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Abstract: To effectively manage the terrestrial firefighting fleet in a forest fire scenario, namely, to
optimize its displacement in the field, it is crucial to have a well-structured and accurate mapping of
rural roads. The landscape’s complexity, mainly due to severe shadows cast by the wild vegetation
and trees, makes it challenging to extract rural roads based on processing aerial or satellite images,
leading to heterogeneous results. This article proposes a method to improve the automatic detection
of rural roads and the extraction of their centerlines from aerial images. This method has two main
stages: (i) the use of a deep learning model (DeepLabV3+) for predicting rural road segments; (ii) an
optimization strategy to improve the connections between predicted rural road segments, followed
by a morphological approach to extract the rural road centerlines using thinning algorithms, such
as those proposed by Zhang–Suen and Guo–Hall. After completing these two stages, the proposed
method automatically detected and extracted rural road centerlines from complex rural environments.
This is useful for developing real-time mapping applications.

Keywords: rural roads; centerline extraction; deep learning; geographic information system (GIS);
wireless sensor networks (WSN); decision support system (DSS); convolutional neural network
(CNN); spatial pyramid pooling (SPP); forest fires

1. Introduction

Various regions in the world are frequently affected by forest fires, including North
America, Australia, and the southern countries of Europe. In Portugal, a country in southern
Europe, forest fires are problematic and increasingly frequent, with significant ecological
and socio-economic impacts. In the last 20 years, the country has been severely affected by
large forest fires, which have destroyed the environment, damaged residences, and claimed
lives. The most extensive burned area in the last ten years happened in 2017, with over
21,000 forest fires burning over 500,000 hectares of forest and taking over 114 human lives.

Portugal is a country affected by high temperatures during the summer season, along
with strong winds coming from the Atlantic, with forest fires powered by multiple factors,
namely: (i) the climate, causing a substantial increase in biomass volume; (ii) the decrease
in agriculture and pastoralism activities, causing an increase in biomass in some areas;
(iii) the lack of land use planning, resulting in more profitable crops and leading to more
fuel for forest fires; (iv) the fact that 92% of the forest land is owned by private owners,
while the state owns only 3%, with about 6% owned by local communities, a scenario that
causes difficulties in enforcing forest planning laws [1]. In addition, many rural areas of
the country are becoming increasingly depopulated. Since private owners control the vast
majority of the forest land, with the lack of forest management, trees, dead leaves, bushes,
grasses, and fallen pine needles quickly accumulate, acting as fuel for forest fires. Due to
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climate change, more frequent and extreme forest fire events are expected to occur in the
coming years.

Firefighters must reach the epicenter of a forest fire as quickly as possible, and rural
roads are often used for this purpose. Typical road navigation applications only provide
access to primary and secondary roads, lacking information regarding tertiary/rural roads.
Forest fires are typically located in areas with very rough topography that can only be
reached by tertiary/rural roads, therefore, it is essential to correctly map them. A road
network is a valuable data source for terrestrial fleet management to guide firefighters
in a forest fire scenario. The availability of a suitable rural road network enables the
development of many valuable functionalities that can help firefighters in a forest fire
scenario, such as: finding (i) the closest path to a forest fire spot; (ii) the fastest emergency
routes; (iii) dead-end roads; or even (iv) the shortest path passing through multiple locations
to reach a specific forest fire spot.

A road network is an essential data source used in some Geographic Information
Systems (GIS) applications, such as car navigation systems, and is composed of various
interconnected line segments (vector data) representing the geographic center of road
pavement surfaces. However, building road networks in digital format is a significant effort
that needs to be undertaken at the regional level and a massive one at the national level. To
avoid manually mapping extensive road networks, an automated method is required to
generate them based on the digital processing of aerial or satellite images. Moreover, the
landscape complexity, the existence of multiple road materials (e.g., dirt, asphalt, cement,
and gravel), and road occlusions [2] cast by vegetation (like trees, small bushes, and dense
vegetation) make it challenging to extract completely smooth, and accurate road centerlines,
which demands sophisticated methods to process those aerial and satellite images. This
is the motivation to present an efficient and precise method to automatically detect and
extract road centerlines from aerial images that include rural roads.

To achieve this goal, this article proposes an automated methodology capable of:
(1) detecting rural roads from aerial images; (2) and extracting their centerlines. The whole
process will be divided in two major stages: road detection and road centerline extraction.

The road detection process must be accurate enough to ensure that all the road pixels
are detected in the aerial images. To achieve this, the DeepLabV3+ architecture was used to
detect rural roads and predict a binary mask of roads and background elements. With all
of these pixels together we completed the road detection step.

Road centerlines are vector line data that represent the geographic center of road
rights-of-way on transportation networks. The road centerlines will be extracted from the
previous road detection. In the second stage, an algorithm is applied, to optimize road
connectivity and remove possible artifacts (unwanted objects) that might wrongly appear
in the prediction phase. Finally, the road centerline from the previously detected roads is
extracted using a skeletonization method.

With the proposed architecture, it is expected to obtain a precise and clear rural road
centerline that should be a white one-pixel-wide object, presented in a black background. It
is not only essential to detect rural roads but extract their centerlines to produce vector line
data capable of being used to build network datasets for powering routing applications.
This article is structured as follows. After this introduction, Section 2 presents related works
on state-of-art road detection and road extraction algorithms or methods from aerial images.
Sections 3 and 4 describe the proposed method and its implementation, respectively, while
Section 5 presents the experimental results on predicting roads, including a description
of the evaluation metrics used, the results of rural roads centerline extraction, and some
additional optimizations. The article ends with a discussion of the results (Section 6),
conclusions and future work (Section 7).

2. Related Work

Researchers and national authorities have considered solutions to minimize the burn-
ing of forests, mainly based on the different stages of a forest fire. Regarding prevention,
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some solutions have been proposed, mainly: (i) optimizing land-use planning or making
firebreaks along the forest to minimize the speed fire spread [3]; (ii) the use of imaging
sensors to detect forest fires at an early stage, such as the installation of powerful vision or
infrared cameras at critical spots [4]; (ii) wireless sensors networks (WSN) that can predict
forest fires by detecting the change in some environmental parameters, such as the decrease
of humidity and the increase of toxic gases [5].

Other solutions address the planning and support actions regarding the suppression
operations of a forest fire. One such solution is the Decision Support System (DSS), devel-
oped by Portuguese researchers [6]. It is based on mobile devices and can be used real-time
during a forest fire, overlaying several data layers in a GIS environment. It is essential
to provide commanders with decision support systems that use accurate, updated and
concise data to facilitate decision-making. When possible, new tools should be fostered to
support this process [7]. One of the fundamental GIS data layers that need to be included
in the system is the rural road network of a potential forest fire area. These specific data
are beyond the typical urban setting and is missing from in-car navigation maps. It can
be essential to access the rural road network since most forest fires cannot be accessed
through the conventional road network. In this article, an automated method is proposed
to automatically detect and extract the rural road network, to use in in-car navigation.

One way to build a digital mapping of roads to be included in a GIS environment
is to extract their pavement centerlines in a vector data format after detecting them from
aerial image processing. The use of convolutional neural networks (CNN) to perform
road detection and centerline extraction has increased in the last few years. These deep
learning methods have achieved better results than other methodologies and they can
handle complex landscape images with high accuracy.

The variety of land objects visible in images can have a significant impact on the
learning algorithm used to detect rural roads, in particular: (i) different types of roads
with pavements of various colors; (ii) different types of trees may also have various colors;
(iii) road occlusions due to shadows cast by vegetation; (iv) light variations due to solar
attitude, among other issues. This image data variability brings significant challenges for
example: (i) the grey pixels of a road might be hidden by a black shadow cast by a tree;
(ii) the shape of a road might be distorted due to its occlusion; (iii) the color of a road outline
may be very similar to the landscape, becoming very hard to from the surrounding pixels.
Deep learning methods can help to overcome these problems and protect the learning
algorithm from these high-level abstractions.

When it comes to road detection algorithms, many CNN-based architectures have
been proposed in the past years, namely: (i) CasNet, which has shown a lot of visual and
quantitative advantages compared to other state-of-the-art methods, but it has a higher
level of difficulty associated with its implementation [8]; (ii) FCNs, which has shown very
significant results in road connectivity, accuracy and completeness [9]; (iii) DCNNs [10],
which can allow overcoming the problem of complex image backgrounds, effectively
overcoming the phenomenon of “burr” with high computational speed and accuracy,
although further improvements are necessary to reduce the impact of shadows, trees,
and buildings [11]. (iv) U-nets, that enables precise pixel location since U-net uses skip
connections to associate low-level feature maps with high level feature maps. It allows for
fast predictions with a simple architecture [12].

Regarding the road extraction phase, many solutions were analyzed, namely: (i) in [13],
a self-supervised learning framework was proposed to automatically extract road center-
lines. This approach does not require to manually select the training samples and other
optimization processes. It achieves better results quantitatively and visually, compared
with the traditional supervised road extraction algorithms, and achieves superior noise
resistance than previous unsupervised algorithms; (ii) in [14], an architecture for seman-
tic pixel extraction named SegNet was presented. This solution has achieved practical
trade-offs in terms of balancing the training time, and memory versus accuracy.
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Based on this, deep learning-based methods were chosen in the system described in
this article, aiming at improving road detection and center-line extraction considering the
existence of obstacles and/or different road materials.

3. Proposed Architecture

The proposed method uses the state-of-the-art DeepLabV3+ architecture and thin-
ning algorithms to detect and extract rural road centerlines from aerial images. The main
reasons why this architecture was chosen were: (i) it achieved a significant performance
on cityscapes datasets without any post-processing, with the PASCAL VOC 2012 model
becoming a new state-of-the-art (ii) since rural roads are made of many types of road
materials such as dirt, asphalt, gravel, and cement, an architecture based on deep convolu-
tional neural network is expected to be able to detect them [11]; (iii) it takes advantage of
the Spatial Pyramid Pooling (SPP), and the Encoder-Decoder architecture, which can be
extremely useful as aerial rural images have very challenging environments with complex
landscapes, frequent road occlusions, etc. [15–17].

Regarding the SPP and the Encoder-Decoder architecture:

• The SPP [18–20] encodes multi-scale contextual information, which means that it gives
the network the ability to extract knowledge or apply knowledge to the information
and does not require a fixed-size input image;

• The Encoder-Decoder architecture has been proven to be very useful in image seg-
mentation [8–10,21]. The encoder progressively diminishes the feature maps and
acquires high semantic information, while the decoder progressively recovers the
spatial information. The Encoder-Decoder can extract sharp object boundaries, and it
also helps to extract features by using atrous convolution.

Figure 1 represents the workflow of the proposed method, including road detection
(the first stage) and road centerline extraction (the second stage). In the first stage, the
aerial images are processed by the DeepLabV3+ model to learn to detect rural roads and
predict a binary mask of roads and background elements. For the training, validation, and
testing of the CNN road detector, a dataset of aerial images and a binary mask of detected
roads (ground truth) were prepared and included. In the second stage, an algorithm to
optimize road connectivity and remove possible objects that might wrongly appear in the
prediction phase is applied. Finally, the road centerline from the previously segmented
roads is extracted using a skeletonization method. The output is an image with clean white
road centerlines on a black background.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 21 
 

 

semantic pixel extraction named SegNet was presented. This solution has achieved prac-
tical trade-offs in terms of balancing the training time, and memory versus accuracy. 

Based on this, deep learning-based methods were chosen in the system described in 
this article, aiming at improving road detection and center-line extraction considering the 
existence of obstacles and/or different road materials. 

3. Proposed Architecture 
The proposed method uses the state-of-the-art DeepLabV3+ architecture and thin-

ning algorithms to detect and extract rural road centerlines from aerial images. The main 
reasons why this architecture was chosen were: (i) it achieved a significant performance 
on cityscapes datasets without any post-processing, with the PASCAL VOC 2012 model 
becoming a new state-of-the-art (ii) since rural roads are made of many types of road ma-
terials such as dirt, asphalt, gravel, and cement, an architecture based on deep convolu-
tional neural network is expected to be able to detect them [11]; (iii) it takes advantage of 
the Spatial Pyramid Pooling (SPP), and the Encoder-Decoder architecture, which can be 
extremely useful as aerial rural images have very challenging environments with complex 
landscapes, frequent road occlusions, etc. [15–17]. 

Regarding the SPP and the Encoder-Decoder architecture: 
• The SPP [18–20] encodes multi-scale contextual information, which means that it 

gives the network the ability to extract knowledge or apply knowledge to the infor-
mation and does not require a fixed-size input image; 

• The Encoder-Decoder architecture has been proven to be very useful in image seg-
mentation [8-10,21]. The encoder progressively diminishes the feature maps and ac-
quires high semantic information, while the decoder progressively recovers the spa-
tial information. The Encoder-Decoder can extract sharp object boundaries, and it 
also helps to extract features by using atrous convolution. 
Figure 1 represents the workflow of the proposed method, including road detection 

(the first stage) and road centerline extraction (the second stage). In the first stage, the 
aerial images are processed by the DeepLabV3+ model to learn to detect rural roads and 
predict a binary mask of roads and background elements. For the training, validation, and 
testing of the CNN road detector, a dataset of aerial images and a binary mask of detected 
roads (ground truth) were prepared and included. In the second stage, an algorithm to 
optimize road connectivity and remove possible objects that might wrongly appear in the 
prediction phase is applied. Finally, the road centerline from the previously segmented 
roads is extracted using a skeletonization method. The output is an image with clean white 
road centerlines on a black background. 

 
Figure 1. Workflow of the proposed method, including road detection (first stage) and road center-
line extraction (second stage). 

Figure 1. Workflow of the proposed method, including road detection (first stage) and road centerline
extraction (second stage).

For the extraction of one-pixel-wide road centerlines, various thinning algorithms
were tested, including some of the most widely used developed by Zhang–Suen [22] and
Guo-hall [23]. A thinning algorithm aims to take a binary image, with pixels of road regions
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extracted labeled with “1” and the background pixels labeled with “0”, to draw a one-pixel
wide skeleton on the processed image while maintaining the shape and structure of the
road. Thinning algorithms are one of the most practical ways to extract the road centerlines,
even though it sometimes produces small spurs around the centerline that can affect the
final structure of the road network.

With the proposed architecture, it is expected to obtain a precise and clear rural road
centerline. In the end, the rural road centerline should be a white object one-pixel-wide,
presented in a black image background.

4. Methods
4.1. Dataset Preparation

The municipality of Mação, located at the center of mainland Portugal, was the study
area chosen for this article (see Figure 2) because it has been severely affected by forest fires
in the past [24].
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Sixty-one high-resolution orthorectified aerial images provided by the Direção Geral
do Território (DGT—[25]) were used in this research. They were in Tagged Image File
Format (TIFF), with an intensity resolution of 8 bits in RGBI (Red, Green, Blue, and Infrared
channels) and a spatial resolution of 0.25 m. Only the RGB channels were used, with each
aerial image presenting 16,000 × 10,000 pixels covering an area of 4 km by 2.5 km.

The associated ground truth images were created manually, overlaying a black layer
on top of the aerial image and highlighting the rural roads in white. This process applied
several aerial images, creating multiple pairs of aerial images with their corresponding
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masks. The next step was to cut the large aerial images (16,000 × 10,000 pixels) into smaller
tiles (1024 × 1024 pixels) (see Figure 3), obtaining a total of 486 images.
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Creating the ground truth masks by manually outlining the rural roads is a very
tedious and time-consuming task that limits the size of the initial dataset. Thus, a data
augmentation procedure was used to enlarge the dataset. The processes started by ro-
tating ninety degrees four times the initial 486 orthorectified aerial image tiles of size
1024 × 1024 pixels, increasing the dataset size to 1944 images. Then, a mirroring operation
was performed, resulting in a total of 3888 images (see Figure 4).
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4.2. Road Detection Classifier Definition

In this article, the proposed method uses the state-of-the-art deep learning model for
semantic image segmentation—the DeepLabV3+ by Google—to perform rural road region
detection [26]. DeepLabV3+ has strong architectural characteristics to allow solving this
task, such as:

• Spatial pyramid pooling: has been proven to be a flexible solution for handling
different scales, sizes, and aspect ratios [17,27]. Moreover, it encodes multi-scale
contextual information by probing the incoming features with filters and applying
several parallel atrous convolutions with different rates. This means that atrous
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convolutions can control the resolution of how features are computed, also known as
Atrous Spatial Pyramid Pooling (ASPP). Atrous convolution grants us the ability to
control the feature maps resolution inside the model and adapt the filter’s field of view
to capture information without a specific size. Considering the feature map output as
Y, the convolution kernel as w, and the input feature map as x, the atrous rate r, for
each location i, the convolution operation is given by Equation (1):

Y[i] = ∑
k

x[i + r.k].w[k]; (1)

• Encoder-Decoder: its architecture has been widely used in semantic segmentation [14,28,29],
consisting of two main parts. The encoder will progressively reduce the spatial size
of the feature maps and gather high semantic information, while the decoder will
recover the spatial size and detailed object boundaries. This means that the structure
can extract sharper object boundaries by progressively recovering spatial information;

• Depthwise Separable Convolution: has been applied in recent neural network de-
signs [30]. Moreover, it has the primary purpose of dramatically reducing the overall
computational costs and number of parameters while keeping an equal or even higher
performance. This result is achieved by performing depthwise spatial convolution inde-
pendently for each channel, followed by a pointwise convolution (1 × 1 convolution).

For road region detection, DeepLabV3+ was used as an Encoder-Decoder architecture
(see Figure 5). The encoder takes the input image, and the decoder outputs the binary
mask. For the network backbone, the ResNet50 was chosen, using the pre-trained weights
of imagenet, allowing for faster training of the model. The output of ResNet50 goes into
the ASPP module, where a 1 × 1 convolution is performed to reduce the computation
cost and the number of parameters being used. Then, 3 × 3 convolutions with rates
of 12, 24, and 36 are executed, followed by image pooling (average) to extract the fea-
tures, and reduce the image size. After that, all the layers are concatenated, and another
1 × 1 convolution is applied to reduce computational costs, upsampling the features by 4.
Regarding the decoder part, the processing starts with a 1 × 1 convolution, followed by the
concatenation using the feature map from the encoder, where another 3 × 3 convolution is
applied, upsampling the features by four so that the output has the same resolution as the
input image.
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A Python image segmentation neural network framework based on PyTorch was used
to implement the proposed DeepLabV3+ model. The model parameters used to build the
proposed road detection architecture are as follows:

• encoder_name: this parameter represents the feature extractor encoder, commonly
known as the network backbone, extracting features with different spatial resolutions
from the input image. For the backbone, a Residual Neural Network (ResNet) is
used. The chosen residual network was ResNet50 since it is a convolutional neural
network with 50 layers (48 Convolution layers, 1 Max- Pool, and 1 Average Pool layer).
ResNet uses skip connections to add the output from a previous layer to further layers,
helping mitigate the vanishing gradient problem, providing more depth, and reducing
computational resources;
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• encoder_depth: corresponds to the number of downsampling operations inside the
encoder. It can vary between 3 to 5. In this article, the encoder depth considered
was equal to 5. In each stage, the feature map size decreases by half compared to the
previous stage;

• encoder_weights: represents the multiplication factor of the kernels in the convolutional
layers. The imagenet [31] is used as the pre-trained encoder weights. Using a pre-
trained encoder vastly speeds up the training time of the model;

• encoder_output_stride: represents the relationship between the input and output image
resolutions of the last encoder features. An encoder_output_stride = 16 is used for the
best relationship between speed and accuracy;

• decoder_atrous_rates: are the dilatation rates for the ASPP unit. Decoder_atrous_rates = (12,
24, 36) are used;

• classes: represents how many classes the output has. Rural region road detection only
implies two classes: road and background;

• activation: is the function used next to the last convolutional layer to generate the
output based on the inputs. Some examples of activation functions are sigmoid, tanh,
logsoftmax, softmax, and identity. Since the detection problem only has two classes
(road, background), it is recommended to use a two-class logistic regression by using
the sigmoid activation function;

• upsampling: is the factor that keeps the same input-to-output ratio. This factor is equal
to 4 since, after the encoding module, the feature sizes are decreased by 16;

• epochs: corresponds to the number of complete passes by the algorithm in the entire
training dataset. Three training epochs are set throughout the dataset;

• loss: is used to measure how well a prediction was made, comparing the predicted
value with the ground truth value. In this case, the DiceLoss function is used, which is
one minus the dice coefficient;

• metrics: measures and monitors the model’s performance during the training and
testing phase. The Jaccard index was initially used, but state-of-the-art metrics were
adopted later;

• optimizer: Adam is used for the optimizer, an algorithm for first-order gradient-based
optimization of stochastic objective functions [32]. This method requires less memory,
is computationally efficient, and is appropriate for problems with multiple parameters
and data. The hyperparameters also have an intuitive understanding, requiring almost
no adjustment. The optimizer is set with a learning rate of 8 × 10−5.

4.3. Road Detection Classifier Training

To make predictions, deep learning models need to learn the mapping relationships
between inputs and outputs. This process includes discovering a series of weights that
are a good fit to solve a specific problem, which in the scope of this article, is to teach
the model to distinguish between rural roads and background pixels. After creating the
training epochs, the model can be trained. The training process consists of simply looping
through the data iterator, supplying the inputs to the network, and optimizing it. After
iterating through the number of epochs, the model is saved as a .pth model. This process
took approximately 3–4 h per training using Google Colab GPUs.

4.4. Road Centerline Extraction

The DeepLabV3+ model presented some difficulties regarding the intersection of
roads made of different types of materials (i.e., asphalt roads and dirt roads, among
others). Therefore, the road detection optimization step presented in this section proposes
an approach to overcome these difficulties and remove small white objects (artifacts)
wrongly predicted as roads. As shown in Figure 6, it is a four-stage process aiming to
detect rural roads’ centerlines with a single pixel width. First, the algorithm improves the
connections of the rural road intersections and removes noise from the predicted image.
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Then, morphological image thinning algorithms are applied to extract road centerlines,
having tested two of the most well-known methods: Zhang–Suen; and Guo–Hall.
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Figure 6. Sample results of road connection optimization process: (a) stage 1—prediction (red circles
represent missing intersections and an artifact); (b) stage 2—dilation; (c) stage 3—thinning (the
intersections in green circles have been corrected; the artifact in the red circle is going to be removed);
(d) final results after removing smaller objects.

The thinning algorithm is used to take a binary image (in our case, a white road
in a black background) and draw a one-pixel-wide skeleton of the white objects while
maintaining the shape and structure of the road. These algorithms are one of the simplest
ways to implement road extraction. However, they often produce minor artifacts around
the centerline that can affect the final structure of the road network.

Figure 6a shows an example of rural road (first stage) detection results, in which five
incomplete road intersections were highlighted by red circles, with one short object also
highlighted by a red circle. The second stage aims to connect rural roads of different types
that are nearby by executing five iterations of a dilation using a 5 × 5 kernel window,
whose results are shown in Figure 6b. In the third stage, the thinning of the previous
dilated road regions is performed, resulting in correct rural road intersections, highlighted
by the five green circles in Figure 6c. Finally, the removal of small objects, such as the one
highlighted by the red circle in Figure 6c, is addressed. The procedure uses the exhaustive
connected components methods to label all objects in the mask and remove all with a length
smaller than 140 pixels (empirically chosen after exhaustive testing and only the image
database used within the scope of this research work). The final results are presented in
Figure 6d, which shows a well-draw rural road network with one-pixel-wide segments
over a black background.
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5. Evaluation Results
5.1. Evaluation Metrics

Multiple metrics were defined to evaluate the road detection model. A study of the
confusion matrix was undertaken, which provides an in-depth analysis of the proposed
method’s performance. From the latter, four important indicators were extracted:

• True Positives (TP): represents the road pixels correctly detected;
• True Negatives (TN): represents the background pixels correctly detected;
• False Positives (FP): represents the road pixels that were incorrectly detected;
• False Negatives (FN): These represent the road pixels that were not detected.

Three benchmark metrics proposed by Wiedemann [33,34] were used to assess the
quantitative performance in the road region detection and the centerline extraction process,
namely: (i) completeness (COM) in Equation (2); (ii) correctness (COR) in Equation (3);
(iii) quality (Q) in Equation (4). Another additional metric, known as F1-score (F1) in
Equation (5), was also used [35].

COM =
Length o f matched re f erence

Length o f re f erence
≈ TP

TP + FN
ε[0; 1] (2)

COR =
Length o f matched extraction

Length o f extraction
≈ TP

TP + FP
ε[0; 1] (3)

Q =
Length o f matched extraction

Length o f extracted data + Length o f unmatched re f erence
≈ TP

TP + FN + FP
ε[0; 1] (4)

F1 =
2 × COM × COR

COM + COR
≈ 2 × TP

2 × TP + FN + FP
ε[0; 1] (5)

For road centerline extraction, the approach needs to be slightly changed. As the hu-
man operator manually extracts the roads, discrepancies may occur between the manually
labeled centerline and the true centerline. This means that it is not suitable to compare the
centerline extracted and the ground truth centerline with a single-pixel width, as one tiny
shift of pixels can influence the whole performance of the model. Thus, a buffer method is
used to solve this issue, which compares the matching extracted data with the reference
data, where every section of the network is within a given buffer width ρ.

The reference centerline with a specific buffer width ρ is dilated to find the TP and
FP pixels (see Figure 7). The next step involves making the intersection between the
dilated reference data and the extracted centerline data, resulting in the matched (TP) and
unmatched extracted data (FP). Dilation of the extracted centerline with a buffer width
ρ is performed to find the FN pixels, followed by an intersection with the reference data,
resulting in the matched and unmatched reference data (FN). After this procedure, it is
possible to calculate the previously defined metrics in Equations (2)–(5).
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5.2. Road Detection Evaluation

A comparison with other state-of-the-art approaches addressing road detection and
road centerline extraction was executed to assess the performance of the proposed architec-
ture. Since the dataset used does not belong to a benchmark dataset because it is unique, the
output results would be biased with the proposed implementation. Thus, it was decided to
make a comparison as described below.

A qualitative and quantitative comparison was made between three state-of-the-art
methods using deep neural networks for road detection. The first used the DeepLabV3+
model, chosen for rural road detection. The second was Unet [36], a model that has achieved
a new benchmark performance and is becoming a state-of-the-art method for biomedical
image segmentation. The third method was the FPN model [37], which was developed by
Facebook AI Research (FAIR) and has achieved state-of-the-art single-model results on the
COCO detection benchmark, outperforming all existing single-model entries, including the
COCO 2016 [13] challenge winners.

All the road detection experiments were performed using the same initialization
and optimization parameters defined in the training procedure. In all the tests, the same
learning rate was used, as well as the number of epochs that was set to 3, the network
backbone (ResNet50) used pre-trained weights (ImageNet), a batch size that was set to 4,
two output classes, and the same activation function (sigmoid). The models were trained
using Google Colab Pro GPUs inside a macOS operating system with a 2.6 GHz 6-core Intel
Core i7 processor.

By using DeepLabV3+, it is possible to detect roads in complex rural environments.
Combined with the Encoder-Decoder, the SPP allows the model to extract sharp features
around the edges of road regions. This model was able to detect roads occluded even
by shadows, trees, and other objects in the middle of the road, being a robust option for
rural road detection. The DeepLabV3+ model had some difficulties regarding connecting
different types of roads (i.e., asphalt, dirt, cement, grass), resulting in incomplete connec-
tions of rural roads. The Unet model allowed us to obtain more complete connections
than DeepLabV3+, although it had a lower correction score. As shown in Figure 8d), this
model introduced some white objects (that might have influenced the connection score)
that should not belong to the final predicted image. In images 4 and 5 of Figure 8, the
Unet model had some difficulties extracting complete roads on environments showing
occlusions cast by trees and shadows, producing incomplete road sections.

Lastly, the FPN model generated complete roads with sharp edges, overcoming com-
plex backgrounds even with multiple trees covering the area. The FPN model also generated
some white objects from incorrectly predicted labeling that should be later removed.

DeepLabV3+, Unet, and FPN Network models were measured with different metrics
in the experiments. Figure 9 shows the average metrics of the rural road detection for the
test dataset. The blue color represents completeness, the red color represents correctness,
the yellow color represents quality, and the green color represents the F1 metric. All these
metrics have values between 0 and 1.

Comparing the three models: (i) DeepLabV3+ achieved the highest average correctness
score of the tree models; (ii) Unet achieved a lower score compared to DeepLabV3+; and
(iii) FPN, does not outperform any of the highest scores; and FPN achieved the highest
scores on average completeness, quality, and F1. Based on these results, DeepLabV3+ per-
forms better if the priority is a high degree of correctness, and the FPN performs better if
the goal is to have a higher degree of completeness, quality, and F1. In this research work,
correctness was favored against completeness as the aim was to achieve a lower proportion
of false positives (objects in the image wrongly detected as roads). The results are listed
in Table 1.
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Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. Rural road detection average metrics evaluation for the test dataset. 

Comparing the three models: (i) DeepLabV3+ achieved the highest average correct-
ness score of the tree models; (ii) Unet achieved a lower score compared to DeepLabV3+; 
and (iii) FPN, does not outperform any of the highest scores; and FPN achieved the high-
est scores on average completeness, quality, and F1. Based on these results, DeepLabV3+ 
performs better if the priority is a high degree of correctness, and the FPN performs better 
if the goal is to have a higher degree of completeness, quality, and F1. In this research work, 
correctness was favored against completeness as the aim was to achieve a lower propor-
tion of false positives (objects in the image wrongly detected as roads). The results are 
listed in Table 1. 

Table 1. Road region detection quantitative results. 

 Image 1 (of Figure 9) Image 2 (of Figure 9) Avg. (Test Set) 
Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1 
DeepLabV3+ 0.6368 0.9573 0.6192 0.7648 0.8380 0.9353 0.7921 0.8840 0.6267 0.8567 0.5640 0.7239 

Unet 0.6767 0.9464 0.6517 0.7891 0.7519 0.8733 0.6780 0.8081 0.6404 0.8247 0.5564 0.7210 
FPN 0.7739 0.9234 0.7272 0.8420 0.8518 0.9021 0.7798 0.8763 0.7066 0.8067 0.5975 0.7533 

Figure 10(a1,b1) show an example of the DeepLabV3+ model’s robustness against 
strong shadows and small bushes covering the road area. Here the model overcame a 
complex landscape situation and correctly predicted the rural road. With the existence of 
narrow rural roads and a high density of shadows and small bushes in the middle of the 
road, it is visible in Figure 10(a2,b2) that the DeepLabV3+ model had no problems making 
relatively accurate predictions. 

0.6267 0.6404
0.7066

0.8567 0.8247 0.8067

0.5640 0.5564
0.5975

0.7239 0.7210 0.7533

0.00

0.25

0.50

0.75

1.00

DeepLabV3+ Unet FPN

COM COR Q F1

Figure 9. Rural road detection average metrics evaluation for the test dataset.

Figure 10(a1,b1) show an example of the DeepLabV3+ model’s robustness against
strong shadows and small bushes covering the road area. Here the model overcame a
complex landscape situation and correctly predicted the rural road. With the existence of
narrow rural roads and a high density of shadows and small bushes in the middle of the
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road, it is visible in Figure 10(a2,b2) that the DeepLabV3+ model had no problems making
relatively accurate predictions.

Table 1. Road region detection quantitative results.

Image 1 (of Figure 9) Image 2 (of Figure 9) Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.6368 0.9573 0.6192 0.7648 0.8380 0.9353 0.7921 0.8840 0.6267 0.8567 0.5640 0.7239

Unet 0.6767 0.9464 0.6517 0.7891 0.7519 0.8733 0.6780 0.8081 0.6404 0.8247 0.5564 0.7210

FPN 0.7739 0.9234 0.7272 0.8420 0.8518 0.9021 0.7798 0.8763 0.7066 0.8067 0.5975 0.7533
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In Figure 10(a3,b3), despite having two road occlusions, the DeepLabV3+ model
showed very high robustness even with the road completely obstructed by trees and
vegetation. The only part where it misses a connection is near the top of the green rectangle,
where the road changed from asphalt to dirt.

Finally, Figure 10(a4,b4) present a case where the DeepLabV3+ model was not able to
detect the rural roads properly due to a highly complex scenario, exhibiting different road
textures, severe shadows, and other terrain patterns not particularly well-defined. In these
cases, it can be challenging even for a human operator to decide with certainty whether a
rural road exists.

5.3. Road Centerline Extraction Evaluation

A comparison between two morphological thinning methods was made for road
centerline extraction. The first was the Zhang–Suen algorithm [22], while the second was
the Guo–Hall algorithm [23]. The optimization process was applied before the two thinning
algorithms. Their results will be thoroughly described in the following section.

5.3.1. Road Centerline Extraction with Zhang–Suen Algorithm

Sample results of the Zhang–Suen Thinning algorithm applied to different models
are presented in Figure 11. Visual analysis shows that DeepLabV3+ produces almost
correct and smooth roads, although it failed on thinner roads, as in Image 1, and in road
connectivity, as in Image 3. The Unet in Image 1 completed the thinner lines and road
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connections but introduced some FPs in Image 2 (white lines on the exterior of the reference
map). It is noticeable that Unet completed the connections on Image 3 but performed poorly
on Images 4 and 5, leaving FNs (pixels wrongly identified as background) and incomplete
road branches in places with high forest density covering the road. The FPN achieved a
complete detection of rural roads only with some extra FPs. Sometimes, identifying these FPs
is challenging even by a human operator because due to the image background’s complexity.
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Figure 11. Rural road extraction network for the Mação district using the Zhang–Suen thinning algorithm—a
comparison between multiple roads detected with different road detection algorithms studied.

Quantitative metrics are listed in Tables 2–5 for the chosen values of ρ (corresponding
to 0.5 m, 1 m, 1.5 m, and 2 m on the ground). After analyzing the average metrics obtained
for the test dataset, it can be concluded that DeepLabV3+ outperformed Unet, and FPN
models on correctness, quality, and F1 for the four different ρ-values. The Unet did not
outperform any of the models on these metrics. The FPN model achieved the highest
completeness score of the three models. From these experiments, it can be observed that
DeepLabV3+ presented the roads correctly and FPN the complete ones.

Table 2. Rural road extraction quantitative results for a ρ = 2 (using the Zhang–Suen thinning
algorithm)—values in bold represent the road detection algorithm with the best performance in
each parameter.

ρ = 2 = 0.5 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.5539 0.5933 0.4015 0.5729 0.6583 0.6403 0.4806 0.6492 0.4758 0.4850 0.3184 0.4804

Unet 0.5377 0.5646 0.3801 0.5508 0.5918 0.6199 0.4342 0.6055 0.4681 0.4634 0.3052 0.4657

FPN 0.5067 0.5071 0.3395 0.5069 0.6761 0.6597 0.5013 0.6678 0.4894 0.4646 0.3164 0.4767
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Table 3. Rural road extraction quantitative results for a ρ = 4 (using the Zhang–Suen thinning
algorithm)—values in bold represent the road detection algorithm with the best performance in
each parameter.

ρ = 4 = 1 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.7599 0.8045 0.6415 0.7816 0.8376 0.8188 0.7066 0.8281 0.6937 0.7076 0.5441 0.7006

Unet 0.8026 0.8274 0.6875 0.8148 0.7263 0.7632 0.5927 0.7443 0.6840 0.6758 0.5178 0.6799

FPN 0.8268 0.8153 0.6964 0.8210 0.8366 0.8240 0.7098 0.8303 0.7109 0.6756 0.5359 0.6928

Table 4. Rural road extraction quantitative results for a ρ = 6 (using the Zhang–Suen thinning
algorithm)—values in bold represent the road detection algorithm with the best performance in
each parameter.

ρ = 6 = 1.5 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.8480 0.8983 0.7738 0.8725 0.9227 0.9063 0.8423 0.9144 0.8063 0.8234 0.6940 0.8148

Unet 0.9181 0.9427 0.8696 0.9302 0.7898 0.8357 0.6834 0.8121 0.8013 0.7908 0.6621 0.7960

FPN 0.9592 0.9425 0.9062 0.9508 0.9009 0.8904 0.8110 0.8957 0.8187 0.7796 0.6695 0.7987

Table 5. Rural road extraction quantitative results for a ρ = 8 (using the Zhang–Suen thinning
algorithm)—values in bold represent the road detection algorithm with the best performance in
each parameter.

ρ = 8 = 2 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.9211 0.9749 0.8998 0.9473 0.9368 0.9240 0.8698 0.9304 0.8489 0.8683 0.7588 0.8585

Unet 0.9605 0.9826 0.9444 0.9714 0.8031 0.8505 0.7037 0.8261 0.8524 0.8434 0.7363 0.8479

FPN 0.9938 0.9805 0.9746 0.9871 0.9203 0.9137 0.8468 0.9170 0.8709 0.8308 0.7430 0.8504

5.3.2. Road Extraction with Guo–Hall Algorithm

In Figure 12, the results of the road extraction using the Guo–Hall thinning algo-
rithm are shown. On this test, the results were very similar to those obtained using the
Zhang–Suen thinning algorithm, not showing significant discrepancies between different
ρ-values (see Tables 6–9) and achieving very similar results (a difference of less than 1%
between them). Once again, DeepLabV3+ achieved superior results on correctness, quality,
and F1. The Unet did not outperform any of the three models, and FPN again achieved the
highest completeness score.

Table 6. Rural road extraction quantitative results for a ρ = 2 (using the Guo–Hall thinning algorithm).

ρ = 2 = 0.5 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.5336 0.5587 0.3754 0.5459 0.6205 0.5969 0.4373 0.6085 0.4760 0.4801 0.3167 0.4780

Unet 0.5118 0.5274 0.3509 0.5195 0.5546 0.6307 0.4187 0.5902 0.4661 0.4621 0.3034 0.4641

FPN 0.4882 0.4777 0.3183 0.4829 0.6280 0.6167 0.4517 0.6223 0.4925 0.4639 0.3163 0.4778
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Figure 12. Rural road extraction network for the Mação district using the Guo Hall algorithm to
perform the thinning—a comparison between multiple roads detected with different road detection
algorithms studied.

Table 7. Rural road extraction quantitative results for a ρ = 4 (using the Guo–Hall thinning algorithm).

ρ = 4 = 1 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.7506 0.7857 0.6231 0.7678 0.8253 0.8004 0.6845 0.8127 0.6947 0.7047 0.5428 0.6997

Unet 0.7799 0.8017 0.6538 0.7907 0.7129 0.8098 0.6106 0.7583 0.6831 0.6785 0.5171 0.6808

FPN 0.8170 0.7984 0.6772 0.8076 0.8245 0.8130 0.6930 0.8187 0.7135 0.6748 0.5351 0.6936

Table 8. Rural road extraction quantitative results for a ρ = 6 (using the Guo–Hall thinning algorithm).

ρ = 6 = 1.5 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.8475 0.8905 0.7675 0.8685 0.9179 0.8930 0.8269 0.9053 0.8037 0.8176 0.6876 0.8106

Unet 0.9220 0.9498 0.8792 0.9357 0.7763 0.8830 0.7039 0.8262 0.8020 0.7980 0.6662 0.8000

FPN 0.9691 0.9476 0.9198 0.9582 0.9002 0.8833 0.8045 0.8917 0.8201 0.7796 0.6697 0.7993

Table 9. Rural road extraction quantitative results for a ρ = 8 (using the Guo–Hall thinning algorithm).

ρ = 8 = 2 m Image 1 Image 2 Avg. (Test Set)

Architecture COM COR Q F1 COM COR Q F1 COM COR Q F1

DeepLabV3+ 0.9379 0.9808 0.921 0.9589 0.9409 0.9191 0.869 0.9299 0.8492 0.8659 0.7568 0.8575

Unet 0.9586 0.9882 0.9477 0.9732 0.7921 0.9062 0.7321 0.8453 0.8520 0.8518 0.7417 0.8519

FPN 0.9959 0.9813 0.9773 0.9885 0.9228 0.9113 0.8467 0.9170 0.8719 0.8309 0.7432 0.8509
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The Guo–Hall thinning algorithm was also tested to extract rural road centerlines. Fig-
ure 13 shows a visual comparison between the Zhang–Suen and Guo–Hall thinning algorithms.
The Guo–Hall, when compared with the Zhang–Suen algorithm, produces more curved lines
(as seen inside the red rectangles). This effect is discernible in road interceptions.
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6. Discussion

From the above experimental results, the best configuration obtained with the DeepLabV3+
model was with a buffer width of ρ = 8 (corresponding to a width of 2 m on the field) using
the Zhang–Suen thinning algorithm to extract the rural roads. The following metrics were
achieved: completeness = 0.8489, correctness = 0.8683, quality = 0.7588, and F1 = 0.8585.

When comparing quality with the method developed by [12], the proposed method
obtained a lower score, but on the other side, achieved superior results on road centerline
extraction concerning their Huang-C and Miao-C method for ρ = 1 and ρ = 2. In this
research, the authors claim for ρ = 1, Huang-C quality = 0.6471, Miao-C quality = 0.6218, and
for ρ = 2, Huang-C quality = 0.7027, Miao-C quality = 0.6735. It should also be noted that
in Cheng et al. work, each ρ pixel incrementation corresponds to 1.2 m per pixel, which
means that the buffer width for ρ = 2 translates to a size of 2.4 m, which is a wider buffer
when compared to our proposed method.

Also, our method achieved a higher quality when compared with Zhang et al. [14] for the
Guangzhou dataset achieving higher scores than Huang and Miao’s method. Their quality
score = 0.7522, their Huang’s method quality = 0.6890, their Miao’s method quality = 0.7169.

The experiments were not tested with the same variables and dataset, but overall, the
results achieved are very auspicious.

7. Conclusions

During the last decades, Portugal has suffered from extreme forest fires that can be
substantially mitigated with the use of recent technology. Aiming to preserve forests,
reduce the danger to society, and help firefighters to have higher efficiency and increased
situational awareness in the field, a method to automatically detect and extract rural road
centerlines from aerial images was proposed to enable car navigation on roads typically
unavailable on typical navigation applications. The goal was to create a faster and more
precise process than the previous handmade tedious work undertaken by aerial image
visual interpreters.

The proposed method uses and compares recent deep learning methodologies like
DeepLabV3+, Unet, and FPN models to detect rural roads. Later it uses morphological
algorithms to optimize the connections between different types of roads, ending with
thinning algorithms like Zhang–Suen and Guo–Hall to extract the rural road centerlines.
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For assessing the performance of the presented architecture, four metrics were calcu-
lated: completeness, correctness, quality, and F1. Although, all metrics were important for the
performance evaluation, completeness and correctness, shown to be more informative select
the road detection algorithms.

For the rural road centerline extraction, the top performance was achieved by the
proposed method with DeepLabV3+ as the road detector, combined with a buffer width of
ρ = 8 (corresponding to a width of 2 m on the field), and using the Zhang–Suen thinning
algorithm to extract the rural roads. This configuration brought the best metrics achieving
a completeness = 0.8489, correctness = 0.8683, quality = 0.7588, and F1 = 0.8585.

Although the proposed method was the best performing on road centerline extraction
phase, it was noticed that the FPN model achieved the highest F1 score for road detection
and the highest completeness score on all the road centerline extraction tests. If the priority
for the end-user is only to detect rural roads or extract rural road centerlines with a higher
degree of completeness, the use of the FPN model should also be considered.

The proposed method provides a very efficient and feasible solution for accurate rural
road detection and centerline extraction from aerial images. It surpasses strong shadows
by trees, small bushes, and vegetation in the middle of the road. With the optimization, it
is also possible to connect different types of roads and overcome total road occlusions with
a considerable size.

Future Work

As future work, further improvements should focus on the following topics:

• Validation of the results on the terrain. This task will confirm that the methods
developed in this research work are accurate and verified in the field to create future
rural road networks;

• Adding the rural roads’ centerline data into a geographical information system, fol-
lowed by the incorporation of the data into real-time mapping applications;

• Increasing the size and quality of the training dataset, becoming more precise, focusing
on what pixels, belong to the background and what pixels belong to the rural roads.
The more samples the datasets have, the more scenarios and complex backgrounds
the models can learn from and thus become better at making predictions, reducing
possible situations of overfitting;

• Creating an algorithm specifically to detect incomplete road intersections and dead-
end roads;

• It would be relevant to start utilizing RGB images with the infrared component, so
the deep learning models can also learn about the reflectance of green zones with
vegetation and trees;

• Run the algorithm as a web service so that the user can query it with his location to
obtain the entire road network (including rural roads) in a radius of n km;

• Incorporate on the road network the information of which vehicles can use the different
road segments according to the vehicle’s dimensions. Allow the user to provide this
information to the web service alongside his position.
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