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Abstract: Crop yield is an important factor for evaluating production processes and determining
the profitability of growing coffee. Frequently, the total number of coffee beans per area unit is
estimated manually by physically counting the coffee cherries, the branches, or the flowers. However,
estimating yield requires an investment in time and work, so it is not usual for small producers.
This paper studies a non-intrusive and attainable alternative to predicting coffee crop yield through
multispectral aerial images. The proposal is designed for small low-tech producers monitored by
capturing aerial photos with a MapIR camera on an unmanned aerial vehicle. This research shows
how to predict yields in the early stages of the coffee tree productive cycle, such as at flowering
by using aerial imagery. Physical and spectral descriptors were evaluated as predictors for yield
prediction models. The results showed correlations between the selected predictors and 370 yield
samples of a Colombian Arabica coffee crop. The coffee tree volume, the Normalized Difference
Vegetation Index (NDVI), and the Coffee Ripeness Index (CRI) showed the highest values with 71%,
55%, and 63%, respectively. Further, these predictors were used as the inputs for regression models to
analyze their precision in predicting coffee crop yield. The validation stage concluded that Linear
Regression and Stochastic Descending Gradient Regression were better models with determination
coefficient values of 56% and 55%, respectively, which are promising for predicting yield.

Keywords: crop yield; coffee; image segmentation; multispectral; MapIR; predictor; UAV

1. Introduction

Coffee is one of the most important products for the Colombian economy and repre-
sents a source of income for 540,000 medium and small producers’ families. According to
the Colombian Ministry of Finance, it is an important export product for economic recovery
thanks to its international value. Coffee production in Colombia was 12.1 million 60 kg
bags in 2021, falling by 11% compared to 2020. This diminution was due to unfavorable
weather conditions for coffee crops. For this reason, it is of particular interest to focus
efforts on investigating the coffee production process that allows for the optimization of
production [1]. The crop yield is quantified by the number of coffee grains per unit area as
a representative measure of productivity [2].

Early yield prediction can anticipate the nutritional requirements of the trees, and can
also allow for optimizing irrigation and fertilizer use, improving production quality at a
lower cost. To predict yield early, it is important to consider phenological cycles and produc-
tion stages to support the farmers’ decision-making as set out in [3]. The phenological cycle
starts at the flowering stage [4]. The subsequent process is the filling of the coffee fruits,
and it is fundamental to foresee the demanding nutritional requirements of the tree, before
the maturation stage and picking. Furthermore, understanding crop yields allows support
for decision-making in the other processes, such as picking, drying, and storage [4,5].
Crop yield is directly determined by the dynamics of the tree–soil–environment system, as
defined by specific predictors in each element of the system. For example, temperature,
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water availability, and precipitation are predictors that correspond to the environment [6].
Other variables may be edaphic predictors, such as the soil type and its composition, and
tree characteristics, such as its age, variety, planting density, health, and physiology, which
directly influence crop yield.

Predictors can be collected manually or by proximity sensors, satellites, cameras,
or weather stations. Currently, the use of UAVs has countless advantages in precision
agriculture. By capturing images, it is possible to obtain high-resolution data without
the influence of atmospheric conditions, making this technology accessible to small and
medium size growers.

One of the applications of aerial images is to obtain physical and spectral character-
istics; for example, the work of dos Santos et al. [7] calculated the height and diameter
variables from aerial images. The objective of this research was to use DSM from UAVs car-
rying conventional RGB cameras. That work [7] demonstrated the feasibility of obtaining
the height and the diameter of a coffee tree with a correlation of 95% for diameter and 85%
for height.

In our research of the literature, the work of Idol et al. in [8] exemplified the prediction
of crop yields through manually obtaining information. This process estimates the number
of nodes and fruits on all the visible sides of the tree. In the same way, Castro et al.
in [9] studied collecting manual yield samples, showing the relationship between the
lateral yield and total tree yield. Both works show the efforts in making yield estimates.
However, neither does it in a non-early way. Similarly, Unigarro et al. [10] compared
the phenotypic characteristics of coffee trees to yield, concluding that the leaf area is a
determining predictor. The above methods detail manual data collection methodology.
These models have a precision greater than 90% but the data collection is very difficult
and is highly invasive. They are both costly and time-consuming, and do not allow early
prediction of crop yields [8,9].

Works such as [11,12] that involved agrometeorological models likewise used satellite
images and environmental variables at a regional level, but was not suitable for tree-
centered analysis. For example, Picini et al. [11] studied a model to estimate potential
coffee production based on the evapotranspiration of the planting and the previous year’s
production; this work obtained a R2 of 0.9 in a deterministic model involving the rela-
tionship between potential yield and expected yield. However, Rosa et al. [12] obtained a
non-conclusive result using the NDVI and its relationship with the LAI.

Barbosa et al. proposed another essential approach in [13], studying regression models
on the basis of physiological characteristics, such as the height and diameter obtained from
RGB images using UAVs for yield estimation, manually validating the results with the
image. In this research, the total beans of the coffee tree were obtained by georeferencing
each point with the GCP tool. The training process of regression models, such as SVM, PLS,
gradient boosting, and RF, used 144 data records. The calculation of the height and diameter
varied between 6% and 7%, and the MAPE measurement for the regression models was
around 31%. This work did not consider the spectral analysis based on vegetation indices.

Kouadio et al. [14] has a relevant approach, where a machine learning model based
on three different algorithms, EML, RF, and LR, was proposed. All of these models
were trained using the soil nutrient characteristics which allowed yield calculations. It is
important to note that the best performance model for yield calculation was EML, using
organic material, phosphorus and sulphur predictors. This was validated by RMSE with
±13.6% and a MAE with ±7.9%. Similarly, Nguyen et al. [15] proposed a statistical model
for the early prediction of coffee crop yields based on vegetation indexes at a regional level
with Copernicus data for the NDVI, FAPAR, and LAI predictors, obtaining an Adj R2 from
64 to 69% in regression models using the Crop Growth Monitoring System statistical tool,
which allows early prediction of up to 6 months before the harvest.

Considering these previous works, this research focuses on obtaining reliable data to
demonstrate the feasibility of early coffee yield prediction using low-cost tools, facilitating
higher technology access to small and medium producers. The aerial images obtained were
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processed and segmented to find the spectral and physical characteristics for each coffee
tree. Manual methodology was used to collect yield data. This consisted of picking all the
coffee cherries on one tree. Finally, a linear correlation analysis was performed, obtaining
significant results, such as a 70% correlation between the tree volume and the crop yields.
With these results, a regression model training process was carried out. It obtained a R2

score of approximately 56% for some models, such as linear regression. The R2 score or
the determination coefficient defines the quality or the adjustment of a model using the
percentage variance of a variable that is explained by another according to [16].

This work involved the following process: 1. obtaining multi-spectral aerial images
during the flowering stage; 2. defining the post-processing process for the segmentation and
individualization of the trees; 3. building a manual data collection interface; 4. the manual
data collection; 5. the manual data analysis to calculate the yield by tree; 6. exploiting the
regression-based prediction models; 7. analysis of the results.

2. Materials and Methods

Section 2 describes the image collection process and the task of obtaining manual
coffee crop yield training information. This section begins with a description of the study
area, the tools, the image processing, and the segmentation of the trees, and ends with the
analysis of the predictors for the regression models.

2.1. Study Area

This experiment was carried out on the “La Sultana” estate, which is a farm at the
Universidad del Cauca located in the municipality of Timbio, Cauca, Colombia (Figure 1)
(2°2′28.51′′ N, 76°43′31.89′′O) altitude: 1850 m.s.n.m.

Since 2006, La Sultana has carried out sustainable coffee production through its eco-
logical processing and management [17]. In addition, good practices produce high-quality
coffee with environmental, social, and economic sustainability.

Figure 1. The map on the left shows the distribution by departments of Colombia, in which Cauca is
located. On the left is the geolocated orthophoto of “La Sultana” farm.

On the other hand, the image taking was carried out during the flowering stage from
July to August 2021. Manual yield samples were taken from three coffee plantations of the
Castillo variety between November and December 2021.
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2.2. Manual Yield Sampling of Coffee Trees

The objective to obtain manual variables is to determine the real yield of a tree. The
non-invasive data collection process in this paper was based on the work of Idol et al. [8].
It begins counting plagiotropic branches and then performs a sampling of nodes and beans
in order to estimate the total yield per tree.

Manual data collection is a costly, complex, and slow process. This work does not have
per tree information that would allow training the prediction models. Because of this, a
web tool was implemented to expedite the process of obtaining the crop yield samples. The
individualization of trees in the web application streamlines manual sampling. This process
is explained in Section 2.4. Figure 2 shows the results of the massive segmentation carried
out by the web tool developed to obtain manual variables. All of the tree information is
stored in a Mysql relational database.

Figure 2. Web service interface for manual sampling, in green the plants with complete information,
in blue the plants to be completed.

Figure 3 shows a representation of the client–server architecture of the web application.
The interface allows us to save the information automatically to avoid any data loss. For
the dynamic, georeferenced and agile load of the orthophotos, this research integrated
the WEBodm mosaic service. This service, along with the GEOJson representation of tree
edges, allows us to use the LeafletJS library that incorporates all the information on the
same map [18]. The result is an interactive experience that is easy to carry out by people
with no advanced knowledge of the sample collection process.

As shown in Figure 4, the height and diameter of the trees are required in the interface
for comparison purposes. Here, the trees were divided into two independent samples, the
header and the footer. Figure 5 shows the interface where the number of branches, nodes
and cherries is recorded. Based on a statistical calculation of the sample size, this research
sampled nodes and cherries with an 8% error and a 80% confidence level. The standard
deviation was fixed at 0.5 [19].
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Figure 3. Software architecture for manual collection of crop yield samples.

Figure 4. Height and diameter manual sampling interface.

Figure 5. Header and footer tree sampling interface.

The manual sampling process is expensive, so the data volume cannot be high. In
this work, it was possible to take 370 real data samples verified in 3 different fields ran-
domly defined by the coffee pickers. The age of the trees in the fields were 2, 3, and
7 years, respectively.
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2.3. Platform to Acquire Images

The UAV platform used in this work was a Phantom 3 Standard four-bladed drone.
Mission Planner was used for flight plans, the missions were run using the Litchi app
The operating speed was 5 km/h with an 18-meter altitude. This research established
longitudinal and lateral overlapping of 80%, capturing the images between 10:00 a.m. and
1:00 p.m. Colombian local time under a cloudy sky. The aerial image capture was carried
out between July and August 2021 to perform the early yield predictions.

The images were obtained using a MAPIR Survey 3W camera. The modified RGN
camera was equipped with a Sony Exmor R IMX117 sensor that has a 12-megapixel reso-
lution using the default parameters recommended by Mapir [20]. All the configurations
were the same for all flights. Finally, the resulting images were saved in the JPG and RAW
format for subsequent processing.

Cloudy sky conditions were chosen to avoid saturating the camera’s NGR chan-
nels. The NIR reflectance affects the red channel as established in [21]. Images were
taken under cloudy and clear sky conditions to determine the best NDVI results, as
shown in Figures 6 and 7. In the sunny image, the shadows directly influence the NDVI
index behavior.

Figure 6. Sunny NDVI image map.

Figure 7. Cloudy NDVI image map.

This research pre-processed the images collected using the Mapir Camera Control for
the radiometric calibration [22]. The GPS was set up with incorrect height tags; the ExifTool
solved this. Later, the image mosaics were made using the WEBOdm tool generating the
DSM and the orthophotos [23].

2.4. Processing Images

To identify each single coffee tree, a watershed method based on the foreground
markers was used. This algorithm separates and defines the edges between two elements
of an image. It consists of simulating the watershed basins, which are filled based on local
minimum levels until a limit between two or more watersheds is defined [24]. In Figure 8,
a representation of this process is described.
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a) Pre processing

b) Watershed
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9) Statistic
Variables

10) Data
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Figure 8. Tree individualization process: it involves the pre-processing of the image, the application
of the watershed algorithm for segmentation, and the obtaining of variables and characteristics.

In the preprocessing stage, the target coffee field is delimited and segmented. This
research carries out this process through a previously delimited polygonal mask. In step
two, the background or the image floor is removed by a color threshold based on the LAB
color space or by using 3 groups with the K-means algorithm. Both background removal
methods were tested and the color threshold prevailed.

One of the ways to apply the Watershed algorithm is to use the foreground and back-
ground markers [25]. This work carried out multiple tests to find the correct configuration
of the foreground markers, which led to a successive application of morphological opera-
tions to define them. The final result of the foreground marker definition is superimposed
in blue in Figure 9.

Figure 9. Foreground markers: in blue the coffee plants detected.

The background markers define what is not a tree. This process allows the algorithm
to establish the limits based on a magnitude gradient. The background markers are shown
in Figure 10.
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Figure 10. Background markers.

The marker-based watershed algorithm resulted in Figure 11. In this case, the edges of
the limits of each individual tree were defined, accompanied by each foreground marker.
These results were highlighted by applying a color map to each label to observe the
segmentation quality, as in Figure 12.

Figure 11. Watershed labeling.

Figure 12. Watershed results: display all detected labels in a different color by applying a LUT
color workspace.
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Once the individualization of the trees was complete, the next step was the information
extraction process. This process begins with the noise analysis to review the size of each tree
by previously determined values of the lower and higher limits. The outline of the mask of
Figure 13 is processed by changing the (x, y) points in their pairs (lat, long). This process
is focused on calculating the WGS84 coordinates using the georeferenced information
through a Python language process. With this information it is possible to obtain physical
measurements of the coffee trees.

Mask

Tree

Data
Figure 13. Extraction variables flow: the mask corresponds to the detection of the tree. The mask is
applied to the RGB three-band image to extract the data and store it in the Mysql relational database.

The separate tree interest bands were defined by applying the figure mask Figure 13
to the original image. This process allows us to calculate statistical variables, such as the
average of each band and their variance and the vegetation indices of Table 1, which were
calculated by going over and operating each pixel of the image of the three bands of the
individual tree. Each tree was processed so that it was possible to obtain its outline as
geographical coordinates WGS84. With this GEOJson format contour, the area in square
meters can be obtained using the python “area” package.

In short, this whole process is necessary to obtain the spectral and physical descriptors
used to train and test the prediction models. The variables received were the area, height,
and vegetation indices and the statistical variables of the spectral bands.

2.5. Physical Descriptors

The physical descriptors of the coffee trees are characteristic measures that can be
height or area. This work uses the georeferenced orthophoto and the DSM to generate
this information. The tree height is measured by the subtracting of the minimum value of
the maximum calculated by the geographical coordinates in the DSM. This work built a
method that iterates through tree image pixels. This method shows the heights present
in the DSM every 10 pixels in the individualized tree image. The pixel jump values were
tested incrementally to increase speed without losing any precision; it is not necessary to
transform all of the pixels of the tree mask. The tree image is dilated with a radius of 20 to
include part of the ground. Finally, all the points are compared to extract the maximum
and the minimum, and then the difference. The volume, lateral area, and LAI values were
calculated by taking into account the work of Favarin et al. [26]; these values were obtained
from Equations (1), (3) and (4), respectively:

volume = area ∗ h
200
∗ 4

3
(1)
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diameter = 2 ∗
√
(

area
π

) (2)

Al = π ∗ diameter
4

∗
√
(4 ∗ h2 + diameter2) (3)

laiArea = −0.5786 + 0.7896Al (4)

The area and height (h) are previously known image values. The laiArea value
corresponds to the leaf area index obtained from the lateral area based on the work of
Favarin et al. [26], who successfully proposed a linear approximation to this expected value.

2.6. Spectral Descriptors

The spectral descriptors correspond to those obtained through aerial images, which
will be the input for the prediction models. These were obtained considering the segmenta-
tion of Section 2.4. The vegetation indices were processed for each tree, obtaining medium,
maximum, and minimum values.

Normally, the spectral reflectance of a tree changes according to the wavelength and its
physiological state [22]. In this work, the value of the vegetation indices and the maximum,
minimum, and average values of the red bands, green, NIR, and histogram were collected.

By using vegetation indices, different physical conditions can be inferred. Trees mostly
reflect the NIR band and absorb the red band when they are in good condition, representing
the physiological state. This condition is shown using the normalized difference vegetation
index NDVI [12]. Other important indices are the NDWI, which can provide information
on tree moisture, or the visible excess of green band EXG, which can be used for tree
segmentation, as well as for improved NDVI versions, such as ENDVI, which is also used
to minimize the effect of the ground in the final result [27].

Table 1 presents the summary of the vegetation indices involved in this work. This
research was based on the vegetation indices of the results obtained by Rosas et al. [21],
who carried out spectrometric analysis with the Survey3W camera. All the vegetation
indices of the Table 1 are available using the RGN bands of the Survey3 camera.

Table 1. Vegetation indices.

Index Form Description Ref

CRI R
R_mean ∗ 100 Coffee Ripeness Index [21]

GNDVI NIR−G
NIR+G

Green Normalized Difference
Vegetation Index [21]

MCARI1 1.2[2.5(NIR− R)− 1.3(NIR− G)]
Modified Chlorophyll Absorption in

Reflectance Index 1 [28]

MTVI1 1.2[1.2(NIR− G)− 2.5(R− G)] Modified Triangular Vegetation Index 1 [28]

NGRDI G−R
G+R

Normalized Green–Red Difference
Index [29]

NDVI NIR−R
NIR+R

Normalized Difference Vegetation
Index [21]

RVI R
NIR Ratio Vegetation Index [21]

NRVI RVI−1
RVI+1 Normalized Ratio Vegetation Index [21]

2.7. Prediction Models

The prediction models can be defined as a representation of the relationship between
two or more variables [30]. The main objective of this work is to predict the crop yield at an
early stage of the phenological cycle. Since the amount of data is limited, it is impossible to
use neural network models, so a simple regression model is proposed for this work.
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A cross-validation methodology was carried out to obtain an average result of the
R2 metric that measures how good an algorithm is in predicting a variable [31]. This
methodology divides the dataset into data groups, performs a cross-validation of all groups
and gives each iteration a value of R2. The final result of the process corresponds to the
average of all the values.

The tested models are the support vector regression or SVR with linear kernel, multiple
and simple linear regression, random forest, and decision trees. All the models were
implemented using the Scikit-learn library [30,32]. Cross-validation is a process where the
number of iterations to be performed on the data is defined. In this case, a value of fourth
data subsets was defined and each of the models was executed with their default settings.

3. Analysis and Results

This section analyzes the results obtained by reviewing the variables collected through
graphs and correlations. The results obtained by the prediction models were exposed.

3.1. Predictors Selection

With all the information collected, this research carried out a data cleaning, checking
the ranges and assuring that all the manual sampling was complete. Initially, taking into
account the correlation analysis of Pearson, the behavior of the available characteristics
was verified in relation to the crop yield obtained manually in Section 2.2, representing the
most relevant results in Figure 14, this analysis allows evaluating the relationship between
the predictors and the crop yield [33].

Figure 14. Correlation matrix.
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The graph also shows a strong relationship between the height measure (hMeasured)
and the calculated height (hImage) with the DSM since the correlation index was 75%,
which validates the tree height calculation process based on the image information.

The tree volume values, as volImage calculated from the contour areas and heights,
such as in Equation (1), gave a correlation of 76%, as well as the lateral area that was
calculated with (3) gave 77% and an expected value according to [9] who in his work shows
the relationship between physical characteristics, such as LAI which is strongly related
to the lateral area and to the volume [26]. Regarding the vegetation indices, this research
found different behavior. The NDVIMean had a correlation of 49%, the NDVimin and the
NDVimax were −39% and 55%, which shows the importance of the NDVI that, according
to [21], represents the greenness and the vigor of the plant [34]. The RVI, SAVI, NRVI, and
TVI vegetation indices have a correlation of about 45%, so it is essential to take them into
account in analyzing crop yield.

This work measured all of these variables at the flowering stage, which represents the
state of the trees before the cherries fill out. The other indices with their median, maximum,
and minimum values had slightly higher values but were less than 0.5, probably due
to their low physiological relationship with crop yield. By including the maximum and
minimum values in the analysis of the vegetation indices, it was possible to find that the
NDVI had higher correlation values in the average of the maximums.

According to these correlations, the predictors were prepared in “dataframes” to
carry out the regression models. Some of the variables involved were volume, NDVIMax,
maxRed, maxBlue, and criMax.

Figure 15 shows a dispersion diagram with yield, volImage, maxRed, and maxBlue,
which shows a linear relationship between all of these variables and the crop yield in
column one. The tree volume is correlated 77% with the crop yields and has a lower
dispersion compared to the other two variables. Max red and max blue versus yield have
similar graphics, but with a lower concentration in their higher values. It is important to
note that the crop yield values are concentrated in the first quarter of the standard range of
0 to 1, similar to the tree volume values.

Figure 15. Scatter plot of crop yield, volume, maxRed, and maxBlue.
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3.2. Performance of Prediction Models

Table 2 presents the variables found by the characteristic selection method which
obtained the best determination coefficient R2. In this process, some correlated variables,
such as criMax with a correlation of 63%, decreased the behavior of the R2 coefficient, and
the variables with a correlation of 45%, such as saviMax, tviMax, and ndviMean, increased
the value of R2 for linear regression.

Table 2. Variables for the multiple regression process.

Variable Resume

volImage Volume obtained from the height and the area

maxRed and maxBlue Maximum value of the red and blue bands of
tree

varianceBlue Variance value of Blue band (In this case NIR
band)

LAILatArea Leaf Area Index from Equation (4)

saviMax Maximum of Soil Adjusted Vegetation Index

tviMax Maximum of Triangular Vegetation Index

mtviOneMean Mean of Modified triangular vegetation index

ndviMax and ndviMean Mean and Maximum Normalized Difference
Vegetation Index

The prediction model application process is based on the SkLearn library using super-
vised learning regression models. This research selected the regression models based on
the data quantity and the linear correlation of Figure 16.

The model entries were manual crop yield and the predictors of Table 2. This research
tested a simple variable model with volume since it had the highest correlation with the crop
yield and multiple models with the following variables to compare the simple and multiple
regression models. Several iterations were performed using different configurations with
the available regression models; for example, for SVR, the core was changed from RBF
to linear. For SDG, the loss function was changed between huber, squared_error, or
epsilon_insensitive, showing better results with the squared_error settings. For the other
models, this research maintained its default settings.

The models were evaluated by cross-validation with a R2 score that allowed us to
determine the model adjustment percentage of the data. The predictors and the models
with the highest R2 score are shown in Table 3. The volume role in the regression models
can be explained by the relationship between the tree architecture and its age [10]. In
addition, it can be supplemented by a physiological status indicator, such as the NDVI [13].

The results of Table 3 show that for this process, the method that showed best results
was the linear regression method with 57.6% and a 2361 RMSE, followed by Lasso with
a R2 of 55% and with 2442 RMS. The SVR model with linear kernel obtained 53%. In
this model, when the kernel was changed to rbf, the result decreased to 46%. Since the
previous models have a linear base, they adjust better to the data better. Still, the difference
between Random Forest applied to the tree volume with 22% and multivariate with 52% is
an interesting phenomenon.
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Regression Model R2 Score

VolumenImage

VolumenImage
ndviMax

ndviMean
maxBlue

maxGreen
saviMax
tviMax

ndviMax
maxHistBluVal

criMax

Linear Re-
gression

SVR

Random Forest

Decision Tree

Stochastic gradi-
ent descent(SDG)

0.48

0.56

0.47

0.53

0.21

0.52

-0.05

0.22

0.48

0.55

Figure 16. Regression models.

Table 3. Summary of regression models

Model Type R2 RMSE

Linear Regression Simple 0.48 2648
Multiple 0.576 2361

Lasso Simple 0.48 2648
Multiple 0.55 2442

PLSRegression Simple 0.48 2648
Multiple 0.544 2462

SDG Simple 0.1 3474
Multiple 0.51 2546

SVR Simple 0.47 2660
Multiple 0.53 2477

Random Forest Simple 0.22 3226
Multiple 0.50 2526

Decision Tree Simple −0.05 3747
Multiple 0.12 3333

The least suitable model for the data in this scenario was the decision tree. The random
forest model is less affected by dispersion, and its performance is closer to the SVR, higher
than this model with the RBF type kernel of 48%. Similar to [13], in this work, the height
and the area are not relevant separately until they become volume. The two component
PLSR model has a coefficient of 0.54 and a 2462 RMSE. The foregoing results define the
linear behavior of the selected variables as related to crop yields.

During the cross-validation process, this research tested 10 regression models, and in
all cases, the multiple regression model had better results than simple regression.

Table 4 compares the yield obtained by manual yield models. These values were
randomly calculated by iterating the division of the training and test values The original
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crop yield was presented in Section 2.2. The objective of this proposal was to evaluate
the relevance of the coffee yield predictors, showing that the predictor behavior is linear,
supported by regression models. In addition, when the predictors are combined, they have
behave better when making the predictions.

Table 4. Comparison regression models. *Predicted and original values in grains per tree.

Model Type Predicted Original

Linear Regression Simple 5180 5144
Multiple 5148 5144

PLS Regression Simple 5159 5144
Multiple 5106 5144

Lasso Simple 5180 5144
Multiple 5149 5144

SVR Simple 4774 5144
Multiple 5227 5144

SDG Simple 5096 5144
Multiple 5427 5144

Random Forest Simple 5174 5144
Multiple 5208 5144

Decision Tree Simple 5179 5144
Multiple 5226 5144

These results validate the approach proposed in this work; however, validations with
more data need to be carried out to make the process conclusive.

Figure 17 shows the behavior of the spectral bands as presented by Rosas et al. [21]
on the spectral reflectance in plants. This result validates the radiometric correction and
shows that the camera reflectance agrees with what was expected, since for the plants, the
NIR band has the lowest absorption and the greatest reflectivity [21].

Figure 17. Range of means of the blue, green, and red bands.

4. Discussion

Coffee cultivation is extremely important for the Colombian economy. To ensure that
these crops remain economically profitable, new cultivation techniques need to be adopted
to improve the current processes. Several models are dedicated to crop yield estimation
through climatic variables, flowering records, and soil factors, among others [4–6,35]. This
study is oriented towards early prediction of coffee crop yields by using only multi-spectral
image data obtained using low-cost tools. Multi-spectral images obtained from UAVs
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allow a high precision, focused analysis which, for this research, led to precise, automatic
individualization of coffee trees and generated physical and spectral descriptors with the
potential to predict crop yields [28,36,37].

The vegetation indices have the potential to predict yield in other crops. In this sense,
the work of Douglas et al. [27]. involves the EVI2, NDWI, and NDVI indices based on
MODIS data to use regression models with a R2 of 0.70, 0.69, and 0.69, respectively, for
soybeans. It also shows that in corn (maize), the EVI2 obtains a R2 of 0.73. The importance
of using multi-spectral images in calculating yield in different crops is highlighted.

This research focused on early yield prediction by obtaining images at the phenological
flowering stage. The R2 determination coefficient of 0.54 presented in Table 3 shows a clear
potential for calculating yield tree by tree as used by Barbosa et al. [13] but with physical
variables and RGB images.

One of the limitations of this research obtaining crop yield data for model training.
The manual data collection process is very expensive, both in terms of time and money.
The multispectral image approach to facilitate manual collection of crop yield data is one of
the contributions of this research. The plant segmentation process of this research defined a
sample collection method guided by a web-based application that allows identifying the
plants to be sampled.

In future perspectives, this application can be complemented by observation and
surveillance. Hyperspectral cameras enable the capturing of many more bands than multi-
spectral cameras. However, the multispectral cameras are more accessible for small and
medium producers. This research studied arabica coffee varieties, the dominant varieties
grown in Colombia. It would be interesting to apply this methodology to other varieties,
such as Robusta. This research analyzes the data by assuming a linear relationship between
crop yield data and linear predictors. However, additional analysis looking for non-linear
behaviors and testing the method on different varieties of coffee of other ages would
be desirable.

5. Conclusions

The proposed methodology allowed for early prediction of crop yield, which would
facilitate decision-making. It analyzes the feasibility of predicting coffee crop yield by
using multi-spectral aerial images. It begins with discriminating the conditions for optimal
capture of photographs at the flowering stage. Subsequently, this work described image
processing for segmentation and individualization of the coffee trees with the watershed
algorithm produced the expected results. The development of this work resulted in a strong
correlation between physical variables, such as tree volume, and spectral variables, such as
maximum NDVI and crop yield, similar to [13]. The segmentation of the plants helps to
avoid the influence of the ground and other plants in calculating the vegetation indices.

The individualization of image processing allows for automated classification and labeling
of manual yield samples for regression model training. Considering the results of Table 3, it is
possible to affirm that the best model for predicting coffee crop yields is linear regression.

For future research, capturing more manual samples in different crops to map the
biennial coffee crop behaviors and to open the possibility of using deep learning tools.
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Abbreviations

The following abbreviations are used in this manuscript:

NDVI Normalized Difference Vegetation Index
CRI Coffee Ripeness Index
LAI Leaf Area Index
RGB Red–Green–Blue
UAV Unmanned Aerial Vehicle
GCP Ground Control Position
SVM Support Vector Machines
PLS Partial Least Squares
MAPE Mean or Average of the Absolute Percentage Errors
DSM Digital Surface Model
Kc Coefficient of Crop
EML Extreme Machine Learning
SDG Stochastic Gradient Descendent
RF Random Forest
LR Linear Regression
RMSE Root Mean Square Error
MAE Mean Absolute Error
RGN Red–Green–NIR
NDWI Normalized Difference Water Index
ExG Excess Of Green
FAPAR Fraction of absorbed photosynthetically active radiation
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