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Abstract: This paper proposes a gradient-based data fusion and classification approach for Synthetic
Aperture Radar (SAR) and optical image. This method is used to intuitively reflect the boundaries
and edges of land cover classes present in the dataset. For the fusion of SAR and optical images,
Sentinel 1A and Sentinel 2B data covering Central State Farm in Hissar (India) was used. The major
agricultural crops grown in this area include paddy, maize, cotton, and pulses during kharif (summer)
and wheat, sugarcane, mustard, gram, and peas during rabi (winter) seasons. The gradient method
using a Sobel operator and color components for three directions (i.e., x, y, and z) are used for image
fusion. To judge the quality of fused image, several fusion metrics are calculated. After obtaining the
resultant fused image, gradient based classification methods, including Stochastic Gradient Descent
Classifier, Stochastic Gradient Boosting Classifier, and Extreme Gradient Boosting Classifier, are
used for the final classification. The classification accuracy is represented using overall classification
accuracy and kappa value. A comparison of classification results indicates a better performance by
the Extreme Gradient Boosting Classifier.

Keywords: gradient fusion; classification; Stochastic Gradient Descent Classifier; Stochastic Gradient
Boosting Classifier; Extreme Gradient Boosting Classifier

1. Introduction

Image fusion techniques are aimed to obtain an improved single view with more
information contents and preserving the spatial details by combining multimodal data
obtained using different sources [1,2]. It has gained widespread attention for its efficiency
in interpreting satellite images and as a tool for remote sensing image processing [2–6].
Satellite image fusion aids in geometric precision improvement, feature enrichment, and
image sharpening [1,7–10]. A major application in the realm of remote sensing is to integrate
these imageries (i.e., optical and SAR satellite images). Both of the remote sensing images
are frequently widely used for a variety of remote sensing research. SAR data measures the
physical characteristics of the ground objects and is independent of weather conditions,
whereas optical data typically spans the wavelength region of electromagnetic radiation for
near-infrared, visible, and short infrared [11,12]. The integration of optical and SAR images
has widely been researched because of the very high spatial resolution SAR (Sentinel 1A),
and optical satellite data (Sentinel 2B) is freely available and uses their complimentary
information for image interpretation as well as classifications [13–15].

Within last few decades, various pixel-level image fusion algorithms have been pro-
posed. However, these methods may result in low contrast with few improved details in
the output image. Due to the human visual system’s (HVS) sensitivity to imaging features,
multiple transformation techniques, such as multi-scale or multi-resolution transformations,
which include contourlet transform, wavelet, and curvelet transform; contrast pyramids are
also used [16–18]. Several studies also proposed gradient-based image fusion approaches
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to integrate images (i.e., visible and infrared). Ma et al. (2016) created a fusion approach
for infrared and visible images utilizing total variation minimization as well as gradient
transfer and found it performed well for infrared image sharpening [19]. Zhao et al. (2017)
reported the fusion method using entropy coupled with gradient regularization to combine
infrared as well as visible images [20,21]. Zhang et al. (2017) developed a method for
the preservation of visual information and extracting image features [22,23]. Jiang et al.
(2020) proposed a differential image gradient based fusion approach for visible and infrared
images. In spite of their applications in image fusion, a major limitation of all these methods
is that they have been applied for 2D images and these approaches cannot extract accurate
spatial details from the images [24,25].

After the fusion, the classification of the fused images needs to be performed for fur-
ther studies. One of the crucial studies employing remote sensing images is to discriminate
land use and land cover classes using classification [8,26]. Out of various classification
algorithms, machine learning classifications, including support vector machines, neural
network, and random forest, have comprehensively been utilized by the community of
remote sensing. Machine learning approaches often take a range of input predictors, may
model complex class signatures, and never make any predictions about the distribution
of the data. Numerous studies indicate that these approaches outperform conventional
statistical classifiers in terms of accuracy, particularly for complicated data with a fea-
ture space of high-dimensional [27–29]. The classification of remote sensing images via
approaches such as machine learning offers efficient and successful classification [30,31].
The superiority of these approaches includes their capability in handling data of high
dimensionality and mapping the classes with extremely complicated properties. Various
machine learning algorithms, including neural networks [32,33], decision trees [34,35],
random forests [10,36], support vector machines [22,37], Stochastic gradient descent [38,39],
and Stochastic Gradient Boosting [40], have been widely used with remote sensing images.
These techniques make use of spectral data as inputs and may be able to achieve certain
useful desired outputs through complex calculations [41]. Several articles on application of
random forests (RFs) and support vector machines (SVMs) explored their feasibility for
remote sensing imageries [7,10].

Within last two decades, Stochastic Gradient Descent (SGD) based classification ap-
proaches have drawn a considerable amount of attention and are recognized as an efficient
strategy to discriminatory learning of linear models under convex loss functions [42,43].
Consequently, SGD-based approaches have been widely employed for registration, feature
tracking, image registration, and image representation of satellite images [10,34,39,43–46].

Stochastic methods, including RF and SGB (Stochastic Gradient Boosting), offer higher
prediction performance over parametric methods in several applications as well as for
the particular datasets [47,48]. While SGB is indeed starting to acquire popularity in
a variety of applications, RF has been widely employed in remote sensing and ecological
applications [49]. A detailed literature review suggests only few applications of SGD and
SGB classifier to classify remote sensing data. In addition, Extreme Gradient Boosting (or
XGB) is a recently developed algorithm used for remote sensing applications [34,50–52].

In view of various limitations of the fusion methods and the advantages of SAR and
optical data, an algorithm that combines the difference image; gradient image of color
components in x, y, and z direction; and the magnitude of the gradients as well as the tensor
components to deal with the spatial information is proposed for image fusion. The fusion
results were evaluated using various fusion indicators with remote sensing images. Finally,
the classification of fused images is performed using SGD, SGB, and XGB Classifier.

2. Materials and Methods
2.1. Study Area and Satellite Data

The main study area considered is the Central State Farm in Hissar region of Haryana,
(India), which is situated at 29.2986◦N and 75.7391◦E latitudes. The crop fields are main-
tained at large scale on this substantial farmland for seed production and distribution to
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local farmers. The area’s main agricultural crops include pulses, maize, paddy, and cotton
in kharif season and wheat, mustard, gram, sugarcane, and peas in rabi season. Figure 1
illustrates the False Color Composite (FCC) image of the considered study region.
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Figure 1. (a) False Color Composite (FCC) image and (b) Ground Truth image of the study area.

The field visit of the testing site was undertaken on 6 April 2019 to collect the ground
reference data for the study. After a visual examination of the Sentinel 1A/ 2B data along
with the ground truth information, twelve different types of land cover were found, such as
Fallow land, Built-up-area, Dense Vegetation, Fenugreek, Fodder, Gram, Mustard, Oat, Pea,
Sparse Vegetation, Spinach, and Wheat. The Copernicus open access site was utilised to
download the datasets for this study. Both the datasets from Sentinel 1A (S1) and Sentinel
2B (S2) were acquired on 23 and 24 March 2019, respectively. In the case of Sentinel 1A
and Sentinel 2B, we used Level 1 data and Level 1-C data, respectively. Red, Green, Blue,
and Infrared images from S1 (VV and VH) polarisation and S2 images with a 10 m spatial
resolution were utilized. However, the reference image was created after visiting the study
area on the ground. Due to the size of the farm in the area of study, ground reference data
was created, taking into account their central location, giving each field a rectangular or
square shape.

2.2. Proposed Methodology

A novel approach for image fusion is proposed to integrate the complimentary char-
acteristics from both SAR (S1) and optical (S2) images. Figure 2 illustrates the detailed
methodology applied for fusion and classification.

2.2.1. Preprocessing

The two input images S1 and S2 of size 964-pixel × 1028-pixel were extracted as
a subset image for the considered study area using Sentinel Application Platform (SNAP)
v6.0 (Figure 2). The preprocessing of S1 involves radiometric calibration, deburst operation,
multi-looking, speckle noise reduction using Refined Lee filter, geo-referencing, and finally
geometric correction. However, S2 involves geometric correction and atmospheric correc-
tion. Both S1 and S2 were resampled at 10m resolution for further processing that includes
fusion and classification.

2.2.2. Fusion

Fusion of S1 and S2 images mainly involves the absolute difference of considered
input images, Sobel-based gradients in x, y, and z direction, magnitude of the gradients’
color components, normalized component for the rate of change in the gradients, and
finally fusion is applied to achieve the desired result. These steps are described as follows:

1. Absolute Difference
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The first step under fusion is the absolute difference of the input images (i.e., SAR
(S1) and Optical (S2)). The absolute difference method helps to find the difference of input
images S2 and S1 using corresponding pixels. The purpose of this method is to show the
extent of changes between the two images as well as to remove the background variations
for analyzing the foreground features.
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The absolute difference method is initiated by subtracting the pixel reflectance spectra
of S2 and S1 images by the following equation.

D = abs
(
∑4

i S2i − S1
)

, f or i = 1, 2, 3, 4 (1)

2. Sobel-based gradient of the S1 and S2 image

Image gradients are generally the measure of image sharpness, and it represents the
derivative of the energy recorded in the Digital Number (DN) values of neighboring pixels.
The image gradient techniques may also specify the intensity as well as changes in the
texture and color in a particular direction. To extract the gradient of the images, various
operators for edge detection, such as Sobel, Canny, etc., can be used. In this paper, Sobel
operator, which is found to have better performance in image gradient calculation, is used.
The Sobel operator analyzes a 2D spatial gradient on an image and focuses more on edges
and regions with a significant spatial gradient. For this study, the Sobel operator with
a 3 × 3 size mask is used because a lager mask size may lead to the remove the small details
of an image.
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The gradient method was used to extract complementary information obtained from
S1 and S2 images as well as to extract the boundaries of the ground truth classes very
precisely. The differential image gradient of from Sentinel 1A/ B and Sentinel 2A/ B image
is defined after introducing Iz gradient value in the following equation.

∇I =
(

Ix, Iy, Iz
)

(2)

where Ix, Iy, and Iz are the values of gradient for respective four bands in the x, y, and z
(i.e., z+1 direction), respectively.

Ix = Sx. ∗ (Di) (3)

Iy = Sy. ∗ (Di) (4)

Iz = Sz. ∗ (Di) (5)

where Sx, Sy, and Sz are components of Sobel operator in x, y, and z (i.e., z + 1 direction)
and ∗ represents the convolution operator.

3. Color components of the gradients in x, y, and z direction

The image gradient space includes some high-level discriminative data and character-
istics in comparison to conventional RGB color space [40]. In this study, color components
of the gradients for four multi spectral bands including Red (R), Green (G), Blue (B), and
Near Infrared (NIR) from S2 image have been considered. The color components [37] for
S2 image can be defined as R (x, y, z), G (x, y, z), B (x, y, z), and NIR (x, y, z). Therefore, the
whole image is defined by the function f = (R, G, B, NIR). The unit vectors (i.e., r, g, b, and
nir) was introduced and are associated with respective R, G, B, and NIR axes. These vectors
fm, m = 1, 2, 3 can be defined in the following manner.

u = Ix1(r) + Ix2(g) + Ix3(b) + Ix4(nir) (6)

v = Iy1(r) + Iy2(g) + Iy3(b) + Iy4(nir) (7)

w = Iz1(r) + Iz2(g) + Iz3(b) + Iz4(nir) (8)

where, Ix1 , Ix2 , Ix3, Ix4, Iy1 , Iy2 , Iy3, Iy4, Iz1 , Iz2 , Iz3, and Iz4 are the gradients of R, G, B,
and NIR color components obtained from Equations (3)–(5). The variables u, v, and w are
the function of three space coordinate x, y, and z.

In addition, divergence of the gradient, Div, is calculated using the Equations (6)–(8)
in x, y, and z direction.

Div =
→
u +

→
v +

→
w (9)

where, Div is the divergence of the gradients.

4. Applying fusion rule for SAR and optical image

The absolute difference calculated in Equation (1) cannot be superimposed directly
over the S2 image because it may lead to the larger pixel values of S2 image that may
further lead to a brighter image. The brighter image may suppress the features of the
image including texture, intensity, color, and boundaries. Therefore, the following equation
is applied.

F0 =

{ (
S2
ß

)
+ Di, S2 > S1

S2
2 , others

(10)

where F0 is the first fusion and ß is the factor of suppression and is not influenced by any
other parameters. The suppression factor ß = 10 has been taken to suppress the large values
of the S2 image.

5. Obtain final gradient image using gradient color components
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To obtain the final gradient image, Equations (6)–(8) are considered. The dot product
of the u, v, and w is calculated using the following equation:

gxx = u× u (11)

gyy = v× v (12)

gzz = w× w (13)

gxy = u× v (14)

where gxx(g11), gyy(g22), gxy(g12), gzz(g33), respectively, are the tensor components, which
are the functions for the space coordinates x, y, and z direction. From a mathematical point
of view, the gradient of the multi-images (f ) is a tensor g, f denoted as a vector field for the
x, y, and z plane. Therefore, its gradient should be a tensor.

The subsequent equation can be utilized to compute the direction of the gradient
function’s highest rate of change for a specific direction [53].

θ(x,y,z) =
1
2

tan−1 { 2 (gxy (1− α)− gxz (ß− γ) + 2gyzζ/(gxx + gyy + gzz + 4gyzß))} (15)

where, α = cos 4θ/cos 2θ, ß = cos θ, γ = cos 3θ/cos 2θ, ζ = sin θ/cos 2θ.
After calculating θ(x,y,z), Fθ is calculated by introducing gzz to obtain the maximum

directional change in the intensity for the fusion.

Fθ(x,y,z)=

[
1
2

(
g11sin2(θ) + g22sin4(θ) + g33cos2(θ) + g12 sin2(θ)cos 2θ+ g23 sinθ cos 2θ+ 2g13 sin2θ cos θ

)]
1/2 (16)

where Fθ(x,y,z) is the equivalent in size to the input colour image and can be interpreted
as a gradient image. The produced gradient image would draw attention to important
texture elements like lines, corners, and curves.

6. Obtaining final fused image

Finally, to fuse image of S1 and S2 images, the following equation is used.

F1 = F0 + div + Fθ (17)

where, F1 is the fused result retaining their true values. The divergence has been added to
F0 in Equation (10) so that the pixel value may not scale down when the class boundaries
are enhanced.

F1 obtained from Equation (17) had some lesser pixel values with low brightness.
Therefore, to restore the pixel details of S2 and S1 images, S2 is compared with F1 that can
also extract the important features such as texture, color, and brightness of S1 image. The
following equation is used for the above-mentioned purpose.

F2 =

{
S2, S2 > F1
F1, others

(18)

where, F2 is the result after applying contrast to the S2 image. The final fused result is
obtained after applying the following equation.

F3 = abs(F2 − div) (19)

where, F3 is fused result and final fused image is formed by layer stacking of all four bands
fused images.

2.2.3. Classification

1. Stochastic Gradient Descent (SGD) Classifier

Stochastic Gradient Descent (SGD) is a simple supervised discriminative learning
with convex loss functions using linear classifiers. With more than 10ˆ5 training samples
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and features, this classifier can handle very big matrices. By integrating many binary
classifiers using the one versus all (OVA) approach, SGD Classifier provides multiclass
classification [51], and requires parameter tuning to find the best classification results.
When dealing with large scale data of a variety of classes, SGD classifiers have been
found to perform more accurately in a few published applications using remote sensing
images [7,36].

2. Stochastic Gradient Boosting (SGB) Classifier

The machine learning approach (i.e., SGB) integrates the advantages of boosting and
bagging techniques [40]. A decision tree also known as simple base learner is specifically
created for each SGB iteration by sub-sampling the training dataset randomly (with no
replacement), resulting in significant increases to the model’s performance. The steepest
gradient technique serves as the foundation to boosting the processing in the SGB model,
which gives more focus on wrongly selected training pixels, that are close to their accurate
classification than on the lowest-quality classification [54]. Low sensitivity to outlier
effects, the ability to deal with incorrect training datasets, stochastic modeling of non-
linear relationships, resilience in handling interactions between predictors, and the capacity
to evaluate the value of variables individually are several major advantages of the SGB
classifier [42]. Additionally, the SGB algorithm’s stochastic component is a valuable tool for
enhancing classification accuracy and minimizing overfitting [40].

3. Extreme Gradient Boosting (XGB) Classifier

It is a concurrent tree boosting approach that provides more accurate large-scale issue
solving. With XGB, a classifier built from gradient boosting where weak tree classifiers
are iteratively concatenated to create a strong classifier. XGB classifier is used to optimize
the loss function while constructing the iterative model and the new aspect of XGB is to
include an objective function that makes use of a regularization term for managing the
complexity of the model with the loss function [34]. This allows for the continuation of
optimal processing speed and parallel calculations. In this study, the softmax multiclass
classification as an objective function was employed. Using the function Softmax, each
class is normalized into a probability distribution with a range of (0, 1) that adds up to
1. XGB is described mathematically in great depth by Chen and Guestrin [34]. In a few
applications using remote sensing images, the usage of XGB has been described. It has
been reported to provide improved accuracy while handling large-scale data composed of
multiple classes [30,46]. In this work, XGB is taken into consideration for the classification
of the obtained fused images due to its outstanding scalability and effectiveness with
remote sensing images [38,46].

To classify fused, layer stacked (S2 and S1 (VV, VH) separately), and S2 datasets used
in this study, patch-based approach for classification was used. Using an image patch
instead of individual pixels provides the use of the spatial and spectral characteristics of
the pixels while classification. In a patch-based classifier, a pixel’s spatial characteristics
are determined by its nearby pixels in a fixed-size window (i.e., image patch). Ground
reference images were used to extract image patches of various sizes (say, 3 × 3) for both
S1 and S2 images for training and testing of all considered classifiers (SGB, SGD, and XGB).
Every class is allocated a number in ground truth image and areas with absence of class
information are allocated a zero value. When a patch extraction of size 3 is performed,
only those image patches with a central pixel with a non-zero value were taken into
consideration throughout classification. The overall number of train and test samples to
classify S2, fused S2 with S1 (VH and VV), and non-fused fused S2 with S1 (VH and VV)
images are listed in Table 1.

For fusion, MATLAB 2019b and for classification, scikit-learn and Keras with Tensor-
flow were used.
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Table 1. Total samples used for training and testing in S2, fused S1 and S2 images.

Class Number Class Name Training Samples Testing Samples

1 Fallow land 663 221
2 Built-up-area 1376 459
3 Dense Vegetation 217 72
4 Fenugreek 126 42
5 Fodder 85 28
6 Gram 533 178
7 Sparse Vegetation 2058 686
8 Wheat 773 258
9 Mustard 310 103
10 Oat 337 112
11 Pea 371 124
12 Spinach 179 60

3. Results

This section provides the fusion and classification results for S1 and S2 images using
the approaches described in Section 2.

3.1. Fusion

Table 2 provides the results of numerous metrics used to assess different fusion
methods after applying fusion over S2 and S1 (VV and VH polarization) satellite data [12].

Table 2. Assessment of the Fusion Metrics of Hissar, Haryana (India).

Fusion
Approach Polarization

Fusion Metric

ERGAS SAM UIQI SSIM CC RASE PSNR

KLT
VH 54.17 126.28 −1.63 4.49 0.01 −175.9 −49.02
VV 56.32 131.6 3.09 4.48 0.05 −165.91 −53.96

GIV
VH 6.04 4.94 0.79 0.47 0.96 24.17 36.47
VV 5.75 4.16 0.83 0.79 0.97 22.98 38.56

Proposed VH 6.62 2.94 0.86 0.78 0.98 26.47 38.27
VV 6.01 3.11 0.88 0.85 0.98 24.05 39.80

Fusion metrics [12] were considered such as Erreur Relative Globale Adimensionnelle
de Synthese (ERGAS), Spectral Angle Mapper (SAM), Relative Average Spectral Error
(RASE), Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM), Peak
Signal-to-Noise Ratio (PSNR), and Correlation Coefficient (CC). The fusion metrics are
as follows:

(1) Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) calculates the quality
in terms of normalized average error of the fused image. A higher value of ERGAS
indicates distortion in the fused image whereas lower value indicates similarity of the
reference and fused images.

(2) Spectral Angle Mapper (SAM) computes the spectral angle between the pixels, vector
of the reference image, and fused image. A lower value of SAM closer or equal to
zero indicates the absence of spectral distortion.

(3) Relative Average Spectral Error (RASE) represents the average performance in the
spectral bands where the lower value of RASE indicates higher spectral quality of the
fused image.

(4) Universal Image Quality Index (UIQI) computes the data transformation from refer-
ence image to the fused image. Range of this metric is −1 to 1 and the value close to
1 indicates the similarity of the reference and fused images.

(5) Structural Similarity Index (SSIM) compares the local patterns of pixel intensities of
the reference and fused images. Range of this metric varies from−1 to 1 and the value
closer to 1 indicates similarity of the reference and fused images.
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(6) Peak Signal-to-Noise Ratio (PSNR) is calculated by dividing the corresponding pixels
of the fused image with the reference. A higher value of this metric indicates superior
fusion that suggests the similarity of the reference and fused images.

(7) Correlation Coefficient (CC) computes the similarity of spectral features between
the reference and fused images. The value closer to 1 indicates the similarity of the
reference and fused images.

Assessment of the results of gradient based fusion (GIV) [24], KL (Karhunen-Loeve)
transform based fusion (KLT) [25] and proposed gradient based fusion approach suggests
better performance by proposed gradient based fusion approach (Table 2). The results
suggest poor performance by KLT approach in terms of various fusion metrics (Table 2).

Figures 3 and 4 displays the fused images created by GIV and proposed approach only,
such as S2 fused with distinct VH and VV polarized images of S1 data, to allow for visual
comparison of the effectiveness of the various fusion approaches under consideration. The
obtained images after fusing S2 with S1 (VH and VV polarization separately) are shown
using three spectral bands (G, R, and NIR; Figures 3 and 4).
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To assess the effectiveness of the fused satellite images using the resultant classification
accuracy, different classification approaches were performed using SGD, SGB, and XGB
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classifiers. Kappa value and overall classification accuracy for fused images obtained by
the proposed fusion approach are provided in Table 3.

Table 3. Classification Result of SGD, SGB and XGB Classifier.

Classification
Approach with Patch

Size = 3
Polarization

Accuracy Measure

Overall Accuracy (%) Kappa Value

SGD
VH 71.16 0.65
VV 71.39 0.66

SGB
VH 91.42 0.89
VV 91.89 0.90

XGB
VH 93.72 0.92
VV 94.75 0.93

The fused image obtained by the proposed fusion approach is also compared with
various non-fused images using XGB classifier in Table 4.

Table 4. Classification Result of Sentinel 2B (S2), Sentinel 2B (S2) layer stacked with Sentinel 1A
(S1;VV) and Sentinel 2B (S2) layer stacked with Sentinel 1A (S1; VH) using XGB Classifier.

XGB Classifier
with Patch Size = 3

Accuracy Measure

Overall Accuracy (%) Kappa Value

S2 88.49 86.25
S2 layer stacked with S1 (VV) 90.01 88.08
S2 layer stacked with S1 (VH) 89.43 87.38

The class-wise accuracy in Table 5 is also provided for fused data obtained by proposed
fusion approach and original data (S2).

Table 5. Class-wise accuracy for Sentinel 2B (S2), S2 layerstacked with VH-VV polarization separately
(i.e., S2 + VH and S2 + VV), and fused image by proposed fusion approach using XGB classifier.

Class Name

Overall Accuracy (%)

S2 S2 + VH S2 + VV
Proposed Approach

VH VV

Fallow land 93.00 93.00 95.00 94.00 96.00
Built-up-area 99.00 99.00 99.00 100.00 100.00
Dense
Vegetation 86.00 93.00 89.00 88.00 97.00

Fenugreek 38.00 38.00 61.00 56.00 62.00
Fodder 59.00 73.00 62.00 91.00 91.00
Gram 81.00 82.00 83.00 93.00 92.00
Sparse
Vegetation 99.00 99.00 99.00 100.00 99.00

Wheat 77.00 82.00 78.00 87.00 87.00
Mustard 70.00 75.00 60.00 84.00 89.00
Oat 71.00 80.00 84.00 79.00 87.00
Pea 83.00 87.00 81.00 95.00 91.00
Spinach 71.00 57.00 68.00 92.00 93.00

The classified images of fused images i.e., S2 fused with S1 (VH) and S2 fused with
S1 (VV) obtained by proposed fusion approach with respective classifiers are shown in
Figures 5 and 6.
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4. Discussion

Remote sensing image classification is a complex job since images captured by vari-
ous sensors produce a dissimilar accuracy of classification within the same study region.
According to previous studies, combining S1 and S2 images can aid to improve overall
classification compared to using S1 and S2 images independently. For the purpose of classi-
fication, both S1 and S2 images can be either utilized by layer stacking or by fusing them
altogether. In order to investigate the effects of various fusion methods on classification
accuracy, S1 and S2 images were fused using gradient based fusion methods in this study.
After evaluating the performance of the fused images using several fusion metrics; SGD,
SGB, and XGB gradient-based classifiers were used to classify these fused images.

4.1. Fusion

For single month image fusion using gradient based fusion approach (Section 2),
S1 and S2 images acquired for the Month of March 2019 (Chapter 2) was used and the
performance in terms of fusion evaluation metrics are provided in Table 2.

Comparing different fusion metrics from Table 2 suggests that only the modified
gradient-based fusion approach performed better with VV polarized Sentinel 1 satellite
data, out of the various fusion approaches. Results in terms of fusion metrics indicate
that the proposed gradient-based fusion approach (Table 2) outperformed the KLT and
GIV fusion approach with considered dataset. KLT approach perform badly with the used
dataset in comparison to other fusion methods.

On the other hand, a comparison of the fused images (Figures 3 and 4) indicates
poor performance by proposed gradient based fusion approach with VH polarization
due to diminishing brightness of classes, intensity (in terms of non-homogeneity), and
deformed texture of the different classes present in the fused satellite images (Figure 4).
The reason behind better results from VV polarization is that dynamic range (minimum
to maximum) of VV is larger than VH for any given targets either crops or vegetation,
whereas VH polarization being the cross-polarization channel is highly attenuated by
multiple scattering and achieve better results only in case of vegetation like forest (woody
vegetation). This is the reason why VH or HV-polarization are mostly used for forest
biomass characterization and retrievals. The noise level of VV-polarization is also quite
better than VH-polarization, so even though VH is added along with VV-polarization, not
much improvement in classification results is achieved.

4.2. Classification

Out of all the samples that were randomly chosen, 75% of the data was utilized to train
the classifiers and the other 25% to test them. To achieve the best possible performance
on the basis of classification accuracy and final classified image, a patch size of 3 was
taken into consideration with all classifiers. To determine the optimal parameters for each
classifier, a “trial and error” method was considered. All classifiers are evaluated based on
their overall classification accuracy.

To assess the effectiveness of the fused satellite images using the resultant classification
accuracy, different classification approaches were performed using SGD, SGB, and XGB
classifiers. Results from Table 3 suggests, out of SGD, SGB, and XGB classifiers, only XGB
classifier performed well with Sentinel 2 fused with S1 (VH) and S1 (VV) polarization,
separately. However, Table 4 shows that S2 layerstacked with S1 (VV) polarization per-
formed well in comparison to S2 and S2 layerstacked with S1 (VH) polarization using XGB
classifier. Additionally, on comparing Tables 3 and 4 shows that obtained fused image
with both VV and VH polarization with XGB classifier performed well in terms of kappa
value and overall classification accuracy. Table 5 shows the class-wise accuracy of S2, S2
layerstacked with S1(VH), S2 layerstacked with S1(VV), and proposed approach using XGB
classifier suggests that proposed approach performed well with all the land cover classes
of the study area.
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Therefore, comparison of classified images (Figures 5 and 6) and classification accuracy
(Table 3) suggests that XGB perform well with VV polarized fused image. A possible reason
is because of superior performance by XGB approach with VV polarized fused images may
be because of the reason that it was capable to retain the shape of the vegetation.

5. Conclusions

This paper presented a classification of Sentinel 1A (S1) and Sentinel 2B (S2) image
fusion using gradient based fusion approaches. The main conclusion of the study is that
proposed gradient based fusion approach including multi-image color components of
differential gradients in multi-direction (x, y, and z) performed well in comparison to the
simple gradient-based approach. The other conclusion states that this methodology can
also be successfully applied to multi-temporal remote sensing dataset. Additionally, the
complimentary information of S1 and S2 data could inherit the better performing fused
image. The training strategy considered in this paper used a total of twelve classes and
focussed on Sentinel 1A data including VV and VH polarization instead of backscatter
values of Sentinel 1A data. The classified results using SGD, SGB, and XGB classifiers shows
that only XGB classifier performed well with S1 (VH and VV) polarized fused images,
separately. This study also concludes that classification of VV polarized fused images
performed better due to their sensitivity towards the phenological growth of crops. Thus,
there is the scope of using modified XGB classifier to generate the effective classification
accuracy and improved results.
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