
Citation: Zhou, L.; Ma, X.; Wang, X.;

Hao, S.; Ye, Y.; Zhao, K.

Shallow-to-Deep Spatial–Spectral

Feature Enhancement for

Hyperspectral Image Classification.

Remote Sens. 2023, 15, 261. https://

doi.org/10.3390/rs15010261

Academic Editor: Edoardo Pasolli

Received: 12 December 2022

Revised: 24 December 2022

Accepted: 28 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Shallow-to-Deep Spatial–Spectral Feature Enhancement for
Hyperspectral Image Classification
Lijian Zhou 1 , Xiaoyu Ma 1, Xiliang Wang 1, Siyuan Hao 1, Yuanxin Ye 2 and Kun Zhao 1,*

1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
2 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,

Chengdu 610031, China
* Correspondence: zhaokun@qut.edu.cn; Tel.: +86-186-6970-9002

Abstract: Since Hyperspectral Images (HSIs) contain plenty of ground object information, they are
widely used in fine-grain classification of ground objects. However, some ground objects are similar
and the number of spectral bands is far higher than the number of the ground object categories.
Therefore, it is hard to deeply explore the spatial–spectral joint features with greater discrimination.
To mine the spatial–spectral features of HSIs, a Shallow-to-Deep Feature Enhancement (SDFE) model
with three modules based on Convolutional Neural Networks (CNNs) and Vision-Transformer (ViT)
is proposed. Firstly, the bands containing important spectral information are selected using Principal
Component Analysis (PCA). Secondly, a two-layer 3D-CNN-based Shallow Spatial–Spectral Feature
Extraction (SSSFE) module is constructed to preserve the spatial and spectral correlations across
spaces and bands at the same time. Thirdly, to enhance the nonlinear representation ability of the
network and avoid the loss of spectral information, a channel attention residual module based on
2D-CNN is designed to capture the deeper spatial–spectral complementary information. Finally, a
ViT-based module is used to extract the joint spatial–spectral features (SSFs) with greater robustness.
Experiments are carried out on Indian Pines (IP), Pavia University (PU) and Salinas (SA) datasets.
The experimental results show that better classification results can be achieved by using the proposed
feature enhancement method as compared to other methods.

Keywords: hyperspectral image classification; spatial–spectral features; 3D-CNN; 2D-CNN;
Vision-Transformer

1. Introduction

Abundant spatial information and continuous spectral information are contained in
Hyperspectral Images (HSIs), so HSI classification is widely used in mineral exploration [1],
environmental management [2], surveillance [3], military reconnaissance [4] and other
fields [5–8]. As satellite sensing technology continues to mature, both the spectral resolution
and spatial resolution of HSI are becoming higher and higher and the feature dimension
is increasing accordingly. Therefore, more resources are required for the classification
task. The number of spectra in currently published hyperspectral image datasets [9] is
typically more than 100, but the actual categories of objects are generally less than 20. By
observing the spectral information, it can be found that information redundancy exists
to a sever degree in different bands. To reduce the information redundancy and feature
dimension between spectra, some common spatial domain methods are used, such as
Linear Discriminant Analysis (LDA) [10], Independent Component Analysis [11], Principal
Component Analysis (PCA) [12], other data preprocessing methods based on Gaussian
filtering [13] and so on.

The machine learning method [14] has superior performance on nonlinear complex
classification problems and is widely used in HSI classification, such as Multinomial Lo-
gistic Regression [15], Relevant Vector Machine [16], Support Vector Machine (SVM) [17]
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and other methods [18]. Kang et al. [19] proposed a filtering method that can take pixel
information into account well, aiming to optimize pixel classification maps in the lo-
cal filtering framework. Although they can classify the HSI effectively to some extent,
their feature learning is mainly based on spectral information, in which the correlation of
pixels in the spatial domain is not used fully. To further improve the classification perfor-
mance, Ma et al. [20] proposed a spectral–spatial classification enhancement method based
on active learning and iterative training sampling, which can reduce the inconsistency
of classification.

With the development of deep learning in image processing and pattern recognition,
remote sensing data classification has progressed tremendously in the last few years [21].
Due to the fact that it considers local connectivity and weight sharing, CNN has a strong
feature expression capability. Makantasis et al. [22] proposed a 2D-CNN-based model
to extract more high-level spectral features by encoding spatial and spectral information
of pixels. Hamida et al. [23] proposed a 3D-CNN-based method that can jointly process
spectral and spatial information of HSI. Roy et al. [24] proposed a hybrid CNN method
named HybridSN, which uses 3D-CNN and 2D-CNN for spatial–spectral feature (SSF)
extraction. It achieved good results and reduced computational complexity to some extent.
Overall, these CNN-based methods have obtained better classification results than tradi-
tional machine learning methods. However, since there is a wide variety of ground objects
in HSI and their spectral characteristics are extremely similar between some objects, the
intra-class dissimilarity and inter-class similarity of HSI are high. Thus, the classification
accuracies are reduced to some extent. Moreover, as the depth of the network increases,
problems such as the “Hughes” phenomenon [25] and network degradation will appear.
Therefore, He et al. [26] proposed a residual network that maps shallow features to deep
features through skip connections, which can significantly solve the problem of gradient
explosion and network degradation due to a deepening network without introducing
additional parameters and computational complexity. Zhong et al. [27] proposed a spatial–
spectral residual network, in which spectral residual blocks and spatial residual blocks were
designed to learn spectral features and spatial semantic features, respectively. The back-
propagation of gradients facilitated in the SSRN model partially solved the degradation
problem of other models. Chang et al. [28] proposed a consolidated convolutional neural
network by combining a 3D-CNN and a 2D-CNN, which can effectively reduce the model
complexity and solve the overfitting problem. Yue et al. [29] proposed a spectral–spatial
latent reconstruction framework, which can improve the robustness of HSI classification
methods. Since hyperspectral data are correlated between both spatial and spectral do-
mains, their correlation information can not be explored fully in a global view using these
CNN-based methods to some extent.

Transformer [30] has strong long-range context modeling ability, where the attention
mechanism is used to describe global dependencies in the input sequence and global order
information is captured through positional encoding. Therefore, the Vision-Transformer
(ViT) model proposed by Dosovitskiy et al. [31] is applied to the field of computer vision,
which can capture global information of images. Inspired by the idea, more and more
people are applying it to the field of HSI classification and achieving advanced results since
ViT can capture global information. From the perspective of sequences, Hong et al. [32]
proposed a Transformer-based classification architecture named SpectralFormer that can
efficiently process and analyze sequential data. He et al. [33] proposed an SST network to
extract the features and alleviate the overfitting problem, which includes a well-designed
2D-CNN, an improved dense Transformer and a dynamic feature enhancement module.
Zhong et al. [34] proposed a spectral–spatial transformer network consisting of spatial
attention and spectral correlation modules to overcome the limitations of the convolution
kernel. Chen et al. [35] proposed an SSFTT method to capture high-level semantic features
with more discriminative. Although the above methods can obtain global information to a
certain extent, they are inadequate in terms of local details.
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To compensate for the deficiencies of the above methods, the spatial–spectral joint
features extraction with local and global information at different scales is considered in this
paper. Therefore, an end-to-end model with spatial–spectral feature enhancement from
shallow to deep is designed based on CNN and Transformer. Attention mechanisms [36,37]
are added to both shallow and deep feature extraction modules, which can make full use of
local details and global information and also improve the discriminative capability of the
features. First, since the PCA method can extract the most important spectral components
for classification, it is applied to alleviate spectral redundancy and reduce computation
costs. Next, a two-layer 3D-CNN is established as a feature extractor to extract shallow
simultaneously; then, Residual Squeeze-Excitation Convolutional (Res-SEConv) block is
designed to enhance the correlation between shallow spectral features. Finally, the deep
features are extracted using ViT to improve the classification performance.

The main contributions are as follows:

• To make full use of both spatial–spectral and global–local feature maps, an effective
SDFE (Shallow-to-Deep spatial–spectral Feature Enhancement) method is proposed
for HSI classification. It is constructed by cascading the Shallow Spatial–Spectral
Feature Extraction (SSSFE) module, the Res-SEConv module and the VTFE module.

• A Res-SEConv module based on the depth-wise convolution and channel attention
mechanism is designed to further extract the spatial–spectral joint features, which can
improve the robustness of the extracted features.

The remainder of this paper is structured as follows. Section 2 contains the relevant
basic theory. Section 3 describes the proposed method. Section 4 introduces the evaluation
indicators, the datasets, the parameter settings and the experiments. A discussion is
presented in Section 5. Finally, conclusions are presented in Section 6.

2. Related Basics

This section introduces the related theories of 3D-CNN and attention mechanisms.

2.1. 3D-CNN

Three-dimensional convolution is an operation that convolves the 3D convolution
kernel and 3D data, whose operation process is shown in Figure 1. The input is denoted as
X ∈ RW×H×C, where H is the height, W is the width and C indicates the spectral dimension
of the input data. The convolution kernel slides in the input data along the direction of the
arrow in Figure 1 and the dot product sum of the 3D convolution kernel and the input data
are calculated.

Figure 1. The process of 3D convolution.

The value v for the j-th feature map at the spatial location (x, y, z) in the l-th layer can
be given by

vxyz
lj = f

(
Ml−1

∑
m=0

Hl−1

∑
h=1

Wl−1

∑
w=1

Cl−1

∑
r=1

khwr
ljm v(x+h)(y+w)(z+r)

(l−1)m + bl j

)
(1)
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where Ml is the number of convolutional kernels in the l-th layer. khwr
ljm is the value of the

m-th 3D convolution kernel in the j-th layer at the position (h, w, r) and bl j is the bias of the
l-th layer connected to the j-th 3D feature data. f (·) is the activation function.

Activation and batch normalization (BN) [38] operations are performed after the
convolution operation of each layer and the result is inputted to the next convolution layer.
Since the inter-frame motion information with spatial dimension can be represented well
using 3D-CNN, the inter-spectrum correlation with spatial dimension for HSI can be seen
as the inter-frame motion information with spatial. Thus, this paper uses 3D-CNN to
extract the joint SSFs.

2.2. Attention Mechanism

The attention mechanism can select the information that is more critical to the current
target task from a large amount of information and it is broadly used in deep learning tasks
such as image recognition and natural language processing [39].

Channel attention enables the network to automatically learn the importance of differ-
ent feature channels by assigning different weights to each spectral channel. To compensate
for the fact that the depth-wise convolution applies a singular filter to every input chan-
nel [40], which ignores channel information, a module of depth-wise convolution and
channel attention to jointly extract space–spectral information is designed in this paper.
This module uses the residual structure to perform identity mapping between the original
features and the features after convolution and channel attention processing, which further
improves the classification performance of the algorithm. SENet [41] is a representative
method for channel attention and its main structure is the SE module, which is shown in
Figure 2.

Figure 2. The SE module.

The SE includes three parts: squeeze, excitation and feature recalibration. Specifically,
SE mainly consists of a global average pooling (GAP) and two fully connected (FC) layers.

(1) Squeeze
This part adopts GAP. Its operation is to average the original feature map of a spectral

band along the spatial dimension. Thus, a real average is obtained for a spectral channel
with a global acceptance field to some extent. The formula for the average of channel c is
as follows:

zc = fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (2)

where fsq(·) is the compression function and uc ∈ RH×W represents the 2D feature map of
the c-th channel.

(2) Excitation
The excitation consists of two FC layers. The weight of each feature channel can

be calculated by the excitation module, which is used to represent the importance of the
feature map channel. The excitation action is shown in detail in Equation (3).

s = fex(z, W) = σ(g(z, W)) = σ(W2δ(W1, z)) (3)
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where fex(·) is the excitation formula, z is the squeezed feature map, δ is the ReLU and
σ is the Sigmoid activation function, which is used after the first and second FC layers,
respectively. W1 ∈ R C

r ×C is the weight between the input and the first connected layer.
W2 ∈ RC× C

r is the weight between the first and the second FC layer.
(3) Feature recalibration
The principal component features recalibration in the spectral dimension is performed

according to the weight of each spectral channel since the weights can represent the
correlation between the spectral information and the ground objects. The process is given by

x̃c = fscale(uc, sc) = sc · uc (4)

where X̃ is the final output of the Res-SEConv module, sc is the c-th channel weight obtained
by the excitation operation and X̃ = [x̃1, x̃2, · · ·, x̃C].

3. Proposed SDFE Method for HSI Classification

To enhance the SSFs from shallow to deep, an end-to-end HSI classification SDFE
model (as in Figure 3) is proposed. Firstly, the original hyperspectral HSIs are dimensionally
reduced via PCA to retain the spectral components with important contributions. Secondly,
the shallow features are extracted via the SSSFE module, which consists of two 3D-CNN
layers. Thirdly, the Res-SEConv is designed to strengthen the important channel informa-
tion. Finally, the VTFE module can further extract SSFs and perform classification. This
shallow-to-deep feature extraction method capitalizes on spatial and spectral information
at different scales. The approach proposed in this article mainly includes four parts: Band
selection, SSSFE module, Res-SEConv module and VTFE module. The specific process is
as follows:

Figure 3. The classification structure of SDFE.

3.1. Band Selection

Some bands are not sensitive to ground objects and cannot provide useful ground
object information, which results in information redundancy and band noise. Therefore,
dimensionality decrease is usually an important pre-processing step in HSI classification.

PCA is a widely used dimensionality reduction algorithm, which aims to find the
principal components of the data and uses these principal components to characterize the
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original data. The raw hyperspectral data are recorded as I ∈ RM×N×L, where M and N
are the width and height of the raw data and L is the spectral band number. After the PCA
method, the band number for the original data is reduced from L to B and the obtained
data are denoted as Ipca ∈ RM×N×B. This process only reduces unimportant spectral bands
and does not affect spatial information.

3.2. SSSFE Module

For small training samples, the accuracy will be decreased if the number of layers
is increased continually over a certain number. Therefore, to make the most of the high-
dimensional features of HSI, an SSSFE module with a two-layer 3D convolution network is
designed and a ReLU and BN are performed after each convolutional layer.

To reduce the redundancy of HSI, two different convolution kernels with size 3× 3× 7
and 3× 3× 5 for layers 1 and 2 are set to extract. They not only can reduce the spectral
dimension of the input but also effectively reduce the feature redundancy caused by
augmenting the number of convolutional layers. The specific details of the SSSFE module
are provided in Figure 4.

Figure 4. The SSSFE module.

The image cube Ipca is divided into (M− S + 1)× (N − S + 1) 3D cubes and the size
of each cube is S× S× B, which is the input of the SSSFE module. S is the height and
width of the cube and B is the band number of the cube. The ground-truth label of a cube
is defined by the center pixel label. Theoretically, the number of 3D convolutional kernels
for each 3D convolutional layer is T0 and the size of each kernal is T1 × T2 × T3. When
the feature block is fed into the 3D convolutional layer, the output dimension becomes
(S− T1 + 1), (S− T2 + 1), (B− T3 + 1). Detailed information concerning the selection of
parameters is given in Section 4.3.

3.3. Res-SEConv Module

Compared with ordinary convolution, since a depth-wise convolution kernel can only
perform a convolution operation with one channel, the operation parameters are greatly
reduced. However, the process of depth-wise convolution does not contain position infor-
mation and ignores the correlation between channels. Therefore, to enhance the useful spa-
tial and spectral information further and add as few parameters as possible, a Res-SEConv
module with depth-wise convolution and channel attention is designed. Its structure
(Res-SEConv) is shown in Figure 3. The channel attention adopts SENet [41], which can
adaptively obtain correlation for each feature channel. Thus, the important features are
enhanced and the unimportant features are weakened according to their correlation.

The process of this module is as follows:

(1) After the SSSFE module, the obtained shallow feature maps are firstly rearranged to
obtain T2

0 × T2
3 feature maps with size T2

1 × T2
2 . Then, the spatial feature is extracted

using the depth-wise convolution module and the channel feature is weighted through
the SE module.

(2) The dimension transformation of features is performed after channel attention and
the dimension is transformed from [N, C, H, W] to [N, H, W, C].

(3) Layer Normalization (LN) is first performed on the last dimension. Then, a GeLU
activation operation and dimension transformation on the features are carried out.
The feature dimension is transformed from [N, H, W, C] to [N, C, H, W].
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(4) The problem of gradient disappearance due to the increasing number of network
layers can be solved by the identity mapping of the residual network. Therefore, the
skip connection in the Res-SEConv module is designed to prevent overfitting and
network degradation.

This module extracts more discriminative space–spectral joint features and only adds
a small number of parameters compared to ordinary convolution. The input size of the
Res-SEConv module is the same as the output, so it is a plug-and-play module and can be
utilized for other computer vision tasks.

3.4. VTFE Module

Although CNN has the features of local connectivity and weight sharing, it is hard to
obtain the long-distance spectral correlation. However, the core of HSI analysis is spectral
analysis, so we use a ViT to enhance feature maps extracted by the Res-SEConv module.
The multi-head attention mechanism of ViT captures the spectral correlation with long-
range dependence and maps the global correlations, so it can better represent the spectral
features of HSI. The VTFE module consists of the following three parts.

Firstly, the output of the Res-SEConv module is divided into the 2D patches along
the spectral dimension and then the 2D patches are mapped to 1D vectors via linear
mapping. Secondly, the Position Embedding (PE) is added to each 1D vector. PE can not
only preserve the position information of the original 2D block itself before flattening, but
can also preserve the relative position information between 2D blocks. Finally, the Class
Token for classification is added to the vector with PE. The dimension of the Class Token
is the same as that of other tokens and autocorrelation operations are performed between
all tokens.

Then, the Transformer Encoder module (as in Figure 5) is the key to the ViT model.
The two sub-layers of the LN cascade Multi-head Self-Attention (MSA) and LN cascade
MLP layer are alternately connected and the residual connection is used between every
two sub-layers.

Figure 5. The Transformer Encoder.

The attention mechanism of the Transformer can effectively capture the correlation of
sequences. Its Self-Attention function essentially maps queries and key-value pairs to the
output. Specifically, three learnable weight matrices are defined and the input is linearly
changed with the three weight matrices to obtain the matrix of query Q, key K and value
V. Then, the calculation formula of the output matrix is

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

where dk represents the dimension of the input and is also a scale factor. First, the attention
score between each Q and K computed in the form of an inner product is scaled by a
scaling factor

√
dk. Then, a softmax operation is performed on the scale scores. Finally, the

obtained score is multiplied by the weight of V and the output of the attention function
is obtained.

The final structure used for the classification is relatively simple, only including an
LN and an FC layer. The final classification result can be obtained through the FC layer.
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4. Experiments and Results

In this section, the classification performance of the SDFE method and other baselines
are analyzed. All experiments in this article have the same experimental environment, in
which NVIDIA GeForce RTX3090 GPU, Intel Xeon Gold 6142 CPU@2.60GHz processor is
used and the running memory is 60.9 GB.

The SDFE method adopts the cross-entropy loss function and Adam optimizer, the
learning rate is set to 0.0001, the batch size is set to 64, the number of iterations for training
on the Indian Pines (IP) dataset is 200 and the number of iterations for training on the Pavia
University (PU) and Salinas (SA) datasets is 100.

4.1. Datasets

(1) Indian Pines Dataset
The IP dataset was captured by the AVIRIS imager on an Indian pine tree in the

American state of Indiana, which has a spatial resolution of 20 m. There are 16 object
categories, 200 bands and 145 × 145 pixels. A total of 10,776 pixels are background and
10,249 pixels are ground objects. Figure 6a is the false-color image and (b) is the ground-
truth map.

Figure 6. The IP dataset. (a) False-color image. (b) Ground-truth map.

(2) Pavia University Dataset
The PU dataset with a resolution of 1.3 m was captured by the ROSIS-03 sensor over

the Pavia University in Northern Italy. The number of land cover categories and spectral
bands is 9 and 103, respectively. It consists of 610 × 340 pixels and there are only 42,776
ground object pixels. Figure 7a is the false-color image and (b) is the ground-truth map.

Figure 7. The PU dataset. (a) False-color image. (b) Ground-truth map.

(3) Salinas Dataset
As with the IP dataset, the SA dataset was also captured by the AVIRIS imager. It has

a band count of 204 and a spatial resolution of 3.7 m. The dataset contains 512 × 217 pixels
and 16 object categories. Among the 111,104 pixels, 54,129 pixels represent the ground
objects. Figure 8a is the false-color image and (b) is the ground-truth map.
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Figure 8. The SA dataset. (a) False-color image. (b) Ground-truth map.

Table 1 lists the number of training samples, testing samples and land-cover category
names for the IP, PU and SA datasets. The training sample number of the IP dataset
accounts for 10% of the total and the training sample number of the PU and SA datasets
accounts for 5%.

Table 1. The number of training and testing samples of each category for the IP, PU and SA datasets.

IP PU SA

No Class Name Train Test Class Name Train Test Class Name Train Test

1 Alfalfa 4 42 Asphalt 331 6300 Brocoli_green_weeds_1 100 1909
2 Corn-notill 142 1286 Meadows 932 17,717 Brocoli_green_weeds_2 186 3540
3 Corn-mintill 82 748 Gravel 104 1995 Fallow 98 1878
4 Corn 23 214 Trees 153 2911 Fallow_rough_plow 69 1325
5 Grass-pasture 48 435 Sheets 67 1278 Fallow_smooth 133 2545
6 Grass-trees 72 658 Bare soil 251 4778 Stubble 197 3762
7 Grass-pasture-mowed 3 25 Bitumen 66 1264 Celery 178 3401
8 Hay-windrowed 47 431 Bricks 184 3498 Grapes_untrained 563 10,708
9 Oats 2 18 Shadows 47 900 Soil_vinyard_develop 310 5893

10 Soybean-nottill 97 875 Corn_senesced weeds 163 3115
11 Soybean-mintill 245 2210 Lettuce_romaine_4wk 53 1015
12 Soybean-clean 59 534 Lettuce_romaine_5wk 96 1831
13 Wheat 20 185 Lettuce_romaine_6wk 45 871
14 Woods 126 1139 Lettuce_romaine_7wk 53 1017
15 Building-Grass-Trees 38 348 Vinyard_untrained 363 6905
16 Stone-Steel-Towers 9 84 Vinyard_vertical_trellis 90 1717
# Total 1017 9232 Total 2135 40,641 Total 2697 51,432

4.2. Evaluation Criterions

The goal of the HSI classification task is to assign a category to each pixel in the image.
The assigned categories are compared with the ground truth values. By studying current
classification evaluation criteria, the overall accuracy (OA), average accuracy (AA) and
Kappa coefficient (Kappa) are selected to evaluate the results of the SDFE method and
other methods in this paper. Larger values of these indicators represent better classification
effectiveness. OA represents the percentage of correctly classified samples among all test
samples, which indicates the correct prediction effect. AA represents the average of the
classification accuracies for each category of samples. The Kappa coefficient is a statistical
metric that measures the agreement degree between the classification results and ground
truth.

OA is formulated by this equation

OA =
TP + TN

TP + TN + FP + FN
(6)
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where TP is the number of samples that are actually positive and predicted to be positive,
TN is the number of samples that are actually negative and predicted to be negative, FP is
the number of samples that are actually negative but are predicted to be positive and FN is
the number of samples that are actually positive but are predicted to be negative.

AA is formulated by the Equation (7):

AA =
1
n

n

∑
i=1

TPi
TPi + FNi

(7)

where TPi is the TP of class i, FNi is the FN of class i and n is the number of categories.
The formula of the Kappa coefficient is given by the following Equation (8):

Kappa =
Po + Pe

1− Pe
(8)

where Po is equal to OA, Pe is formulated by the Equation (9):

Pe =
(TP + FN)× (TP + FP)× (FN + TN)× (TN + FP)

N2 (9)

where N is the total test sample number and it can be computed using Equation (10).

N = TP + TN + FP + FN (10)

4.3. Model Parameters Selection

In this subsection, we analyze several parameters that have an impact on the classifica-
tion results, such as the selection of PCA, the input patch size, the 3D convolutional kernel
number, the learning rate, batch size and the size of the depth-wise convolutional kernel.

(1) The selection of PCA
HSI contains a lot of redundant and noisy information in the spectral channel. There-

fore, it is very challenging to adequately extract spectral information from the images. The
comparative experiments using the PCA and LDA preprocessing methods were conducted
on the IP dataset and the results are shown in Table 2. It can be seen that the results using
PCA are better than those using LDA, so PCA is selected to extract the principal spectra.

Table 2. Classification results using PCA and LDA on the IP dataset.

OA (%) AA (%) Kappa (×100)

PCA 99.16 99.07 99.04
LDA 98.72 98.83 98.54

The number of the principal components was selected as 20, 30, 50, 100 and 200 for
the Indian Pines dataset and 20, 30 and 50 for the Pavia University dataset and Salinas
dataset for the experiments. The experimental results on the three datasets are shown in
Tables 3–5, respectively. It can be found that both the network parameters and the running
time increase as the number of the principal components increases, When the principal
component number is 30, the optimum classification results can be obtained. Therefore, the
principal component number is taken as 30 in this paper. That is, 30 bands of spectra are
selected as the HSI spectral features.
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Table 3. Experimental results with different PCA coefficients on the IP dataset.

PCA OA (%) AA (%) Kappa (×100) Time (s) Params (M)

20 98.25 98.53 98.00 236.18 4.58
30 99.16 99.07 99.04 239.75 6.85
50 98.88 99.18 98.72 240.31 11.41
100 98.97 99.02 98.82 272.88 22.91
200 98.97 99.06 98.82 420.10 46.38

Table 4. Experimental results with different PCA coefficients on the PU dataset.

PCA OA (%) AA (%) Kappa(×100) Train Time Params (M)

20 99.70 99.55 99.60 233.05 4.57
30 99.80 99.70 99.74 266.09 6.84
50 99.68 99.55 99.58 271.89 11.40

Table 5. Experimental results with different PCA coefficients on the SA dataset.

PCA OA (%) AA (%) Kappa Train Time Params (M)

20 99.95 99.73 99.94 306.29 4.58
30 99.97 99.80 99.97 308.35 6.85
50 99.95 99.94 99.94 310.90 11.41

(2) Experiments on the patch size of the input
Different input sizes can affect the classification results of the network, so the selection

experiments with different input sizes are carried out. Figure 9 demonstrates the classi-
fication metric OA on different patch sizes. We can find that the OA improves with the
increase in the input patch and stops improving when the patch reaches 13× 13. Therefore,
the size of the input selected in this paper is 13× 13× 30.

Figure 9. The OAs for three datasets with different patch sizes.

(3) Experiments on the number of 3D convolutional kernels
The number of convolution kernels of the two 3D convolutional layers is denoted as

C1 and C2, respectively. To reduce the amount of data sent to ViT as much as possible, C2 is
set to 8. The convolutional kernel number of the 1st layer 3D-CNN is set to 8, 16, 32, 64 and
128 respectively. The overall accuracies are shown in Figure 10. When the convolutional
kernel number is 64, the classification accuracies for the three datasets are all the best, so C1
is set to 64 in this paper.

(4) Experiments on the size of the depth-wise convolutional kernels
The depth-wise convolutional kernel size in the Res-SEConv module is set experimen-

tally. The size of the depth-wise convolution kernel is recorded as G× G. For G being 3, 5,
7, 9 and 11, respectively, the classification results are displayed in Figure 11. We can find
that the size of the depth-wise convolutional kernel in the Res-SEConv module has the
greatest impact on the IP dataset and has less impact on the other two datasets. However,
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the classification accuracy shows an increasing trend followed by a decreasing trend with
an increase in G. The highest OAs are achieved for all three datasets when the kernel size
is 7× 7. Therefore, the depth-wise convolutional kernel size is set to 7× 7.

Figure 10. The OAs for the three datasets with the different 3D convolution kernel numbers.

Figure 11. The OAs for the three datasets with different depth-wise convolution kernel sizes in the
Res-SEConv module.

(5) Experiments on the activation function of the Res-SEConv module
The activation in the Res-SEConv module is GeLU. Unlike ReLU, GELU weights the

inputs according to their magnitude; ReLUs are gated according to the sign of the inputs.
GeLU is intuitively more in line with the natural understanding and has been experimen-
tally superior to ReLU in several computer vision tasks. The comparison experiments
between ReLu and GeLU in the Res-SEConv module are conducted and the experimental
results are shown in Table 6. It can be seen that the general result of using GeLU in the
Res-SEConv module is better than using ReLU.
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Table 6. Comparison results using ReLU and GeLU in Res-SEConv module on the IP dataset.

OA (%) AA (%) Kappa (×100)

ReLU 98.86 99.07 98.70
GeLU 99.16 99..07 99.04

(6) Experiments on the learning rate and batch size
The experimental results of learning rate and batch size on the IP dataset are shown in

Tables 7 and 8. The best classification performance is achieved when the learning rate and
batch size are 0.0001 and 64.

Table 7. Comparison experiments with different learning rates on the IP dataset.

Learning Rate OA (%) AA (%) Kappa (×100)

0.01 98.40 98.58 98.13
0.001 98.85 98.96 98.69

0.0001 99.16 99.07 99.04
0.00001 98.78 98.87 98.61

Table 8. Comparison experiments with different batch sizes on the IP dataset.

Batch Size OA (%) AA (%) Kappa (×100)

32 98.90 98.88 98.13
64 99.16 99.07 98.69

128 98.49 98.98 99.04

4.4. Ablation Experiments

Five sets of ablation experiments on the SSSFE module, Res-SEConv module and
VTFE module are designed (as in Table 9) and the experimental results on the IP dataset
further demonstrate the effectiveness of each module in the SDFE method.

Table 9. The classification results of ablation experiments on the IP dataset.

Components Indicators

SSSFE Res-SEConv VTFE OA (%) AA (%) Kappa (×100)

X X - 90.10 92.98 88.69
- - X 91.66 88.24 90.50
- X X 95.92 94.06 95.35
X - X 98.57 98.29 98.38
X X X 99.16 99.07 99.04

From Table 9, we can find that the OA, AA and Kappa are 90.10%, 92.98% and
88.69%, respectively, while using the CNN-based SSSFE module and Res-SEConv module.
Compared with it, the OA and Kappa have an increase of about 1%, but AA decreases about
4.74% while only using the VTFE module, which indicates the Transformer is effective in
HSI classification. When the SSSFE module is added to the VTFE module, the OA, AA
and Kappa are increased by 7.04%, 10.05% and 3.03%, respectively. When the Res-SEConv
module is added to the VTFE module, the OA, AA and Kappa are increased by 4.26%,
5.82% and 4.85%, respectively. Overall, the shallow feature extraction using the SSSFE
module or Res-SEConv module is superior to no shallow feature extraction before the
VTFE module for HSI classification. While the three modules work together, OA, AA and
Kappa reach more than 99%, which are the best classification results. This not only proved
the effectiveness of the SDFE method but also proved that the constructed SSSFE and
Res-SEConv modules can jointly strengthen shallow further.



Remote Sens. 2023, 15, 261 14 of 21

4.5. Comparison Experiments

To compare the discrepancy between the SDFE method and other baselines, compara-
tive experiments are conducted on the datasets of IP, PU and SA. Representative methods
are selected for comparative experiments, which include traditional SVM machine learning
method [14], CNN-based methods, such as 2D-CNN [22], 3D-CNN [23], HybridSN [24]
and Transformer-based methods ViT [30] and SSFTT [35]. These comparative experiments
are described as follows:

(1) 2D-CNN: The network contains two convolutional layers of size 3 × 3 with the
numbers 30 and 90 and three FC layers. The activation function and classifier are
ReLU and SoftMax, respectively.

(2) 3D-CNN: The network contains three convolutional layers and three FC layers.
(3) HybridSN: This contains three 3D convolutional layers and one 2D convolutional

layer, as well as three FC layers.
(4) ViT: The input size of the network is 9× 9. The remaining parameters are the same as

those given in [31].
(5) SSFTT: The specific network structure settings are the same as in [35].

The comparisons of the classification performance between SDFE and other baselines
on the three datasets are shown in Tables 10–12, which proves that the SDFE method can
obtain the best classification results.

Table 10. The classification results (in percent) using SDFE and other baselines for the IP dataset.

Class SVM 2D-CNN 3D-CNN HybridSN ViT SSFTT SDFE (Proposed)

1 68.29 34.15 19.52 100.00 65.85 100.00 100.00
2 69.73 75.18 90.89 97.82 65.84 97.43 97.85
3 61.58 79.79 71.89 95.45 75.1 95.45 99.22
4 51.64 48.83 35.21 96.71 71.36 98.59 98.97
5 89.66 95.40 85.98 99.54 88.05 100.00 98.46
6 97.41 98.17 98.33 99.85 97.41 100.00 99.16
7 72.00 68.00 16.00 60.00 64.00 52.00 100.00
8 91.86 100.00 99.30 100.00 96.51 100.00 100.00
9 22.22 50.00 0.00 100.00 66.67 72.22 100.00
10 71.66 82.97 71.66 96.46 75.89 98.51 99.24
11 81.36 90.95 94.75 97.33 89.28 97.51 99.85
12 64.04 57.87 75.66 96.07 63.67 97.19 99.78
13 95.68 99.46 98.38 97.30 98.38 100.00 100.00
14 96.40 97.72 96.22 99.21 89.29 99.65 98.93
15 54.18 90.49 64.55 100.00 80.98 99.42 100.00
16 84.52 84.52 73.81 79.76 88.10 96.43 93.67

OA 78.50 85.89 85.88 97.57 82.2 98.06 99.16
AA 73.26 78.34 68.23 94.72 79.77 94.03 99.07

Kappa 75.37 83.80 83.68 97.23 79.61 97.79 99.04
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Table 11. The classification results (in percent) using SDFE and other baselines for the PU dataset.

Class SVM 2D-CNN 3D-CNN HybridSN ViT SSFTT SDFE (Proposed)

1 93.33 95.51 97.71 99.63 96.84 99.98 99.90
2 97.83 99.68 99.90 99.87 98.59 100.00 99.92
3 74.42 85.66 84.95 96.24 88.77 98.45 99.84
4 92.34 95.91 94.09 93.71 95.02 98.32 99.67
5 99.45 99.92 100.00 99.84 100.00 99.37 99.67
6 86.79 95.10 96.32 100.00 96.90 100.00 100.00
7 84.96 98.89 96.28 100.00 69.60 100.00 100.00
8 90.02 87.19 95.97 99.86 71.87 98.77 98.98
9 100.00 96.11 95.33 92.78 99.22 91.44 99.29

OA 93.32 96.37 97.44 99.07 94.24 99.49 99.80
AA 91.02 94.89 95.62 97.99 90.76 98.48 99.70

Kappa 91.10 95.17 96.60 98.77 92.37 99.31 99.74

Table 12. The classification results (in percent) using SDFE and other baselines for the SA dataset.

Class SVM 2D-CNN 3D-CNN HybridSN ViT SSFTT SDFE (Proposed)

1 99.16 100.00 100.00 100.00 99.90 100.00 100.00
2 99.41 100.00 99.75 99.97 100.00 100.00 100.00
3 99.36 100.00 100.00 99.84 100.00 100.00 100.00
4 99.40 99.32 99.47 100.00 98.72 99.70 100.00
5 97.09 98.31 98.03 99.72 99.37 99.37 100.00
6 99.73 99.92 100.00 100.00 99.87 99.68 100.00
7 99.82 100.00 99.91 100.00 99.56 99.76 100.00
8 91.45 94.60 96.56 99.15 97.07 99.97 99.98
9 99.85 100.00 100.00 100.00 100.00 100.00 99.98
10 92.68 99.36 98.33 99.10 97.56 99.49 99.80
11 95.86 100.00 100.00 100.00 99.90 99.80 100.00
12 100.00 99.67 100.00 99.78 99.56 100.00 100.00
13 97.93 100.00 100.00 100.00 99.89 100.00 100.00
14 95.47 99.70 99.41 99.21 98.82 100.00 100.00
15 62.13 96.48 96.55 95.52 90.15 99.99 99.92
16 98.14 99.53 98.25 99.24 99.59 99.42 100.00

OA 92.12 98.22 98.52 99.10 97.76 99.86 99.97
AA 95.47 99.18 99.14 99.47 98.75 99.79 99.80

Kappa 91.20 98.02 98.35 98.99 97.50 99.84 99.97

The accuracies of SDFE are greatly improved compared with other methods for the IP
dataset. It significantly outperforms traditional machine learning methods and CNNs and
slightly outperforms Transformer-based classification models for the PU and SA datasets.
This may be because CNN-based methods lose long-term information to some extent
and Transformer-based methods cannot fully extract spatial neighborhood information.
However, the SSFTT method and the proposed method make use of the advantages of
both CNN and Transformer to some extent. In particular, the shallow spatial and spectrum
features are enhanced using the constructed SSSFE module and Res-SEConv module,
respectively, which greatly promote the classification effectiveness.

To observe the classification effectiveness, the classification maps using the above
methods are given in Figures 12–14. For the sake of clear presentation, some illegible
misclassification points are framed with red rectangles and are enlarged as shown in
Figure 12h,i, Figures 13 and 14h, respectively. The first image is the ground truth and
then the remaining images correspond to Figure 12a–g in sequence from left to right for
Figure 12h,i and from top to bottom for Figures 13h and 14h. It can be seen that the
classification maps obtained by the SDFE network are most similar to the ground truth.
SVM, 2D-CNN, HybridSN, 3D-CNN and ViT obviously cannot identify the type accurately
and have poor performance.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Figure 12. The classification maps of the IP dataset. (a) SVM. (b) 2D-CNN. (c) 3D-CNN. (d) HybridSN.
(e) ViT. (f) SSFTT. (g) SDFE. (h) The enlarged images of box-1. (i) The enlarged images of box-2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. The classification maps of the PU dataset. (a) SVM. (b) 2D-CNN. (c) 3D-CNN. (d) Hy-
bridSN. (e) ViT. (f) SSFTT. (g) SDFE. (h) The enlarged image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. The classification maps of the IP dataset. (a) SVM. (b) 2D-CNN. (c) 3D-CNN. (d) HybridSN.
(e) ViT. (f) SSFTT. (g) SDFE. (h) The enlarged image.

Figure 12 suggests that the Grass-Pasture-mowed (light blue) marked by the red
box-1 in the middle area of the IP dataset is the most difficult to distinguish, which is
easily misclassified as the Grass-Pasture (light pink). In addition, the differences between
the results are large when using different methods in the areas marked by the red box-2.
Compared with using the SSFTT method, the soybean-mintill (dark green) and soybean-
nottill (yellow) can be classified better using the SDFE method.

For the PU dataset, the results of the SDFE method for classification are the most
prominent in the marked area (Figure 13). The edge misclassification of the Bricks class
(light blue) using the other methods is significantly corrected by using the proposed method.

For the SA dataset, the classification maps (Figure 14) demonstrate that the SDFE
method is more precise than baselines at the boundaries between the different categories,
such as the boundary between the Fallow_rough_plow (pink) and Fallow_smooth (green)
marked by a red box. In conclusion, the benefits of the SDFE method are further illustrated.

To investigate the effectiveness of SDFE with different proportions of training data,
training samples are randomly selected of 5%, 10%, 15% and 20% of the IP dataset, as well as
2%, 5%, 8% and 11% of the PU and SA datasets. Figure 15 shows the classification accuracies
under different training data ratios. It can be found that the classification accuracies of all
compared methods show an upward trend as the proportion of training samples increases.
The advantage of SDFE is more obvious than baselines under a few training samples, which
indicates that SDFE is still useful for fewer samples. However, due to a large amount
of computation of the Transformer, the SDFE method has certain limitations on memory
consumption and time cost and thus needs to be optimized in future research.
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(a) (b) (c)

Figure 15. The OAs of the SDFE method and other baselines at different training sample percentages.
(a) IP dataset. (b) PU dataset. (c) SA dataset.

5. Discussion

To evaluate the performance of the proposed SDFE method, we conducted experiments
on the training and testing time using 2D-CNN, 3D-CNN, HybridSN, ViT, SSFTT and our
method, which are compared as shown in Table 13. It can be seen that the training times of
our method on the IP, PU and SA datasets are 239.75 s, 266.09 s and 308.35 s, respectively. It
can be seen that the time consumption using the proposed SDFE method is relatively large,
but the classification results are the best.

Table 13. Training time and testing time in seconds (s) between the contrast methods and the
proposed methods.

IP PU SA
Methods

Train (s) Test (s) Train (s) Test (s) Train (s) Test (s)

2D-CNN 83.55 1.11 202.62 3.81 146.91 4.95
3D-CNN 21.18 1.23 18.72 4.33 18.17 3.77

HybridSN 82.85 2.92 83.23 13.85 95.37 18.58
ViT 131.28 3.75 609.87 33.30 574.19 33.15

SSFTT 20.72 0.47 40.41 2.17 53.24 2.81
SDFE (Proposed) 239.75 1.51 266.09 8.16 308.35 10.06

The memory consumptions are shown in Table 14, which includes the total params,
the params sizes and Flops. Table 14 suggests that the SDFE method has fewer number
parameters but higher Flops. Therefore, the network lightweight will be considered in
future work. On the one hand, the number of the training samples can be reduced by the
sample augmentation methods, such as some time-frequency analysis and active learning
methods. On the other hand, the structure of Transformer can be optimized for the purpose
of reducing memory and time consumption.

Table 14. The memory consumption of the SDFE method and other baseline methods (the Unit M
represents million bytes).

Indian Pines Pavia University Salinas
Methods

Total Params Params Size (M) Flops (M) Total Params Params Size (M) Flops (M) Total Params Params Size (M) Flops (M)

2D-CNN 2,627,836 10.02 30.2 2,626,569 10.02 30.2 2,627,836 10.02 30.2
3D-CNN 5,122,816 19.54 14.4 769,913 2.93 2.16 2,491,136 9.50 7.0

HybridSN 796,800 3.04 63.5 795,897 3.03 63.5 796,800 3.04 63.5
ViT 50,430,992 192.38 4130 50,423,817 192.35 4130 50,430,992 192.38 4130

SSFTT 148,488 0.57 11.4 148,033 0.56 11.4 148,488 0.57 11.4
SDFE (Proposed) 85,880 0.33 54.2 85,425 0.33 54.2 85,880 0.33 54.2
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6. Conclusions

To completely exploit the joint SSFs of shallow and deep scales, we propose an HSI
classification framework SDFE based on CNN and Transformer. In SDFE, an SSSFE module
(two-layer 3D-CNN) is constructed for shallow SSF extraction first. Then, the spectral
features are weighted according to their correlations with the ground objects using a Res-
SEConv module. Lastly, the VTFE module is used for extracting deep SSFs and completing
the classification. The experiments based on three benchmark datasets indicate that the
SDFE method is superior to other models in terms of classification effectiveness. Although
SDFE has made good progress in classification results, it is time-consuming for the model
training. Therefore, our upcoming work is to improve the network structure and construct
a lightweight network.
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