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Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD)
has been widely used in atmospheric environment and climate change research. Based on data of
the Aerosol Robotic Network and Sun–Sky Radiometer Observation Network in the Yangtze River
Delta, the retrieval accuracies of MODIS C6.1 Dark Target (DT), Deep Blue (DB), and C6.0 Multi-angle
Implementation of Atmospheric Correction (MAIAC) products under different land cover types,
aerosol types, and observation geometries were analyzed. About 65.64% of MAIAC AOD is within
the expected error (Within EE), which is significantly higher than 41.43% for DT and 56.98% for DB.
The DT product accuracy varies most obviously with the seasons, and the Within EE in winter is
more than three times that in spring. The DB and MAIAC products have low accuracy in summer
but high in other seasons. The accuracy of the DT product gradually decreases with the increase in
urban and water land-cover proportion. After being corrected by bias and mean relative error, the DT
accuracy is significantly improved, and the Within EE increases by 24.12% and 32.33%, respectively.
The observation geometries and aerosol types were also examined to investigate their effects on
AOD retrieval.

Keywords: Yangtze River Delta; aerosol optical depth; AERONET; SONET; MODIS; aerosol type;
land cover

1. Introduction

Aerosols are tiny particles suspended in the atmosphere, and they are one of the main
pollutants in the atmosphere [1]. This pollutant is an important factor affecting climate
change, by scattering and absorbing solar radiation and changing the microphysical prop-
erties of clouds to disturb the Earth’s radiation balance [2–5]. The impact of atmospheric
aerosols on climate forcing is uncertain due to the relatively high spatial and temporal
variability in their physical and chemical characteristics [6,7]. The observation of aerosol’s
optical and physical properties and the quantification of the impact of aerosol particles on
the climate and environment have also attracted extensive attention. Aerosol optical depth
(AOD) is the integral of the aerosol extinction coefficient in the vertical direction, and it
is a key factor used to describe aerosol optical properties and determine the influence of
climate effects. It is widely used in atmospheric environment monitoring, atmospheric
radiation transmission, remote sensing applications, and climate change research [8–10].

Remote sensing technology is an important method for aerosol monitoring at present [11].
Satellite remote sensing has a large observation region and relatively low cost, and it
can reflect the spatial and temporal variations in regional and even global atmospheric
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aerosol. The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra/Aqua
satellite has been widely used as a global-coverage satellite remote sensing instrument
to detect aerosol optical properties [12]. However, the radiation information received by
the satellite’s sensor is subject to the complex influence of atmospheric scattering and
surface reflection [13]. Moreover, uncertainties are introduced by surface reflectance and
the aerosol model used in AOD retrieval [14,15], which results in uncertainty in the results
of satellite retrieval. Therefore, the applicability of MODIS aerosol products for different
regions still needs to be verified by comparison with ground observation data. East Asia
is one of the regions with the largest aerosol loads in the world. Considerable research
has been conducted on the applicability of MODIS AOD in East Asia, especially China,
including the Yangtze River Delta (YRD), the Beijing–Tianjin–Hebei region, Pearl River
Delta, and northwest China [16–18].

The land surface reflectance is high, and the aerosol types are complex compared with
those in ocean aerosol retrieval, and the retrieval of aerosols over land is still an important
and difficult topic [19]. The solar radiation at the top of the atmosphere (TOA) received by
satellite sensors includes atmospheric scattering and surface reflection. Obtaining accurate
surface reflectance is a key problem to be solved for aerosol retrieval. Land cover type also
affects aerosol characteristics. The reason is that different land cover types will produce
different atmospheric emissions, and this factor can change the local climate and affect
the transmission of aerosols by affecting radiation transport [20]. Therefore, an increasing
number of scholars focus on the influence of surface types on aerosol characteristics and
AOD retrieval accuracy [21–24].

The YRD is one of the fastest-growing and most prosperous regions in China. It is
considered to be a high-aerosol value area in the global context and a heavily polluted area
in China, because of its dense population and industries [25]. The composition of aerosols
in this region is complex, including anthropogenic aerosols such as sulfates, biomass
burning aerosol, as well as natural aerosols, such as dust and sea salt transported over
a long distance, and their optical properties are highly diverse [26–29]. Therefore, the
applicability of the MODIS aerosol product in the YRD needs to be further analyzed to
clarify the influence of different land cover types, aerosol types, and observation geometries
on aerosol retrieval accuracy.

In this study, the YRD is taken as the research area, and the AOD data of the Aerosol
Robotic Network (AERONET) and the Sun–Sky Radiometer Observation Network (SONET)
ground-based observation sites, representing the underlying surface of forest, cropland,
urban, and water, are selected as the benchmark. The aerosol retrieval accuracies of MODIS
Collection 6.1 (C6.1) Dark Target (DT), Deep Blue (DB), and MODIS Collection 6 (C6) Multi-
angle Implementation of Atmospheric Correction (MAIAC) AOD products under different
land cover types, aerosol types, and observation geometries are studied. The accuracy of
MODIS AOD is also corrected according to the land-cover proportion of urban and water
areas to provide a new reference for the more accurate evaluation of the applicability of
MODIS AOD products in different regions and the improvement in the retrieval method.

2. Materials and Methods
2.1. MODIS Aerosol Products

MODIS is one of the most important sensors used by the Earth Observing System
(EOS) Terra/Aqua satellites for aerosol monitoring [12]. It has 36 bands covering the
spectrum from 0.4 µm to 14 µm. Its spatial resolution range includes 250 m (bands 1–2),
500 m (bands 3–7), and 1 km (bands 8–36), and thus, it provides global coverage every
2 days [30]. At present, MODIS aerosol products have been developed for the DT and
DB of C6.1 version [31,32]. The daily aerosol products of C6.1 Level 2 are MOD04_L2
and MYD04_L2 with a spatial resolution of 10 km, where “MOD” is used for Terra and
“MYD” for Aqua. The MAIAC product has been developed for C6 [33], and its daily aerosol
product is MCD19A2, with a spatial resolution of 1 km.
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2.1.1. DT Products

Over vegetated and dark soiled surfaces, a proportional relationship exists between
the surface reflectance in visible wavelengths (0.47 and 0.66 µm) and in the shortwave
infrared wavelengths (2.12 µm), which is called the “VISvs2.12” relationship [34,35]. The DT
algorithm assumes that the aerosol is transparent at 2.12 µm and that the surface reflectance
equals the TOA reflectance in this band; then, the AOD is retrieved based on the selected
aerosol model and look-up table (LUT). Under a dust aerosol regime, aerosol transparency is
an extremely poor assumption, and the 2.12 µm channel contains information about coarse
mode aerosol and the surface reflectance. Levy et al. found that a single set of “VISvs2.12”
ratios is not globally applicable [13,36]. The C5 defined the “VISvs2.12” relationship as a
function between the scattering angle (SA) and the Normalized Difference Vegetation Index
(NDVI) based on 2.12 µm. The C6.1 product over land was corrected as follows: when the
coastal proportion in the 10 km × 10 km grid was greater than 50% or the water proportion
was greater than 20%, the quality assurance (QA) of AOD was dropped to 0; when the
proportion of urban was more than 20%, the surface reflectance calculation scheme was
modified using the MODIS land surface reflectance and land cover type products [37]. The
dataset of “Optical_Depth_Land_And_Ocean” from C6.1 MOD04_L2 and MYD04_L2 was
used, and it contains AOD values for the filtered, quantitatively useful retrievals over dark
targets, where the QA for AOD over land is 3 (representing high-quality retrieval).

2.1.2. DB Products

Hsu et al. found that the surface reflectance of MODIS in the blue channel is still low,
even in areas of high surface reflectance, such as urban and desert [38]. The DB algorithm
assumes that the surface reflectance of most figures remains constant in a short time and re-
trieves AOD by constructing a seasonal surface reflectance database [39]. The C6 algorithm
divides the land surface into three types: arid and semi-arid regions, vegetated regions, and
urban/built-up and transitional regions [40]. The surface reflectance database is improved
using knowledge of NDVI, SA, and season. The C6.1 product has been updated in the
following aspects: radiometric calibration, heavy smoke detection, artifact correction for het-
erogeneous terrain, seasonal and regional aerosol model, and surface reflectance in elevated
terrain [41]. The dataset of “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate”
from the MODIS C6.1 product was used, where QA = 2, 3 (representing good quality
retrieval). Datasets such as “Solar_Zenith”, “Sensor_Zenith”, “Solar_Azimuth”, “Sen-
sor_Azimuth”, and “Scattering_Angle” were used to evaluate the impact of observation
geometry on the accuracy of DT and DB AOD.

2.1.3. MAIAC Products

The MAIAC algorithm assumes that (1) surface reflectance slightly changes in a short
period of time and that (2) AOD does not change remarkably in adjacent regions [42,43].
MAIAC retrieves AOD through time-series MODIS observations. MAIAC applies the
MODIS L1B data to a fixed grid with a resolution of 1 km, analyzes the time series of
observation data from the past 4 days (polar) to 16 days (equatorial) using the sliding
window strategy to obtain the linear spectral regression coefficient (SRC), and calculates
AOD based on SRC and surface bidirectional reflectance factors via LUT. MODIS C6 has
been improved in terms of cloud mask, SRC estimation, and aerosol properties. MAIAC
utilizes the minimal ratio of spectral reflectance (0.47/2.13 µm) in a 2-month period to
estimate SRC at a 1 km scale, which helps to remove the occasional blockiness at the 25 km
scale in the AOD and in the surface reflectance. Smoke and dust models are introduced in
C6 to distinguish between fine and coarse aerosol models [33]. “Optical_Depth_055” and
“AOD_QA” in the C6 product were used in this study, where “0000” for the QA of AOD
was selected to represent the best quality. The datasets “cosSZA”, “cosVZA”, “RelAZ”, and
“Scattering_Angle” were selected to evaluate the impacts of observation geometry on the
accuracy of MAIAC products.
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2.2. Ground-Based Measurements
2.2.1. AERONET Data

AERONET is a global aerosol optical property monitoring network established by the
National Aeronautics and Space Administration [44]. Through the establishment of ground-
based monitoring sites in representative regions around the world, the benchmark data of
global aerosol parameters have been obtained to study aerosol optical and physicochemical
properties. The AERONET uses the French CIMEL CE318 Sun photometer to obtain
the columnar AOD for the whole atmosphere by measuring the direct (collimated) solar
radiation at different wavelengths, directions, and times. AERONET uses the spectral ed-
convolution algorithm to yield fine and coarse AOD at a standard wavelength of 500 nm,
from which the fine mode fraction to total AOD can be computed [45]. The CE318 Sun
photometer sky radiance measurements can be inverted to produce aerosol characteristics,
such as size distribution, single scattering albedo (SSA), phase functions, and the complex
index of refraction. The AERONET aerosol products are classified into Level 1.0, Level
1.5, and Level 2.0 [46]. L1.0 data are unscreened and do not undergo final calibration; L1.5
data are cloud-cleared, and quality controls have been applied, but these data may not
undergo final calibration; L2.0 data are automatically cloud-cleared and quality-assured,
with pre-field and post-field calibration applied. The V3 Level 2.0 data (Table 1) for Taihu
(TH), Qiandaohu (QDH), Hangzhou_City (HZC), Hangzhou_ZFU (HZZ), NUIST, Shouxian
(SX), Hefie (HF), XuZhou-CUMT (XZ), and LA-TM in the YRD (Figure 1) from 2007 to 2018
were used in this study.

Table 1. Information of ground-based observation sites.

Site Project Longitude Latitude Data Period
Number of Matches (n)

DT DB MAIAC

TH AEROENT 120.215 31.421 09/2005–08/2016 722 956 1512
QDH AEROENT 119.053 29.556 08/2007–10/2008 53 53 88
HZC AEROENT 120.157 30.290 04/2008–02/2009 69 84 103
HZZ AEROENT 119.727 30.257 08/2007–08/2009 174 176 195

NUIST AEROENT 118.717 32.206 09/2008–08/2010 107 137 156
SX AEROENT 116.782 32.558 05/2008–12/2008 86 98 96
XZ AEROENT 117.142 34.217 06/2013–05/2019 831 1135 1238
HF AEROENT 117.162 31.905 11/2005–11/2008 86 107 118

LA-TM AEROENT 119.440 30.324 10/2007–03/2009 93 101 112
HF SONET 117.162 31.905 01/2013–12/2019 484 510 562
NJ SONET 118.957 32.115 01/2013–12/2019 357 476 528
SH SONET 121.481 31.284 01/2013–12/2019 221 370 397

2.2.2. SONET Data

SONET is a ground-based observation network organized and implemented by the
Chinese Academy of Sciences in typical areas of China, including rural, urban, desert,
coastal, basin, mountain, and plateau areas [47]. It obtains the physical, chemical, and
optical characteristics of the total column aerosol for aerosol characteristic modeling and
the authenticity inspection of satellite remote sensing products in China. SONET uses the
French CIMEL’s multiwavelength polarized sun–sky radiometer CE318-DP to observe the
solar and sky radiation and their polarization characteristics in eight wavebands (the central
wavelengths are 340, 380, 440, 500, 675, 870, 1020, and 1640 nm) and to detect the total
column water vapor at 936 nm. Aerosol products are divided into three grades according
to the AERONET product grades, namely, Level 1.0, Level 1.5, and Level 2.0 [48]. L1.0 data
are original data; L1.5 data are cloud-cleared through the automatic cloud identification
algorithm; L2.0 data are cloud-cleared, and calibration coefficient interpolation and expert
identification have been applied. SONET L2.0 data (Table 1) from Hefei (HF), Nanjing (NJ),
and Shanghai (SH) were adopted in this study.
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The AERONET/SONET AOD at 500 and 675 nm were interpolated into AOD at
550 nm using the Ångström exponent (AE) because MODIS AOD is at 550 nm, but
AERONET/SONET AOD does not have such a wavelength.

τ550 = τ675(550/675)−α (1)

α = − ln(τ500/τ675)/ ln(500/675) (2)

where τ500 is AOD at 500 nm, τ675 is AOD at 675 nm, α is the AE at 500–675 nm, and τ550 is
AOD at 550 nm obtained by interpolation.

2.3. Land Cover Data

MCD12Q1 data are the 500 m resolution land classification products formed by ex-
tracting different land cover types based on the annual MODIS Aqua and Terra data using
the decision tree-supervised classification method [49]. These data can be divided into
17 land cover types. The land cover type percentages of each of the AERONET and SONET
sites in the YRD corresponding to 3 × 3 pixels of MODIS L2 data within the range of
30 km × 30 km are counted in Table 2. The areas around QDH, LATM, and HZZ are domi-
nated by forest; notably, the forest proportions of LATM and HZZ account for more than
90%. HF and SX are dominated by cropland, and the proportions account for more than
60%. The land cover types at HZC and SH are mainly urban, of which the urban area in
SH accounts for more than 90%. TH is dominated by water; approximately half of it is
water, and it is slightly more urban than forest. The land cover types at XZ, NJ, and NUIST
are mixtures of forest, cropland, and urban. According to the land cover proportion, the
ground-based observation sites are classified into five land cover types, which are forest,
cropland, urban, mixed, and water.
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Table 2. Percentage of land cover around AERONET/SONET sites (%).

Land Cover Type Site Forest Wetland Cropland Urban Barren Water

Forest
QDH 64.86 9.67 0.00 1.08 0.17 24.22
LATM 99.92 0 0 0.08 0 0
HZZ 93.47 0.27 1.4 4.19 0 0.67

Cropland HF 3.28 1.05 60.33 33.41 0.05 1.88
SX 9.47 2.69 63.61 15.67 0.00 8.56

Urban
HZC 21.92 0.42 0.22 71.22 0.39 5.83
SH 0.3 0.11 0 92.93 0.05 6.61

Mixed
XZ 12.66 0.08 43.94 42.35 0.03 0.94
NJ 36.15 1.72 26.9 29.08 0.51 5.64

NUIST 33.39 1.00 39.14 23.17 0.22 3.08

Water TH 20.67 2.75 1.61 27.58 0.14 47.25

2.4. Evaluation Method
2.4.1. Spatiotemporal Matching

AERONET/SONET data represent the continuous observation of the ground sites
at fixed intervals daily, whereas MODIS AOD represents the instantaneous observations
with a 10 km × 10 km spatial resolution. The spatiotemporal scales of MODIS and ground-
based observations differ. Therefore, the ground-based data were filtered with a temporal
window of 30 min before and after satellite overpass to obtain the average of AOD. The
30 km × 30 km range of the ground site was considered a spatial window, and the average
MODIS AOD under this window was calculated to form the AERONET/SONET-MODIS
AOD dataset matching the temporal and spatial resolution.

2.4.2. Evaluation Method

The expected error (EE hereinafter) is usually used to evaluate the quality of AOD
retrieved by satellite. A large number of experiments have been conducted by the MODIS
science team; EE adopts ±(0.05 + 0.15 × AOD) for DT and DB AOD products, and ±(0.05 +
0.1× AOD) is used for MAIAC products [33,50–52]. To uniformly compare and analyze the
quality of each algorithm, the EE of ±(0.05 + 0.15 × AOD) is adopted. Above EE, Within
EE and Below EE are expressed by Equations (4)–(6):

EE = ±(0.05 + 0.15×AODG) (3)

AODM > AODG + |EE| (4)

AODG − |EE| ≤ AODM ≤ AODG + |EE| (5)

AODM < AODG + |EE| (6)

where AODG is the observed AEROENT/SONET AOD, and AODM is the AOD retrieved
from MODIS. In addition, error analysis is performed by root mean squared errors (RMSE),
bias, the square of the correlation coefficient (R2), and the slope (a) of regression analysis.

RMSE =

√
1
n ∑(AODM −AODG)

2 (7)

Bias =
1
n ∑(AODM −AODG) (8)

R2 =

 ∑
(
AODM −AODM

)(
AODG −AODG

)√
∑
(
AODM −AODM

)2
√

∑
(
AODG −AODG

)2

2

(9)
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3. Results
3.1. Overall Accuracy of DT, DB, and MAIAC

The accuracies of DT, DB, and MAIAC products in the YRD differ greatly (Figure 2),
and the matched number and accuracy of MAIAC are significantly better than those of DT
and DB. The matched number of DT is the lowest, with a value of 3239, which indicates
that it is more difficult to satisfy the DT algorithm than MAIAC or DB. The DT product also
has the lowest accuracy, with a Within EE of only 41.43% (Figure 2a), which is more than
24% lower than that of MAIAC, and the RMSE of DT is the highest at 0.243. In the matched
data of DT, about 54.58% is Above EE, only 3.98% is Below EE, and the bias is 0.151, which
implies that DT AOD in the YRD is mostly overestimated. The bias box at different AODs
is shown in Figure 2d. When the AOD is less than 0.8, the mean bias exceeds the EE, and
the mean bias decreases gradually with the increase in AOD. The mean bias is−0.006 when
the AOD is 1.78, and this suggests that the DT AOD in the YRD is overestimated mainly in
the middle and low value ranges.
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A total of 4203 DB matched data have a Within EE of 56.98%, an RMSE of 0.174, and
a bias of −0.027. The number and accuracy of DB matched data are better than those of
DT but lower than those of MAIAC. However, 27.93% of DB AOD is Below EE, which is
the highest among the three methods. The bias statistics of different AODs are shown in
Figure 2e. The mean bias is less than 0 when the AOD is between 0.15 and 0.5. The mean
bias is relatively small and fluctuates around 0 when the AOD is between 0.5 and 1.0. The
deviation is larger and becomes less than 0 with the increase in AOD when the AOD is
greater than 1.0. Therefore, DB AOD is mostly underestimated when AOD is greater than
1.0 and less than 0.5.

The MAIAC product is the best of the three algorithms. It has a matched number
of 5105, a Within EE of 65.64%, an RMSE of 0.196, and a bias of 0.036, which values are
obviously better than those of DT and DB. The bias statistics of different AODs are shown
in Figure 2f. The mean bias of MAIAC is relatively large when the AOD is low. In particular,
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the mean bias is 0.079 when the AOD is 0.105, and it is the only mean bias value that exceeds
the EE in the MAIAC product. Therefore, the MAIAC AOD is obviously overestimated at a
low AOD. When the AOD is between 0.2 and 0.5, the mean bias is relatively low, most of
which values are lower than 0.04. The mean bias slightly increases with the rise in AOD.

The retrieval accuracy values for DT, DB, and MAIAC products show discrepancy in
different seasons (Table 3). The matched number is the lowest in winter, and the Within
EE is the lowest in spring for the DT product. The matched number and Within EE of DB
and MAIAC AOD products are the lowest in summer. The matched numbers for the three
algorithms in summer are very low; among them, the matched number of DT in summer is
575, which is smaller than the 1224 in spring and the 996 in autumn, and this value for DB
and MAIAC is lower in summer than in other seasons, only accounting for 12.0% and 13.6%
of all matched numbers, which may be due to the rainy weather in the YRD in summer [25].

Table 3. Accuracy validation of DT, DB, and MAIAC AOD in the Yangtze River Delta in each season.

Season Data n Above
EE (%)

Below
EE (%)

Within
EE (%) RMSE Bias R2 a

Spring
DT 1224 75.65 1.06 23.29 0.279 0.228 0.789 1.018
DB 1296 9.88 31.17 58.95 0.169 −0.052 0.772 0.974

MAIAC 1497 21.24 17.04 61.72 0.217 0.033 0.667 1.013

Summer
DT 575 49.22 4.52 46.26 0.248 0.134 0.767 0.917
DB 503 7.16 52.48 40.36 0.228 −0.116 0.806 1.011

MAIAC 696 28.74 14.8 56.46 0.265 0.071 0.691 1.058

Autumn
DT 996 42.97 5.92 51.11 0.218 0.104 0.726 0.913
DB 1073 12.86 26 61.14 0.149 −0.032 0.786 0.912

MAIAC 1388 28.17 6.34 65.49 0.192 0.071 0.772 1.000

Winter
DT 444 29.51 6.98 63.51 0.175 0.068 0.736 0.982
DB 1331 24.94 17.06 58.00 0.175 0.035 0.781 1.156

MAIAC 1524 14.3 11.88 73.82 0.132 −0.009 0.821 0.830

The matched number of DT AOD in winter is the lowest, with a value of 444, which is
mainly due to the reduction in green vegetation in winter. The Within EE of DT shows the
most significant seasonal variation, with a peak of 63.51% in winter, and only 23.29% in
spring, which is one-third of that in winter.

The Within EE of DB does not change considerably in spring, autumn, and winter,
and the values are all close to 60%, while the lowest value is 40.36% in summer. The main
reason is that the Deep Blue surface database method is mainly adopted for the surface
reflection in the YRD, and the lush vegetation in summer leads to low accuracy for AOD
retrieval.

The Within EE of MAIAC AOD also shows significant seasonal variation, with 56.46%
in summer, which is the lowest value, 61.72% in spring, 65.49% in autumn, and 73.82%
in winter, which is the highest value. The matched number is also the lowest in summer,
while little change is observed in other seasons. Therefore, the quantity and accuracy of
MAIAC AOD are good, except in summer.

3.2. Influence of Land Cover Types on AOD Retrieval

The three algorithms perform significantly differently for different land cover types
(Table 4). The highest accuracy of the DT product regards the data for forest, where it
obtains a Within EE of 68.75%, an RMSE of 0.163, and a bias of −0.059. The Within EE
of DT for cropland with a higher vegetation proportion is 53.59%, which is obviously
higher than that for mixed, urban, and water areas. The Within EE values of DT for urban
and water are 18.96% and 26.04%, respectively, which are relatively low. The analysis of
the relationship between the land cover proportion of urban and water (LCPUW) and the
Within EE at eight sites with more matched data in the YRD (Figure 3a) shows that Within
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EE is significantly negatively related to LCPUW, that the R2 is 0.892, and that the accuracy
of DT AOD decreases with the increase in LCPUW.

Table 4. Accuracy of DT, DB, and MAIAC AOD in different land cover types in the Yangtze River Delta.

Land
Cover Data n Above

EE (%)
Below
EE (%)

Within
EE (%) RMSE Bias R2 a

Forest
DT 320 5.94 25.31 68.75 0.163 −0.059 0.794 0.874
DB 330 0.91 62.12 36.97 0.201 −0.151 0.826 0.910

MAIAC 395 8.35 12.41 79.24 0.130 −0.022 0.843 0.909

Urban
DT 290 79.66 1.38 18.96 0.304 0.254 0.715 0.887
DB 454 23.13 28.19 48.68 0.196 −0.013 0.610 0889

MAIAC 500 18.00 19.00 63.00 0.175 −0.022 0.650 0.720

Cropland
DT 612 45.1 1.31 53.59 0.188 0.123 0.829 1.08
DB 715 9.23 31.89 58.88 0.154 −0.042 0.808 1.059

MAIAC 776 9.15 12.11 78.74 0.126 −0.008 0.849 0.960

Mixed1
DT 464 59.27 1.51 39.22 0.219 0.156 0.840 1.034
DB 613 8.48 38.01 53.51 0.183 −0.078 0.794 0.998

MAIAC 684 8.19 16.37 75.44 0.145 −0.029 0.831 0.907

Mixed2
DT 831 53.67 1.93 44.4 0.200 0.133 0.834 0.974
DB 1135 22.73 16.3 60.97 0.172 0.025 0.791 1.035

MAIAC 1238 17.12 9.53 73.35 0.141 0.021 0.841 0.998

Water
DT 722 72.16 1.8 26.04 0.332 0.245 0.671 0.878
DB 956 15.69 20.4 63.91 0.164 −0.01 0.765 0.953

MAIAC 1512 43.98 10.52 45.50 0.286 0.135 0.634 1.029

Mixed1 is NJ and NJUPT, and its forest proportion is significantly higher than that of XZ. Mixed2 is XZ, and its
urban proportion is higher than those of NJ and NJUPT.
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Figure 3. (a) Correlations between land-−cover proportions of urban and water and DT Within EE.
(Three sites with the least matched data are removed, which are QDH, HZC, and SX). (b) Correlations
between land-cover proportion of urban without water and DB Within EE (QDH, HZC, and SX with
fewer matching data and SH with a high urban proportion close to 100% are removed).

The lowest accuracy of the DB product regards the data for forest, where it obtains
a Within EE of only 36.97%. Different from other regions [21,53], the Within EE of DB for
urban in the YRD is only 48.68%, which is lower than that for cropland, mixed, and water
land cover. Among the two sites with urban cover, the Within EE at HZC is 63.10%, which
is significantly higher than that at SH (45.40%). Therefore, other factors besides land cover
type have a great impact on the DB product in SH. The Within EE in TH mainly dominated
by water is 63.91%, which is the highest among all land cover types. The reason is that DB
filters water land cover according to the MCD12C1 dataset and retrieves aerosols of other
land cover types [40]. After the water land cover around TH is removed, about 52.29%
of the underlying surface is urban, which value is second only to SH and HZC. After the
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water land cover is removed in each site, a significant linear relationship can be observed
between the land cover proportion of urban without water (LCPU) and the Within EE of
DB (Figure 3b), and the Within EE of DB increases with the rise in the LCPU.

The accuracy of MAIAC in forest, cropland, and mixed land cover types with a high
vegetation proportion is relatively high. The Within EE values of Mixed1 and Mixed2 are
over 70%, while the Within EE values of cropland and forest are close to 80%, which are
78.74% and 79.24%, respectively. The RMSE and bias are also relatively low, and the lowest
RMSE and bias in cropland are 0.126 and −0.008, respectively. The accuracy of MAIAC in
urban is low, with a Within EE of 63%. The accuracy of MAIAC in water is the lowest, with
a Within EE of only 45.50%.

3.3. DT and DB AOD Correction

The bias and Mean Relative Error (MRE) (defined by Equation (10)) of DT have an
obvious linear relationship with LCPUW (Figure 4a,b), and the R2 values are 0.814 and 0.932,
respectively. The bias and MRE of DT are positive, except for at LATM and HZZ, with a
very small LCPUW. The bias and MRE of DT increase, and the accuracy decreases with the
rise in LCPUW. The bias and MRE of DB have an obvious linear relationship with LCPU
(Figure 4c,d). Different from those of DT, the bias and MRE of DB are all negative, except
for those for XZ, with a high LCPU. Overall, the bias and MRE of DB increase with the rise
in LCPU, and the accuracy improves.
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Therefore, AOD can be corrected according to LCPUW and LCPU [24]. In this study,
DT and DB products are corrected according to Equations (11) and (12). If the DT product
is corrected, then Biaspredict and MREpredict are determined by regression equations in
Figure 4a,b and LCPUW. If the DB products are corrected, then Biaspredict and MREpredict
are determined by the regression equations in Figure 4c,d and LCPU.

MRE = 100×∑(AODM −AODG)/AODG (10)
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AODcorrectd
M = AODM − Biaspredict (11)

AODcorrectd
M = AODM/

(
1 + MREpredict

)
(12)

The accuracy of DT is greatly improved when corrected by the two methods (Figure 5).
In particular, the Within EE of the DT MRE-corrected product has been increased to 72.29%,
but its regression coefficient is only 0.704. The RMSE and bias of the DT MRE-corrected
product are slightly higher than those of the DT bias-corrected product. The change curve
of the mean bias of the DT bias-corrected product (Figure 5e) is similar to that of the DT-
uncorrected product, but the mean bias is significantly reduced and around zero. The mean
bias of the DT MRE-corrected product (Figure 5f) gradually decreases with the increase
in AOD, with a value from 0.048 to −0.327. The lower quartile limit of bias exceeds the
EE when AOD is around 0.8, and the mean bias also exceeds the EE when AOD is around
1.0. Therefore, the accuracy of the DT MRE-corrected product is significantly improved
in the middle and low AOD intervals. However, the error will already exceed that of
DT-uncorrected products with the increase in AOD, especially when the AOD is greater
than 1.0.
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A comparison of the DT Within EE before and after correction at each site is shown in
Figure 6a. The Within EE of LATM and HZZ with low LCPUW does not change considerably
after correction, but the Within EE at TH and SH with a large LCPUW is significantly
improved. Therefore, the DT product can be corrected effectively, especially for urban and
water land cover types.
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Figure 6. Accuracy comparison at each site before and after the correction of DT (a) and DB (b) prod-
ucts. (a) The orange bar represents the DT Within EE, and the green and purple bars represent the
increased Within EE value following bias correction and MRE correction, respectively. The Within EE
shows no change before and after MRE correction at HZZ. (b) The lower orange bar represents the
DB Within EE, and the upper orange bar represents the decreased value after correction.

The comparison of the Within EE of DB before and after correction at each site is
shown in Figure 6b. The Within EE of the DB-corrected product at LATM, HZZ, and NUIST
with low LCPU is significantly improved, but the improvement of Within EE gradually
decreases with the rise in LCPU. When the LCPU exceeds 30%, the Within EE of the
DB MRE-corrected product becomes lower than that of the uncorrected product, and the
bias and MRE-corrected methods lead to a decrease in DB Within EE at HF, XZ, and TH.
Therefore, only the DB product with an LCPU less than 30% can be corrected effectively.

Table 5 shows the accuracy comparison results at LATM, HZZ, and NUIST with
low LCPU before and after the correction of DB AOD. The Within EE based on both
correction methods has been significantly improved; in particular, the Within EE of the DB
bias-corrected product has been increased to 67.88%, and the RMSE and bias have been
significantly reduced, but the R2 has been decreased.

Table 5. Accuracy comparison at LATM, HZZ, and NUIST before and after correction of DB AOD.

Data n Above
EE (%)

Below
EE (%)

Within
EE (%) RMSE Bias R2 a

DB 414 2.66 56.52 40.82 0.211 −0.150 0.834 0.915
DB Bias-Corrected 414 14.49 17.63 67.88 0.155 −0.023 0.818 0.881
DB MRE-Corrected 414 21.26 18.60 60.14 0.227 0.025 0.803 1.208

3.4. Influence of Observation Geometry on AOD Retrieval

The influence of observation geometry, such as solar zenith angle (SZA), view zenith
angle (VZA), scattering angle (SA), and relative azimuth angle (RAA), on the aerosol
retrieval accuracy is shown in Figure 7. SZA, VZA, and SA are divided into three sections:
Low (0◦–30◦), Moderate (30◦–60◦), and High (60◦–90◦). RAA is also divided into six sections
at 30◦ intervals.

SZA greatly influences the accuracy of DT, DB, and MAIAC products (Figure 7a). The
accuracy generally increases with the rise in SZA. The SZA values of DT, DB, and MAIAC
are mainly concentrated in the Moderate and Low sections; Moderate accounts for about
60–70% of the total. The accuracy of AOD in the Low section is significantly lower than that
in the Moderate section, and the Within EE in the Moderate sections of the three algorithms
is about 14 percentage points higher than that in the Low section. The RMSE value of
DT and DB at a Moderate SZA is about 0.05 lower than that at the Low SZA, while the
difference between the RMSE values of MAIAC in the two sections is 0.101. The proportion
of SZA in the High section is very low. The proportion of SZA of MAIAC in the High
section, which represents the highest proportion of the High section in the three algorithms,
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is only 5.22%. The SZA of DT in the High section is less than 2%, but its accuracy is the
highest, with a Within EE of 85.71% and an RMSE of 0.094.
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VZA is also mainly concentrated in the Moderate and Low sections (Figure 7b). The
accuracies of DT, DB, and MAIAC in the Moderate and High VZA are also higher than
that in the Low VZA, but the influence of VZA is obviously smaller than that of SZA. In
particular, the accuracy shows nearly no difference between the DT in the Moderate VZA
and that in the Low VZA; the Within EE values are 40.74% and 40.27%, and the RMSE
values of DT are 0.153 and 0.156. However, the accuracy of DT in the High section is
significantly improved. The difference in the Within EE of MAIAC between Moderate and
Low VZA is no more than five percentage points, and the difference in RMSE is about
0.023. The accuracy of MAIAC in High VZA is slightly reduced, and the accuracy does not
change considerably with VZA. The DB product shows the largest change with VZA—the
Within EE of Moderate VZA is 12.38 percentage points higher than that of Low VZA, and
the RMSE is 0.026 lower.

The influence of SA is mainly reflected in that the accuracy of the three algorithms is
the lowest for High SA (Figure 7c). The accuracy of the DT and MAIAC AOD varies with
the SA, and the accuracy in Low SA is similar to that in Moderate SA. The difference in the
Within EE between them is less than 3%, and the difference in RMSE between them is less
than 0.1. Meanwhile, the accuracy of DB decreases with the rise in SA, and the accuracy
difference of DB between Low and Moderate SA is large. The difference in Within EE is
close to 17%, and the difference in RMSE is about 0.044.

The influence of RAA on the AOD accuracy of the three algorithms mainly manifests
as high accuracy when RAA is close to vertical, but low accuracy when RAA is close to 0 or
180. The accuracy of DT in the three sections of 30◦–60◦, 60◦–90◦, and 90◦–120◦ are better,
with Within EE values of about 50%, among which the highest is 52.27% at 60◦–90◦, and
the lowest RMSE is 0.189. The maximum Within EE of DB is 69.77% at 90◦–120◦ RAA, and
the lowest RMSE is 0.134 at 60◦–90 ◦ RAA. MAIAC has good accuracy at 60◦–90◦, 90◦–120◦,
and 120◦–150◦ RAA, and their within EE values are close to 70%.
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3.5. Influence of Aerosol Types on AOD Retrieval

Aerosol type is an important source of aerosol retrieval error. The DT algorithm
establishes five aerosol models based on the global AERONET aerosol data through cluster
analysis, and the appropriate aerosol model is selected according to regions and seasons.
The DB algorithm uses the maximum likelihood method to calculate a mixing ratio between
various dust and smoke models and then retrieves the AOD and AE. The MAIAC algorithm
divides aerosols into eight types according to aerosol size distribution and the concentra-
tion ratios of coarse and fine particle columns, as well as other parameters observed by
AERONET. Model 5 is mainly used for aerosol retrieval in China. The bias distributions of
DT, DB, and MAIAC products under different AE and SSA are shown in Figure 8.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 8. Accuracy of DT, DB, and MAIAC products under different AE (a,b,c) and SSA (d,e,f); each 
box is based on 100 matched data points, the dashed line represents the expected error line, and the 
red dot represents mean bias. 

The bias of DT and DB does not change considerably with AE. The bias of DT is gen-
erally large and mainly positive (Figure 8a). The mean bias does not change considerably 
with AE, and the mean bias of DT is around 0.15 except when the AE is greater than 1.6. 
The bias of DB is mainly negative (Figure 8b). The mean bias of DB also does not change 
considerably with AE. The mean bias of DB with an AE of 0.8–1.6 is very small and does 
not fluctuate considerably. The bias of MAIAC increases with the rise in AE (Figure 8c). 
The mean bias at each interval increases linearly with AE. The mean bias is less than 0 
when the AE is less than 1.0, which indicates that the AOD of MAIAC is underestimated. 
The AOD of MAIAC is overestimated when the AE is greater than 1.0. 

The AOD bias values of three algorithms change more obviously with SSA than with 
AE. Overall, the mean bias increases and then flattens with the increase in SSA. The mean 
bias increases with SSA when it is less than 0.93. The mean bias fluctuates significantly 
when the SSA is greater than 0.93. The mean DB bias is negative when the SSA is lower 
than 0.89; otherwise, it is positive. The mean bias of DB also increases with SSA before it 
reaches 0.95, and then, it changes slightly. The mean bias of MAIAC increases with SSA 
before 0.96. The mean bias of MAIAC is negative when the SSA is lower than 0.91; other-
wise, it is positive. It changes slightly when the SSA is greater than 0.96. 

4. Discussion 
MODIS products have been extensively evaluated and verified at both global and 

regional scales. Many scholars have compared the accuracy of MODIS DT, DB, and  
MAIAC aerosol products and found that MAIAC products have greater advantages in 
terms of matched number, with more than double those of the DB and DT AOD, and they 
show higher accuracy [17,19], which matches our findings in the YRD (Table 3). MODIS 
DT AOD is generally overestimated, while DB AOD is mostly underestimated [24]. 
MODIS products in the YRD also show a similar phenomenon. However, the Within EE 
of DT AOD in the YRD is only 41.43%, which is significantly lower than those in other 
regions [54]. There are only 320 matching data points at HZZ, LATM, and QDH for forest, 
accounting for 8.4% of the total matching number of DT, while SH and TH with higher 
urban and water proportions have 943 matching data points, which are about three times 

Figure 8. Accuracy of DT, DB, and MAIAC products under different AE (a–c) and SSA (d–f); each
box is based on 100 matched data points, the dashed line represents the expected error line, and the
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The bias of DT and DB does not change considerably with AE. The bias of DT is
generally large and mainly positive (Figure 8a). The mean bias does not change considerably
with AE, and the mean bias of DT is around 0.15 except when the AE is greater than 1.6.
The bias of DB is mainly negative (Figure 8b). The mean bias of DB also does not change
considerably with AE. The mean bias of DB with an AE of 0.8–1.6 is very small and does
not fluctuate considerably. The bias of MAIAC increases with the rise in AE (Figure 8c).
The mean bias at each interval increases linearly with AE. The mean bias is less than 0
when the AE is less than 1.0, which indicates that the AOD of MAIAC is underestimated.
The AOD of MAIAC is overestimated when the AE is greater than 1.0.

The AOD bias values of three algorithms change more obviously with SSA than with
AE. Overall, the mean bias increases and then flattens with the increase in SSA. The mean
bias increases with SSA when it is less than 0.93. The mean bias fluctuates significantly
when the SSA is greater than 0.93. The mean DB bias is negative when the SSA is lower than
0.89; otherwise, it is positive. The mean bias of DB also increases with SSA before it reaches
0.95, and then, it changes slightly. The mean bias of MAIAC increases with SSA before
0.96. The mean bias of MAIAC is negative when the SSA is lower than 0.91; otherwise, it is
positive. It changes slightly when the SSA is greater than 0.96.
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4. Discussion

MODIS products have been extensively evaluated and verified at both global and
regional scales. Many scholars have compared the accuracy of MODIS DT, DB, and MAIAC
aerosol products and found that MAIAC products have greater advantages in terms of
matched number, with more than double those of the DB and DT AOD, and they show
higher accuracy [17,19], which matches our findings in the YRD (Table 3). MODIS DT AOD
is generally overestimated, while DB AOD is mostly underestimated [24]. MODIS products
in the YRD also show a similar phenomenon. However, the Within EE of DT AOD in the
YRD is only 41.43%, which is significantly lower than those in other regions [54]. There
are only 320 matching data points at HZZ, LATM, and QDH for forest, accounting for
8.4% of the total matching number of DT, while SH and TH with higher urban and water
proportions have 943 matching data points, which are about three times those of the forest
sites. Therefore, the accuracy of DT products in the YRD is low, but the accuracy of DT
products for forest in the YRD is relatively high, with a Within EE of 68.75% (Table 4). The
Within EE of DT for cropland is 53.59%, which is obviously lower than that for forest, which
may be due to the high urban presence in the two cropland sites, where the proportion of
urban in HF is 33.41%. As can be seen from Figure 1, the southern YRD is dominated by
forest, while the northern YRD is dominated by cropland. The whole YRD is covered by
about 43% forest, 45% cropland, and only 10% urban and water. Therefore, the accuracy
of DT in the YRD should be high. In addition, we found that the accuracy of MAIAC in
the YRD in summer is significantly lower than that in other seasons, so the DT AOD in
summer can be used to make up for the low accuracy of MAIAC in summer.

5. Conclusions

In this study, the overall accuracy and seasonal variations in MODIS DT, DB, and
MAIAC products in the YRD were analyzed based on AERONET and SONET ground
monitoring data. The influences of land cover type, observation geometry, and aerosol type
on AOD retrieval accuracy were also explored. LCPUW and LCPU were used to correct DT
and DB products. The conclusions are as follows.

The MAIAC product is obviously superior to the DT and DB products in matched
number and accuracy. The accuracy of DT product varies most obviously with seasons,
and it has the highest accuracy in winter and the lowest in spring. The accuracy of DB and
MAIAC is low in summer and high in other seasons.

The accuracy of MAIAC is higher in forests, cropland, and mixed land cover types
with high vegetation proportions, and the accuracy is lowest in water. The accuracy of the
DT product is negatively correlated with LCPUW (R2 = 0.892). The accuracy of DT AOD
decreases gradually with the increase in urban and water proportion. A significant linear
relationship exists between the accuracy of the DB product and the LCPU (R2 = 0.936), as
the accuracy increases with the rise in LCPU.

A correction method based on bias and MRE can significantly improve the accuracy of
DT products, especially the accuracy at TH and SH with large LCPUW. The MRE correction
method works very well at low AOD, but it amplifies the error at high AOD values. The
correction method also works well for DB AOD with low LCPU, but it amplifies the error
for DB AOD with high LCPU.

The effect of SZA on accuracy is stronger than that of VZA, and the accuracy increases
with the rise in SZA. The accuracy is the lowest when SA is high, but it is high when the
RAA is close to vertical.

The bias of MAIAC increases with the rise in AE. The change in bias for the three
algorithms with SSA is more obvious than that with AE. Notably, mean bias increases and
then flattens with the rise in SSA.
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