brazil’s
Federal District, the artificial neural network (ANN) offered a better accuracy in predicting
wildfire vulnerability when evaluating exclusively non-burned areas [23]. However, these
wildfire predictions with a single method often lacked robustness, which may cause dis-
parate results due to the small changes in the model parameters or data. Hybrid artificial
intelligence is being employed to optimize the existing single models [20,22]. Some recent
studies have shown that the hybrid method of ANFIS with PSO was more robust for
wildfire prediction than the previously favored methods [20,22].

The probability assessment model is often combined with GIS to draw probability
map. The evaluation method based on remote sensing will analyze the historical wildfire
area, and use AHP analysis method [30] or Maxent method [31] to evaluate the weight
of various impact factors. According to the weight of the influence factors, probability
map of wildfire risk is drawn. However, accuracy of the wildfire risk probability map
produced from this method is limited, and the demand to resolution of remote sensing is
high. Especially for the area with small research scope, it is difficult to obtain high resolution
data. The method of combined machine learning and GIS to produce wildfire probability
map improve this problem. Firstly, the data of historical fire points and non-fire points are
extracted, and then the wildfire risk probability is predicted using machine learning. Finally,
the predicted results are visualized by map interpolation method. At the same time, this
prediction method of wildfire risk probability is applicable to both large research areas and
small research areas. On large scale, Sharma et al. [32] employed various machine learning
method to produce the wildfire risk probability map of India. Shmuel and Heifetz [33]
used Random Forest model and XGBoost model to predict the wildfire risk probability in
global scale. Through the combination of aperture radar and depth learning, Nur’s wildfire
risk probability map of Plumas National Forest reflected the prediction ability of machine
learning method on wildfire risk probability in a small scale [34].

Using hybrid models to simulate wildfire occurrences is still relatively rare. Published
studies are mostly limited to small geographical areas. In this study, take China–Mongolia–
Russia cross-border area as study area (Figure 1), adopting burned area data from MODIS
as sample dataset after the data had been pretreatment. At the same time, 17 potential
factors were selected as environmental variables. RF was used to selected 14 factors from
potential factors, and then calculated wildfire risk rate by hybrid ANFIS model (Figure 2).
The main contributions of this study were:
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1. Estimating the probability of wildfire occurrence as a function of biophysical and
human-related drivers.

2. Assessing the relative importance of each driver.
3. Analyze the performance of the ANFIS model with GA and PSO for wildfire modeling

in the China–Mongolia–Russia cross-border area.
4. This study explores the applicability of hybrid modeling in predicting wildfire occur-

rence and the probability of wildfire risk assessment for a sizeable spatial domain that
crosses three countries.
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2. Material and Methods
2.1. Study Area

The study area extends approximately 2.49 × 106 km2 across the border area of China,
Russia and Mongolia (37◦24′~58◦12′N, 97◦12′~126◦04′E). Geographically, it includes the
Inner Mongolia Autonomous Region of China, the Republic of Buryatia and Chita state of
Russia, and the central and eastern regions of Mongolia (Figure 1).

The study area is relatively flat and open, with an average elevation of 1070 m,
and mainly composed of mountains, Gobi, and large hilly plains. There is a temperate
continental climate with a warm summer and extremely cold winter [35]. The mean annual
temperature is 1.34 ◦C, with the highest value of 26.61 ◦C in July and the lowest value
of −39.5 ◦C in January. The mean annual precipitation is about 303.8 mm, concentrating
in the summer and autumn. Approximately 85% of the total annual precipitation occurs
mainly from May to September. The area is mainly covered by woodlands, grasslands, and
Gobi deserts. Woodlands are mainly distributed in the northern mountains. Grasslands are
widespread in the middle and eastern plateau, and Gobi deserts are in the southwestern
plateau. Wildfires occurred widely in the study area except in the Gobi Desert, located in
the southwest area, where wildfire seasons occurred mainly from March to May. The annual
average burned area exceeded 2.29 × 104 km2 from 2001 to 2017 (MCD64A1, 2001–2017)
(Figure 1).

2.2. Data Source

The monthly burned area from 2013 to 2016 was extracted from the satellite-based
burned area data (MCD64A1), representing the wildfire occurrence in each 0.25 km2 grid.
The MCD64A1 dataset was first released in 2019 [36]. As part of standard global MODIS
datasets, MCD64A1 is the burned area product [37]. Compared with previous generation
products, MCD64A1 was generated by a hybrid algorithm that was supplied by daily active
wildfire data [38].

This study collected a set of climatic, biophysical, and human-related variables as
explanatory variables to predict wildfire occurrences. Each explanatory variable will be
transformed to a continuous scale at a 0.25 km2 resolution grid (Table 1). The climate
variables were acquired from Climatic Research Unit (CRU) TS v.4.03 0.5-degree gridded
dataset (Table 1) during 2001–2017, including the precipitation (PRE), daily temperature
range (DTR), daily rain frequency (WET), self-calculation Palmer drought index (PDSI),
monthly minimum temperature (TMN), monthly maximum temperature (TMX), monthly
mean temperature (TMP), saturated vapor pressure (VAP) and potential evapotranspiration
(PET). As critical factors, these relationships between climate and wildfire will contribute to
exploring the role of climate on wildfire and predicting the future wildfire trend [5,39,40].

Topographical variables, including the elevation, slope, and aspect, were considered
for their relevance to wildfire occurrence and downloaded from the Geospatial Data Cloud
(http://www.gscloud.cn/, accessed on 18 April 2021). A topographical feature often affects
the vegetation types/composition, the microclimate, and wildfire behavior. Previous
studies have found that the higher the altitude, the fewer the wildfire occurrences [24,41].

Another important variable affecting the probability of wildfire occurrences is the
vegetation status and land cover. The types and covers of vegetation determine the flamma-
bility of wildfire fuel [35] and further influence the wildfire scale. Normalized Difference
Vegetation Index (NDVI, accessed on 18 April 2021) was used to quantify the growth of
vegetation by measuring the difference between near-infrared and red light.

NDVI =
(NIR− Red)
(NIR + Red)

(1)

where NIR represents the near infrared band, Red represents the visible red band. In this
study, NDVI required from MODIS13A3 was used as an indicator expressing the coverage
and status of vegetation. The land cover production from MODIS (MCD12Q1) was adopted,

http://www.gscloud.cn/
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and land use was reclassified into six types: forest, grassland, agricultural land, waterbody,
urban, and bare land.

Table 1. Explanatory variables selected to predict the probability of wildfire occurrence.

Types Variable Implication Scale Source

Climate

PRE Precipitation

0.5◦
CRU TS v.4.03 database, British

Atmospheric Data Centre
(BADC)

DTR Diurnal temperature range
WET Rain daily frequency
PDSI Self-calculation Palmer drought index
TMN Monthly minimum temperature
TMX Monthly maximum temperature
PET Potential evapotranspiration
TMP Monthly mean temperature
VAP Saturated vapor pressure
FRS Frost daily frequency

Topography
ELE Elevation

30 m Geospatial Data CloudSLOPE Slope
ASPECT Aspect

Vegetation
NDVI Normalized vegetation index 500 m National Aeronautics and Space

Administration (NASA)LUCC Land use/land cover 500 m

Anthropogenic factors ACC Actual carrying capacity 1 km Gridded Livestock of the World
(GLW), Harvard Dataverse

DMSP Night-light intensity 1 km Geospatial Data Cloud

Wildfires were often caused by human activity, indicating that human-related variables
should be considered in the analytical model to expound the impact of human activity.
The study opted to consider two human-related variables: actual carrying capacity and
night-light intensity. The stocking capacity was downloaded from the world livestock
distribution data (https://dataverse.harvard.edu/dataverse/glw_3, accessed on 18 April
2021), and the actual carrying capacity (ACC) was calculated according to the method
proposed by Xu et al. (2011) with a conversion factor of cattle (0.8), sheep (0.1), and horses
(0.1). The night-light intensity was required from DMSP/OLS night light remote sensing
data (http://www.gscloud.cn/, accessed on 18 April 2021) with a spatial resolution of
1 km2, which reflects the comprehensive information on roads, population, and settlements.

2.3. Wildfire-Risk Factor Importance Analysis Using the Random Forest Model

The random forests (RF) model, an integrated learning technique proposed by Breiman
and Culter [42], is good at classification and regression. RF creates multiple decision
trees, aggregated to perform a classification task, to select essential factors and figure
the importance of wildfire risk factors [43]. Each tree in RF is generated by a bootstrap
sample [42]. In this study, considering the uncertainty and instability caused by the
distribution of training samples on the prediction results, fire and non-fire pixels were
randomly divided into training (70%) and testing (30%) samples. Train samples were used
to train classification trees, and testing samples called ‘out-of-bag’ (OOB) were used to
verify the model based on the self-service sampling method [44]. The random division was
repeated five times to obtain five groups of different training samples and test samples.
Each factor’s importance is estimated and ranked by calculating its OOB error in a tree. In
the modeling process, each tree’s original OOB error for wildfire risk factors Xi was first
calculated. Each tree was recomputed by stochastically arranging the values of a factor
in the OOB cases and putting these cases in the tree while leaving other immutable. The
average increase in the OOB error of each decision tree in the two cases was determined as
the importance score of the wildfire risk factor Xi. The formula is as follows:

https://dataverse.harvard.edu/dataverse/glw_3
http://www.gscloud.cn/
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VI(Xi) =
1

ntree ∑
t

(
errOOBt

′ − errOOBt
)

(2)

where ntree is the number of decision trees in RF.
According to the importance scores, RF continuously selects the wildfire risk factors

to obtain the OOB error under different combinations of wildfire risk factors. The wildfire
factors that can minimize the OOB error are determined as the best wildfire factor of the RF.
The detailed process is as follows: (1) the importance scores of each wildfire risk factor were
calculated, and their importance order was determined; (2) a certain proportion of factors
with low importance was eliminated according to the importance scores; (3) RF model was
rebuilt to determine the importance of wildfire factors using the remaining factors as the
model’s input; (4) the processes of (1) and (2) were repeated until the minimum number of
wildfire risk factors; (5) the OOB errors of RF under the combinations of different wildfire
risk factors are compared. The combination with the minimum OOB error is regarded as
the optimal combination of wildfire risk factors.

2.4. Wildfire Probability Modeling
2.4.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a hybrid combination framework based on fuzzy logic approaches and an
artificial neural network developed by Jang (1993) to simulate nonlinear problems. ANFIS is
a data-driven model with self-learning ability with no input requirements. The fuzzy logic
produces the output using fuzzy logical decisions to create a more reliable structure [45].
Compared with ANN and fuzzy logic, ANFIS is a superior intelligent hybrid model. The
neural network in ANFIS has five layers, and each layer has defined nodes except the
first and fourth layers. The nodes of the first and fourth layers are used for adjustment
during training, while the defined nodes are used to normalize the input data [46]. ANFIS
received plenty of attention in solving the nonlinear problem for its robust optimization
method, which was wildly employed in forecasting natural hazards and having a good
effect on them [47–50]. The fuzzy C-means clustering method was chose to generate the
ANFIS structure by the Gaussian function as membership functions for fuzzification of the
input variables to model the wildfire probability, and wildfire risk factors were inputted to
ANFIS. The best number of clusters has been determined to be 30 by many experiments.

2.4.2. Genetic Algorithm (GA)

Genetic algorithm is an adaptive, randomized, global search algorithm based on
Darwin’s theory of natural selection and the process of biological evolution in genetics
thought [51], which plays a vital role in studies of complex adaptive systems. Selection,
crossover, and mutation are fundamental components in GA. In the GA algorithm, each
group is composed of several genes, so GA first constructs a set of random modeling
scheme in the modeling process, and provides a basic parameter value for each gene. The
next generation is generated through inheritance from the genes of the parent’s population
and variation by itself. In the process of evolving GA-ANFIS model, roulette wheel betting
algorithm is often used, and the reciprocal of root mean square error (RMSE) of training
data set is used as fitness function [51].

2.4.3. Particle Swarm Optimization (PSO)

PSO, which originated from the study of the natural behavior of bird flocks preying [22,52],
is a new evolutionary computation technique in which a massless particle representing the
birds in a flock of birds has only the characteristics of position (representing the direction
in which the particle moves) and speed (representing the rate of the particle’s movement).
Compared with GA, PSO uses fitness to rate the population and obtain the best solution,
while retaining the best solution among populations and each population [25,53,54]. All
particles in the swarm can adjust their speed and position according to the current extreme
individual and global value. In the wildfire probability modeling, the position of each parti-
cle in the particle swarm includes the antecedent and consequent parameters of the ANFIS
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model, with a total of 1290 dimensional ordered vectors with 840 antecedent parameters
and 450 consequent parameters. The input variables in ANFIS included 14 wildfire risk
factors, and the Gaussian function used fuzzification with 30 rules.

2.5. Model Training

After the original data were preprocessed, the dataset was standardized and divided
into training set (70%) and testing set (30%). The training set was used to train the model
algorithm, and then the testing set was used to verify the model. In this study, the GA
algorithm and PSO algorithm were used to optimize the parameters of the membership
function to improve the prediction ability of the single ANFIS model. Single ANFIS was
used to randomly generate a fuzzy system, and then, a group of basic values were generated
according to the antecedent parameters. GA and PSO algorithms were used to continuously
optimize the parameters in the model, and output the results with the best convergence
effect after multiple iterations.

The probability thresholds (i.e., cutoff points) for the estimation of prediction accuracy
were estimated to classify the predictions into fires and non-fires using the Youden index.
If the model’s predicted probability was equal to or higher than the cut-off point, it was
assumed that a wildfire had occurred, and vice versa, that there was no wildfire. Further,
these cutoffs enabled us to identify each model’s confusion matrix and to compute different
performance metrics. The cutoff value for the models in this study was 0.7.

In the modeling, the Random Forest package code in R was used to determine the
factor importance of wildfire risk [55]. Furthermore, MATLAB code was used to build
the ANFIS, ANFIS-GA, and ANFIS-PSO models. Data from 14 wildfire risk factors were
initially fed into these models to train them and assess their potential. In this case, the
training set consisted of 630,573 observations, of which 315,227 were classified as non-fire
and 315,346 as fire. The wildfire risk factors from RF models were provided as the input,
and the values 0 or 1 for fire/non-fired were fed to the output.

2.6. Model Evaluation

The testing dataset was used to validate the predictive capabilities of ANFIS, GA-
ANFIS, and PSO-ANFIS. The receiver operating characteristics (ROC) curve and the areas
under the ROC curves (AUC) can reflect the whole prediction ability of prediction model.
ROC curve was an effective indicator to express the accuracy and prediction rate of the
model [56]. The curves were drawn based on sensitivity and specificity, where the hori-
zontal axis represents 1-specificity and the vertical axis represents sensitivity [57,58]. AUC
indicates the prediction degree of the model for wildfires in the study area. Generally,
the AUC is between 0.5 and 1, and the closer the AUC is to 1, the better the prediction
effect [26,56].

When the number of variables in the model changes, the importance of the variable in
the prediction process can be estimated according to the change of AUC value. Meanwhile,
the root mean square error (RMSE) was also used to measure the magnitude of the error
between the observations (non-fire and fire pixels) and predictions (probability).

2.7. Wildfire Probability Map

The probability map of wildfire occurrence for each pixel of this study was generated
in ArcGIS and classified into five classes using the Natural Breaks (Jenks) method: very low,
low, moderate, high, and very high. In addition, the fire density within each class of the
probability maps, a ratio between the number of fire pixels and the number of pixels within
each probability class, was computed to investigate the plausibility of these maps-the
values of fire density increase from very low to very high probability levels. The probability
of wildfire occurrence was also affected by the accuracy of prediction. Higher accuracy
means that the probability of wildfire occurrence was more real.
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3. Results
3.1. Factor Importance of Wildfire Occurrence

The RF model showed that there is no over-fitting phenomenon in the cross validation
results, indicating that the model prediction had good stability and accuracy. The accuracy
rate in five subsamples is more than 93.11%, and the accuracy of recording the classification
of fire point and non-fire point exceeded 94.96% and 90.61%, respectively. This result
(Table 2) indicates a reasonably good model performance for classifying non-fire and fire
pixels over the study area.

Table 2. Model accuracies by RF model.

Accuracy Sample1 Sample2 Sample3 Sample4 Sample5

Average 0.9325 0.9311 0.9328 0.9327 0.9324
Burned 0.9552 0.9496 0.9613 0.9553 0.9549

Unburned 0.9113 0.9138 0.9061 0.9116 0.9114

The relative importance of wildfire risk factors was outputted using mean decrease
accuracy, with the higher values of these measures representing a higher level of importance
for a specific causative factor [59]. The climatic variables, such as DTR, WET, TMN, PDSI,
and PET, were identified as the most critical wildfire risk factors (Figure 3). DTR showed
the highest importance with a value of 0.205, followed by WET, TMN, PDSI, and PET
with values 0.183, 0.163, 0.162, and 0.155, respectively. In addition, the vegetation-related
variables, such as NDVI and LUCC, were important factors affecting the wildfire occurrence.
The ACC, expressing the anthropogenic activity in the study area, was also an essential
variable of wildfire occurrence. However, the topographic variables, such as aspect and
slope, exhibited a lower importance value. Finally, 14 variables were used to predict the
probability of wildfire occurrence (Figure 3).
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3.2. Model Validation

The gap between success rate and prediction rate indicated that the model had over-
fitting problem in the simulation process (Table 3). The hybrid ANFIS models exhibit higher
AUC values than the single ANFIS model (Figure 4), which indicated that hybrid ANFIS
models had a better performance in fitting ability. Among the models, the PSO-ANFIS
model showed the highest training performance with a success rate of 0.898. The model’s
performance is followed by the GA-ANFIS, with a success rate of 0.862. The success rate
of the single ANFIS (0.796) was lower than 0.8, indicating lower training ability. In the
validation, PSO-ANFIS showed the highest prediction rate, followed by GA-ANFIS. In
addition, the two hybrid models differed minimally in their performances, with a success
rate of 0.898 (PSO-ANFIS) and 0.862 (GA-ANFIS) and a prediction rate of 0.835 (PSO-
ANFIS) and 0.786 (GA-ANFIS), indicating a high model performance to predict future
fires. The RMSE metrics further confirmed the overfitting of the models (Table 3). This
finding suggests the highest accurate performance of the PSO-ANFIS in both the training
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and validation datasets, proving that PSO algorithm is of optimization significance for
improving ANFIS model.

Table 3. Model performance in the training and validation datasets.

Model Dataset RMSE Sensitivity Specificity Success Rate Prediction Rate

ANFIS Training 0.432 0.84 0.66 0.796 —
Validation 0.512 0.78 0.47 — 0.597

PSO-ANFIS Training 0.353 0.86 0.81 0.898 —
Validation 0.497 0.86 0.81 — 0.835

GA-ANFIS Training 0.396 0.88 0.69 0.862 —
Validation 0.507 0.83 0.74 — 0.786
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prediction rate of the model.

Figure 5 shows the process of finding the minimization of average error magnitude
(RMSE) for the hybrid models. From the 50th iteration, PSO-ANFIS performed a faster
convergence rate than GA-ANFIS, which indicated that PSO has better accuracy for ANFIS
optimization than GA. After finishing the 1000th iteration, the best solution of PSO-ANFIS
(RMSE = 0.353) is significantly lower than GA-ANFIS (RMSE = 0.396), suggesting that PSO
produced a better convergence solution under the same number of iterations.
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3.3. Probability of Wildfire Occurrence

The probability maps of wildfire occurrence applied to the hybrid ANFIS models were
produced by the Kriging method. The probability of wildfire occurrence was reclassified
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into five levels (very low, low, moderate, high, and very high) across the China–Mongolia–
Russia cross-border area according to the natural discontinuity method (Figure 6). The
comparison of the spatial distribution of wildfire probability showed that the relative
ranking of wildfire probability largely depended on the modeling method used. For
example, the probability of wildfire occurrence with a high and very high level accounted
for 49.7% of the study area in PSO-ANFIS models, compared to only 41.4% with the same
level in GA-ANFIS models (Figures 6 and 7). The analysis results of the disaster density
method showed that the probability levels produced by either single ANFIS or mixed
ANFIS was quite different from the historical fire points (Figure 7).
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From the wildfire probability map of hybrid model (Figure 6), zones with high and very
high wildfire probability are mainly concentrated in the northeast of the study area with an
altitude of 500–1000 m, a high drought index, and lower rain daily frequency. In addition,
the grassland with the higher grazing capacity is more prone to wildfire. In the different
regions, high and very high wildfire probability was mainly in the northeastern provinces
of Mongolia, the Republic of Buryatia, and the Chita state of Russia. Very high probability
also exists in the northeast of Inner Mongolia Autonomous Region, China. The probability
of wildfires in China is much lower than that in the other two countries, which may be due
to China’s perfect fire prevention policy and the role of fire prevention institutions.

4. Discussion
4.1. Comparison of PSO and GA to Optimize ANFIS

We compared the success and prediction rate of the single and hybrid ANFIS and two
meta-heuristic optimization algorithms, i.e., PSO-ANFIS and GA-ANFIS, in simulating
and predicting the probability of wildfire occurrence in the China–Mongolia–Russia cross-
border area. As a machine learning algorithm, ANFIS performed the best in predicting
natural hazards and has recently been applied to wildfire modeling [22,27,57]. Single ANFIS
has a lower prediction rate and is often prone to over-fitting in the running process [60,61],
likely because it manually adjusts parameters during the debugging process and cannot
produce a globally optimal solution. As hybrid artificial intelligence models, PSO and GA
offer practical solutions to resolve this problem [22,47]. The two optimization algorithms
allow hybrid models to define the prediction parameters automatically and produce more
accurate predictions in less time while preventing over-fitting [37,45,62].

GA and PSO algorithms are the global optimization methods that update populations
and search for the best advantages by random optimization algorithms. GA had a higher
iteration speed than PSO in the process of iteration (Figure 5), but PSO had a more optimal
solution than GA [63] (Figure 4). The GA algorithm eliminates old knowledge as the
population changes due to insufficient memory. Consequently, GA does not need to spend
too much time dealing with old knowledge, which makes GA can manage new knowledge
faster and improve the iteration speed. The PSO algorithm retains the optimal solution for
each population and the optimal solution among populations while updating new knowl-
edge [22,54]. In the iteration process, each particle in PSO also considers the previous best
position and the relationship among optimal positions of other particles, which increases
the model’s calculation, so more time is needed to train the model. Therefore, the PSO
algorithm to optimize the ANFIS model has higher quality and slower iteration speed than
the GA algorithm.

In the prediction of wildfire probability, the areas with the high and very high proba-
bility did not fully coincide with historical wildfire points. Affected by the same climate,
vegetation, terrain and other natural factors, there may be a high risk of wildfire around
this area with no fire having occurred in the past. This may be due to different national
policies, fire monitoring, firefighting capacity and other factors, and no large-scale fire had
occurred in the past. It may also be related to the characteristics of the nonlinear model.
Meanwhile, compared with the trend method used in the linear model, the susceptibility
of wildfire occurrence depends on the specific relationship between wildfire points and
wildfire risk factors. Due to spatial autocorrelation, there will also be interactions between
adjacent pixels, which impact the accuracy of wildfire risk prediction [64,65]. In addition,
wildfire risk prediction results are influenced by multiple parameters, which also increases
the complexity of model training [18,51].

4.2. Importance of Variables Affecting Wildfire Occurrence

RF model was used to determine the wildfire risk factors in this study. Compared to
empirical variable selection methods [66], such as literature retrieval [67,68], correlation
analysis [35], and logistic regression [29], RF can improve the accuracy of wildfire risk
factors selection by aggregating multiple individual tree models. For instance, the pre-
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diction accuracy of logistic regression is usually lower than the RF model [29] due to the
nonlinear and complex relationships between the occurrence and risk factors of wildfires.
Additionally, as an ensemble classifier, RF is hard to be disturbed by noise and can eliminate
exception values [42].

The risk factors screening diagram shows no dominant factors that play decisive
roles in the occurrence of wildfire, suggesting wildfire was synergistically produced by
muti-factors rather than any single risk factor [24]. Climate prediction can be significantly
used if different climatic elements can be linked to wildfires accurately [69]. Among these
factors, DTR was considered the most influential variable. Other climate factors, such as
WET, PDSI, TMN, and PET, also obviously impacted the occurrence of wildfires. This result
suggests that temperature, precipitation, humidity, and evaporation play an essential role in
wildfire occurrence. Temperature directly affects the moisture content of the fuel, and high
temperature dramatically influence the increase in vegetation evaporation, thus reducing
the moisture content of potential fuel. Precipitation and humidity are closely related to
the area’s dryness and the vegetation’s moisture content. Low precipitation and humidity
reduce the fuel moisture, contributing to the occurrence of wildfire. It is worth noting that
climate factors were the main factors affecting the occurrences of wildfires [70]. As the
combustible substance of wildfire, vegetation can also significantly affect the occurrence of
wildfires. As a topographical factor, elevation has a specific influence on wildfire occurrence.
The wildfire mainly occurred in low-elevation areas, which may be because the relatively
flat terrain at lower elevations is more conducive to the spread of wildfires [71].

Meanwhile, the vegetation in low-altitude areas is mainly grassland, which also pro-
vides good combustible conditions for the spread of wildfires. In addition to these natural
factors, anthropogenic factors play a specific role in wildfire occurrence. In order to pursue
economic benefits, herders recklessly increased their livestock production [72], which may
lead to increased fire used by human activities in grassland. Therefore, increasing actual
carrying capacity will also increase the probability of wildfire.

5. Conclusions

In this study, no single dominant factor can play a decisive role in a wildfire. The
climatic variables were the most critical factors dominating the occurrence of wildfires,
and DTR was the most important meteorological factor. In terms of wildfire probability
simulation, hybrid models had better stability than single ANFIS, and PSO-ANFIS pro-
duced a higher predicting capacity and greater accuracy than GA-ANFIS when predicting
the probability of wildfire occurrence. The probability map of wildfire occurrence showed
that high and very high wildfire probability was mainly in the northeastern provinces of
Mongolia, the Republic of Buryatia, and the Chita state of Russia. Very high probability
also existed in the northeast of Inner Mongolia Autonomous Region, China. Therefore, the
monitoring and managing of wildfires should be strengthened in this area to reduce the
occurrence of wildfire disasters.
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