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Abstract: The increasing concentration of greenhouse gas (GHG) emissions due to increased fossil
fuel consumption for manufacturing activities to support population growth is worrisome. Carbon
dioxide (CO2) and methane (CH4) remain the two GHGs that contribute to the impact of global
warming, and inventorying their concentrations is important for monitoring their changes, which can
be used to infer their emissions over time. Hence, this article highlights sniffer4D, an unmanned aerial
vehicle (UAV)-based air pollutant mapping system that visualise and analyse three-dimensional (3D)
air pollution data in real time, for mapping GHGs concentrations within industrial areas. Conse-
quently, GHGs concentrations for two industrial and adjacent residential areas in Johor, Peninsular
Malaysia were mapped. The GHGs concentrations were validated using a ground-based portable
gas detector. The results revealed that CO2 has the highest concentration mean of 625.235 mg/m3,
followed by CH4 with a mean of 249.239 mg/m3. The mapped UAV GHG concentration also reported
good agreement with the in situ observations with an RMSE of 7 and 6 mg/m3 for CO2 and CH4 con-
centration, respectively. Ozone and nitrogen dioxide mixture (O3 + NO2) with a mean concentration
of 249 µg/m3 and an RMSE of 9 µg/m3 are the remaining significant concentrations reported. This
approach shall assist in fast-tracking the United Nations climate change mitigation agenda.

Keywords: GHG concentration; industrial area; remote sensing sensor; UAV; mapping

1. Introduction

Although greenhouse gases (GHGs) are said to have a modulating effect on the Earth’s
atmosphere, which the atmosphere will be cooler by as much as 33 ◦C, a process known
as the so-called “atmospheric greenhouse effect” [1,2]; an increase in the concentration of
GHGs such as carbon dioxide (CO2) in the atmosphere can result in temperature increases
on both the Earth’s surface and in the troposphere due to an increase in heat trapping, a
concept known as global warming [3]. Global warming is widely acknowledged as a prob-
lem worldwide and remains a topic of discussion among scientists and policymakers [4].
Thus, an intergovernmental body, the Intergovernmental Panel on Climate Change (IPCC),
has been formed since 1988 with the mandate of assessing the problem of global warming,
which remained the focus of much of the ongoing assessments of climate change [3].

The concentration of GHGs in the atmosphere has increased since 1750 (preindustrial)
due to rise in emissions from human activities and global energy system [5]. In fact,
atmospheric measurements have shown that the concentration of CO2 and other GHGs
has increased by over 20% relative to 1958 [6]. Relating atmospheric GHGs concentration
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to emission paths requires models, which account for both natural and anthropogenic
sources as well as their sinks [5]. The fact that when CO2 from either fossil or terrestrial
sources is released into the atmosphere, atmospheric concentration increases [5], changes
in atmospheric concentrations over time can infer emission increases or decreases. Part of
the fallout from the discourse on global warming is the signing of a number of agreements
like the Kyoto Protocol and the Paris Agreement by the international community with the
ultimate goal of limiting GHG emissions and introducing mechanisms for quota trading,
which quite a significant number of countries, including Malaysia, have ratified.

Malaysia signed the Kyoto Protocol on 4 September 2002, prompting the development
of a national strategy on the Clean Development Mechanism (CDM) to consider both the
long- and short-term perspectives of the country’s position on climate change mitigation
measures. Malaysia benefited tremendously from investments geared toward reduction in
GHG emissions through the CDM under the Kyoto Protocol, with a total of 143 registered
CDM projects as of April 2015, which was expected to yield a reduction of 23.95 million
tCO2eq emission by the end of the first Kyoto commitment period (2012). Also, in 2009,
Malaysia announced its voluntary commitment to reduce its GHG emissions by up to 40%
by 2020 relative to the 2005 levels [7]. Nevertheless, the spatial distribution and magnitude
of emissions at fine resolutions are required for monitoring, reporting, and verification of
emissions [8], and of course, appraisals of the level of commitments to reduce emissions
levels over time.

Generally, two main data types (from point sources and non-point sources) and
three approaches (top-down, bottom-up, and hybrid approaches) are used for subnational
resolution emissions inventories. Point sources are single identifiable sources of emissions
such as gas flaring oil fields and factories, while non-point sources are emissions not
originating from discrete sources, such as transportation. Among the databases often
used for point and non-point sources inventories are the Carbon Dioxide Information and
Analysis Center (CDIAC), Emission Database for Global Atmospheric Research (EDGAR),
International Energy Agency (IEA), Fossil Fuel Data Assimilation System (FFDAS), and
Open-source Data Inventory for Anthropogenic CO2 (ODIAC). However, while some of
the databases, such as the CDIAC, do not distinguish between point source and non-point
source emissions, others, such as EDGAR, do. The top-down approaches often utilize
proxies such as population density and or observed nightlight satellite data to distribute
emissions spatially within a country. Thus, the spatial resolution of the emission inventory
will depend on the proxy data resolution. The bottom-up approaches typically involve
collecting fuel consumption or emissions data at buildings or highway segments or even
lower scales and summing them up to estimate emissions at local, state, or national scales.
The hybrid approaches involve the use of a mix of proxies from the top-down approach
and sources from the bottom-up approach [8].

In Malaysia, the industrial processes sector contributed merely 6% of the total 290.23 Mt
CO2eq GHG emissions in the year 2000, lagging behind the energy and waste sectors. How-
ever, between 2000 and 2011, industrial processes sector emissions increased by 46%, with
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions contributing
72%, 23% and 5% of the total GHG emissions, respectively, in 2011 [2]. As part of Malaysia’s
plan to live up to its commitment to reduce GHG emissions, many initiatives are being
taken by the government to reduce emissions from point sources such as industrial factories
and power plants. Among the initiatives is the Efficient Management of Electrical Energy
Regulations 2008, which requires the disclosure of particulars of both new and existing
energy consumers with total electricity consumption equal to or exceeding 3,000,000 kWh
as measured at one metering point for a consecutive period not exceeding six months by
the licensee or supply authority [9].

Under the upcoming Energy Efficiency Conservation Act by the Malaysian govern-
ment, thermal energy will also be regulated and must be reported [10]. However, self-
reported energy and emissions data, particularly thermal data lacking a specific meter
such as a power meter that can be monitored in real time and verified by an electricity
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utility provider, may be difficult to verify. Thus, remotely sensed (RS) data from either
satellite and or lower altitude platforms such as UAV, may aid in providing report on
concentration of GHGs on-site and their changes over time, which can invariably be used to
infer emissions sources and rate. We embarked on a full RS study on deriving the changes
in concentration of GHGs in industrial areas, focusing on both the use of: (i) UAV-sensor
for large-scale near-surface mapping; and (ii) satellite image-based for larger area extent
concentration mapping. This article focuses on UAV-based GHGs concentration mapping
from industrial areas, and part two of the study to be published next will report the large
area satellite-based GHGs concentration mapping.

Previously, studies were conducted on mapping GHG emission using UAV [11,12],
pollution concentrations [13,14], GHG emissions using satellite observations [15,16], pre-
diction of carbon dioxide (CO2) concentration and emission inventories [17–19], and biogas
potential from plants and manure [20,21]. However, most of these previous studies were
mainly on GHG extracted from transportation and vegetation. Indeed, it would be a crucial
and desirable goal if the concentration and changes of CO2, CH4, and other GHGs in
the industrial areas could be systematically mapped. To achieve this, precise mapping
and continuous measurement of CO2 and CH4 concentrations over a large area and at a
periodical/temporal scale with disruptive technology, such as the use of sensors on the
drone, calibrated with minimal ground source measurement, is necessary. In addition, the
corresponding O3, NO2, and SO2 concentrations could also be determined to complement
the CO2 and CH4 concentration mapping.

This study, therefore, used a UAV sniffer-based sensor to map changes in GHGs con-
centration from industrial areas, which is a multi-step approach that can effectively map
changes in GHG over an area; this established mapping procedure could be repeated to
areas of various sizes permissible pending the range of the UAV-navigation radius. The
specific objectives are (a) to characterize the spatial and temporal pattern of the concen-
tration of GHGs (CO2, CH4, O3, NO2, and SO2) with emphasis on industrial areas and
adjacent residential areas; and (b) to examine and analyse the GHG concentration range
based on industry sectors, namely chemical and petrochemical, chemical industry, clay
products and refractory, electronics industry, engineering construction, food and beverages,
furniture and related products, iron and steel, oil and gas refinery, and oil palm refinery.
This spatiotemporal mapping of the concentration of CO2, CH4, and other GHGs could
later serve for inferring GHGs emissions, assisting in low-carbon planning and speeding
up the accomplishment of the 2030 agenda on issues related to sustainable development
goal 13, which encourage taking urgent action to combat climate change and its impacts.

2. Materials and Methods
2.1. Study Area

The study areas are the Pasir Gudang and Tanjung Landsat industrial areas. The
two industrial areas were employed in the setup for continuous CO2 and other GHG
concentration mapping and monitoring. The Pasir Gudang industrial area (PGIA) is one of
the homes of heavy industries in southern Peninsular Malaysia. The PGIA is situated along
the Johor State south-eastern tip, covering an area of 1568.673 ha. The area grew rapidly
due to the petrochemical and palm oil industries. It is now home to about 300 local and
multinational companies, which comprise large-, medium-, and light-scale industries. The
main industries at the PGIA include electronics and electrical, research and development,
chemicals, food products, engineering-based, and plastics industries. The area is known
as the location of the foremost Johor Port as well as the most vital industrial township
within the Peninsular Malaysian southern region. The Tanjung Landsat industrial area
(TLIA) is located beside the PGIA and covers a total area of about 812.210 ha. TLIA is
a fully equipped integrated industrial park and is among the very few industrial parks
within southern Malaysia specially chosen for heavy industrial sites. The industry sectors
involve chemicals, construction, palm oil, tank storage, warehousing, marine supply, and
port services. TLIA is also located close to major seaports, an international airport, and
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Singapore. The two industrial locations offer jobs to more than 70,000 people. Figure 1
demonstrates the extent of the study areas.
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2.2. Materials

The study utilises two important material sets, namely images derived from (a) a
UAV-based sniffer4D sensor and (b) a portable GHG detector. The sniffer4D sensor is
attached to the UAV for measuring GHGs concentration over relatively large industrial
areas in Pasir Gudang (PG) and Tanjung Langsat (TL), while the portable GHG detector is
used to measure GHG at ground level at selected locations near real-time of the UAV flight,
utilised in calibrating the UAV measurement. Figure 2 depicts the UAV-based sniffer4D
sensor and portable gas detector, respectively. The technical details of the sniffer sensor
and UAV platform used in this study are shown in Table 1.
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Table 1. Technical specification for UAV-based CO2 and other GHG emission detection: (a) Sniffer
sensor; and (b) the platform.

(a) UAV and portable ground sensor. (Source; Soarability, (2020))

Sensor/Brand/Model Size Weight Resolution/Response
Time Gas Detector

Sniffer4D 150 × 148 × 50 mm 600 g 1 ppm/1 s CO2, CH4, CO,
O3 + NO2, and SO2

Portable gas
meter/Weilu/WL-3000 157 × 84.5 × 59.5 mm 365 g 0.1 ppm/3 s CO2, SO2, NO2, CH4

(b) UAV platform (Source; DJI, 2020.)

Brand/Model Drone Type Weight Brand/Model Drone Type

DJI Matrice 100 Quadra copter DJI Matrice
100 Quadra copter DJI Matrice 100

The Sniffer4D Sensor (Table 1a) is a detection and mapping system for GHG concen-
tration data collection. The sensor can be mounted on various platforms, including UAVs,
and also works at ground level. The sensor is equipped with a mapping system, able to



Remote Sens. 2023, 15, 255 6 of 17

capture, visualise, and analyse georeferenced and time-stamped gas concentrations. Up to
five GHGs can be sensed simultaneously, and the data can be viewed in real time. The five
GHGs sensed are methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), mixture
of ozone and nitrogen dioxide (O3 + NO2), and sulfur dioxide (SO2).

The UAV is a quadcopter flying platform (Table 1b) that has an expandable centre-
frame that allows it to mount the sniffer sensor. An extra battery compartment was installed
to carry the second intelligent flight battery for an extended flight time of up to 40 min.
With the built-in API control feature, navigation for flight missions have been managed
comprehensively from planning to execution.

2.3. Methods
2.3.1. UAV Data Acquisition

To obtain the CO2, CH4, and other three GHG elements (CO, O3 + NO2, and SO2),
the UAV-based data collection approach was used. These five gases were acquired in the
study area from a field campaign between 15 and 21 October 2020. The data collections
were performed using the Sniffer4D sensor, where the flight plans of the study area were
designed prior to the data acquisition. The UAV was flown at an altitude of 100 m for data
collection. The flight lines and size of the area for the data collection are shown in Figure 1,
while the detailed executed data acquisition mission is tabulated in Table 2. The GHGs
in all areas in Figure 1 were collected in near real-time and 1 h before and after UAV data
acquisition using the Sniffer4D sensor and portable gas detector installed on a car-platform
traversing the planned road network to cover the entire study area.

Table 2. UAV data acquisition missions.

PGIA * TLIA *

Date of data acquisition 15–21 October 2020 15–21 October 2020
Time of data acquisition 0000; 0600; 1200; 1800 0000; 0600; 1200; 1800

Average temperature Min/Max (◦C) 24/33 24/33
Average wind speed (km/h) 3 3

Wind direction (bearing) 350◦ 350◦

Period of data acquisition (mins) 245 148
Area of data acquisition (ha) 1837 1177

Total image/files 2880 1090
Front overlap (%) 30 30
Side overlap (%) 30 30

Flight speed (m/s) 15 15
Flight altitude (m) 100 100

Flight direction (bearing) 56◦ 182◦

* Notes: PGIC—Pasir Gudang Industrial Area; TLIA—Tanjung Langsat Industrial Area.

2.3.2. In Situ Data Acquisition

Corresponding in situ surface GHG concentration observations were performed con-
tinuously during the period of UAV data acquisition and also one hour before and after
UAV flight. A portable GHG detector was used to record the GHGs concentration at se-
lected 52 points to represent the 11 industrial sectors: chemical and petrochemical; chemical
industry; clay products and refractory; electronics industry; engineering construction; food
and beverages; furniture and related products; iron and steel; oil and gas refinery; oil palm
refinery; and non-metallic mineral.

In addition, the corresponding surface temperatures at all these 52 points were also
observed using field thermal infrared camera. These temperatures were used as additional
information on the surface temperature of the industrial targets where GHG concentrations
were observed.
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2.3.3. Data Processing of UAV Data

The data processing involved two main tasks: data preprocessing and feature ex-
traction for the mapping of GHG concentration. Figure 3 illustrates the flowchart of the
entire stages of the data processing. The data processing tasks were performed using Snif-
fer4D Mapper software, Arc GIS v10.1, Quantum GIS (QGIS) and Digital Image Processing
System (ENVI v5.0).
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In the data preprocessing stage, two main tasks are performed: firstly, ensuring all
the UAV acquired data were geometrically corrected to the local mapping system of the
area; and secondly, the radiometric data calibration to reduce the GHG concentration
at the flying altitude to a level corresponding to near-surface GHG concentration. The
calibration was carried out independently by employing linear regression of UAV-Sniffer
observations against the corresponding in situ GHG observations. The calibration functions
yielded are shown in Figure 4. Applying these calibration functions to the UAV-GHG
observation yields adjusted absolute GHG concentration. Table 3 tabulates the summary of
the GHG concentration derived from the calibrated concentration data with respect to the
area of study.

Table 3. Calibrated GHG concentration data.

GHG Mean * (mg m−3/µg m−3) Std.dev

CO2 633.038 28.045
CH4 303.054 10.667
CO 1.872 0.909
O3 + NO2 156.162 18.069
SO2 23.163 2.176

* Notes: the unit for CO2, CH4, and CO is in mg m−3, and unit for O3 + NO2 and SO2 is in µg m−3.
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The data processing involves the mapping of the five GHG concentrations into separate
layers, each representing CO2 and the other four greenhouse gases—CH4, CO, O3 + NO2
mixture, and SO2. UAV data processing for mapping GHG concentration is elaborated in
the following sections.

2.3.4. Mapping of CO2 and Greenhouse Gasses

The mapping of CO2 and other GHG concentrations starts with the densification of the
gas spatial distributions and observations of the daily concentration throughout the mission
period over the area of study. This is accomplished using an interpolation process where
the concentration of gases at unknown points at selected regular planimetric locations were
determined. The Inverse Distance Weighted (IDW) interpolation technique of the QGIS
software was used on the data with the same layer extent. The interpolation parameters set
for the IDW are (i) the distance coefficient (P: 2) and (ii) the output raster pixel size (X and
Y: 10 m). The main input is the mean daily GHG concentration, i.e., a total of seven layers
for a week of field campaign data acquisition period. The output of this interpolation is the
average daily GHG concentration.

The outputs created from interpolation were clipped with shapefiles in ArcGIS soft-
ware for mapping GHG concentration for residential areas and industrial zones (light,
medium, and heavy industries) and GHG concentrations against the identified industrial
sectors: (1) chemical and petrochemical; (2) chemical industry; (3) clay products and re-
fractory; (4) electronics industry; (5) engineering construction; (6) food and beverages;
(7) furniture and related products; (8) iron and steel; (9) oil and gas refinery; (10) oil palm
refinery; and (11) non-metallic mineral.

Statistical analyses of GHG concentration were performed to characterize the pattern
of GHG concentration in the industrial areas (PGIA and TLIA) and adjacent residential
areas. The GHG concentration was characterized based on industrial manufacturing
sectors. In this analysis, the GHG concentrations were obtained at 52 validation points,
which were also earlier used as inputs in the assessment of the derived GHG concentration
with the corresponding in situ observation. In the assessment of GHG concentration, a
comparison of both UAV-derived concentration and the corresponding in situ observations
was performed at 30 random points from the pool of the 52 known validation points,
reporting the root mean square error (RMSE). The analysis of variance (ANOVA), which is
a statistical test used for determining the significant difference between categorical groups
of data by testing differences of means using variance, was used to report the trend of total
GHG concentration with respect to all the industrial sectors. Correlation analysis among
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these GHG concentrations was also examined to consolidate the ANOVA test. In addition,
the surface temperature at the 52 validation points was also observed and analysed in
the ANOVA and the correlation analysis to assist in inferring the outcomes of the GHG
concentrations, as the rank of hotness among the industrial sectors.

3. Results
3.1. GHG Concentrations and Distribution for the Entire Study Area

The average spatial distribution of all the GHG emission concentrations in the study
area is shown in Figure 5, with the magnitude ranges within the industrial zones presented
in Table 4. The trend of the spatial concentration of the CO2 is heavily located in the
western-half of the study area, with PGIA as the focal source where the concentrations
are dominated, ranging from mid-to-high concentration, while the eastern-half focusing
on TLIA has low-to-mid concentration. The other four GHG concentrations follow the
same spatial pattern but with different magnitudes of occurrence. CO2 concentration is
the highest among GHG concentration within industrial area zones, with little variation
in intensity and respective means of 633, 628, and 614 g/m3 for light, medium, and heavy
industrial zones. CO2 concentration at the residential area recorded a higher mean of
649 mg/m3 compared to 625.235 mg/m3 for the entire industrial area, with a similar trend
in the other four GHG concentration. CH4 is the second most prominent GHG in PGIA and
TLIA, with a mean of 303, 289, and 290 mg/m3 for light, medium, and heavy industrial
zones, respectively. CH4 mean concentration in the residential area is at 293 mg/m3.

Table 5 presents the RMSE of in situ GHG concentrations by gas detector at 30 inde-
pendent sample points chosen randomly from 52 in situ validation points collected from
all industrial sectors in PGIA and TLIA industrial areas relative to the UAV concentration
maps. O3 + NO2 has the highest RMSE of 8.964, followed by CO2 and CH4 with an RMSE
of 7.418 and 6.134, respectively. CO has the lowest RMSE of 0.234.

Table 4. Average GHG concentration trend in industrial areas (PG and TL) and residential areas.

Entire Industrial Area Light Industries Medium Industries Heavy Industries Residential Area

GHG Mean *
(mg m−3/µg m−3) Std.dev Mean *

(mg m−3/µg m−3) Std.dev Mean *
(mg m−3/µg m−3) Std.dev Mean *

(mg m−3/µg m−3) Std.dev Mean *
(mg m−3/µg m−3) Std.dev

CO2 625.24 30.67 633.04 28.05 628.04 31.16 614.63 32.82 649.82 14.58
CH4 294.24 8.96 303.05 10.67 289.27 8.05 290.40 8.17 293.72 9.06
CO 1.43 0.59 1.87 0.91 1.29 0.40 1.14 0.46 1.87 0.52

O3 + NO2 149.30 15.63 156.16 18.07 148.44 12.55 143.29 16.26 157.92 9.05
SO2 22.24 1.62 23.16 2.18 22.07 1.22 21.49 1.46 23.42 1.09

* Notes: the unit for CO2, CH4 and CO is in mg m−3, and unit for O3 + NO2 and SO2 is in µg m−3.
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Figure 5. Average GHG concentration of entire Pasir Gudang and Tanjung Langsat area: (a) CH4;
(b) CO; (c) CO2; (d) O3 + NO2; and (e) SO2.

Table 5. Assessment of GHG concentration maps generated.

GHG Emissions RMSE *

CO2 7.418
CH4 6.134
CO 0.234

O3 + NO2 8.964
SO2 0.819

* Note: the unit for CO2, CH4, and CO is in mg m−3, and unit for O3 + NO2 and SO2 is in µg m−3.

3.2. Characterization of GHG Pattern in the Industrial Sector

Figure 6 depicts the percentage concentration of total GHG in relation to all gases
for the industry sectors. Across all the sectors, CO2 and CH4 are the main gases as well.
However, the concentration of the two main gases varies with the industrial sector with
the highest concentration of CO2 found in the electronics industry and the lowest in
engineering construction. While the highest concentration of CH4 is found in engineering
construction and the lowest is found in food and beverages. The temperature of the
respective industries’ activities was also added in the analysis and shown as a good
indicator for GHG concentrations.
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The ANOVA test was further conducted to confirm GHG concentration variations
with respect to industrial activities. Table 6 summarises the ANOVA test results. The
mean square, F-value, and Pr(>F) for the GHG gases concentration are presented. The
mean square suggests the average amount of gas concentration from each industry, while
the F-value suggests the amount of average difference by industry. Pr(>F) suggests the
significant error. Consequently, the result reveals only three GHG concentration, namely
SO2, CO2, and CO, differ significantly by industrial activity.

Table 6. ANOVA test for gases by industrial activities (n = 52).

Mean Square F-Value Pr(>F)

SO2 34.77 6.455 0.0142 *
CO2 35.56 6.621 0.0131 *
CO 31.66 5.812 0.0196 *

O3 + NO2 13.16 2.262 0.1390
CH4 5.48 0.917 0.3430

Temperature ◦C 49.93 9.824 0.0029 **
* Significant result at p < 0.01; ** Significant result at p < 0.001.

In addition, the temperature of these industrial activities also significantly differs
among the industrial activities. The other two GHG concentrations, namely O3 + NO2
and CH4, however, are not significantly different among industrial activities. Further
investigation into the relationship between GHG concentration and temperature within
industrial activities was also carried out, and the results of this correlation analysis revealed
that CO2 is mostly related to all gas types and temperatures (see Table 7).

Table 7. Correlation analysis of GHG concentration and temperature with the industrial sector
(n = 52).

Temp SO2 O3NO2 CO2 CO CH4

Temp 1.00 0.25 ** −0.15 0.46 ** 0.01 −0.89
SO2 0.25 ** 1.00 0.41 ** 0.69 ** 0.78 ** −0.25

O3 + NO2 −0.15 0.41 ** 1.00 0.48 ** 0.73 ** 0.16
CO2 0.46 ** 0.69 ** 0.48 ** 1.00 0.60 ** −0.46 **
CO 0.01 0.78 ** 0.73 ** 0.60 ** 1.00 0.00
CH4 −0.89 ** −0.25 0.16 −0.46 ** 0.00 1.00

** Correlation significant at p < 0.001.

3.3. Changes in GHG Concentration for PGIA and TLIA

Figure 7 depicts the average hourly GHG concentration for the seven-day period
of data collection. While Table 8 presents the daily average concentration for the five
respective GHG changes in GHG concentration for the entire industrial and residential area
through the seven-day measurement period.

As earlier noted, CH4 and CO2 are the main GHGs with significant concentrations,
followed by the O3 + NO2 mixture, while CO and SO2 have relatively insignificant concen-
trations in both the industrial and residential areas. The lowest concentration of CO2 and
CH4 were recorded on the same day, i.e., the second over both the industrial and residential
areas, while the highest concentration for CO2 and CH4 were respectively recorded on the
sixth and seventh day. However, for the O3 + NO2 mixture, the lowest concentrations over
both the industrial and residential areas were recorded on the fourth day (the same day
that the lowest CO2 was recorded), while the highest were recorded on the third day.
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Figure 7. Hourly GHG concentration graph (based on average of 7 days of data). Note: MYT—Malaysia
Standard Time.

Table 8. Mean concentration of GHGs for entire industrial and residential area through the study
period after calibration.

GHG CH4 (mg m−3) CO (mg m−3) CO2 (mg m−3) O3 + NO2 (µg m−3) SO2 (µg m−3)
Date IA * RA * IA * RA * IA * RA * IA * RA * IA * RA *

15 October 2020 198.79 204.80 1.50 1.87 604.59 632.32 166.83 178.42 22.54 24.09
16 October 2020 176.36 174.77 1.53 2.02 612.61 639.25 140.13 146.42 23.10 24.02
17 October 2020 212.24 208.00 1.23 1.51 633.77 665.11 167.23 181.48 23.08 23.90
18 October 2020 399.66 413.96 0.93 1.13 544.15 547.40 134.14 139.30 20.58 21.33
19 October 2020 294.24 293.72 1.43 1.87 625.24 649.82 149.30 157.92 22.24 23.42
20 October 2020 333.22 332.07 1.34 2.02 689.50 710.31 142.72 144.14 21.63 23.69
21 October 2020 445.16 428.74 2.06 2.68 666.80 704.52 144.74 157.73 22.51 23.51

* Note: IA—Industrial Area; RA—Residential Area.

4. Discussion

The industrial GHG concentration mapping in this article relies on UAV sniffer4D
sensor-based data acquired during a field campaign between 15 October and 21 October
2020, at PG and TL industrial areas. Adjacent residential area GHG concentrations were
also mapped accordingly to see the pattern and compare with those of industrial area. It is,
however, important to note that the campaign period was at the end of the inter-monsoon
two, when wind speed is almost nil. Notwithstanding, the average windspeed in the area
then was 3 km/h as presented in Table 2, and the wind is moving in the northerly direction
as it is the transition period from the southwest to northeast monsoons.

However, this article reveals similar patterns of CO2, CH4, CO, O3 + NO2, and SO2
concentration exist between industrial and neighbouring residential areas and among the
various industrial zones (light, medium, and heavy) within the industrial areas. Overall,
CO2, followed by CH4, constitutes the largest GHG concentration among the two industrial
areas and within the various zones and sectors. Nevertheless, the GHG concentration
does not vary much with industrial activities. The large variability is very prominent in
the engineering construction industry, and the least variability is found within oil palm
refineries. An intriguing fact is the inversion of the GHG concentration among the three
industrial zones, with a slightly higher mean in the lighter industrial zone compared to
the medium and heavy industrial zones. However, upon cursory investigations at selected
locations, it is noted that most of the factories in the heavy zone, such as refineries, including
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the oil palm refineries, are equipped with indoor air filtration before releasing it. This, of
course, highlights the importance of not overlooking emissions from specific industrial
zones or sectors solely based on their kind of activities in low-carbon planning.

Furthermore, this study reveals a higher concentration of GHG over neighbouring
residential areas. However, this will not be unrelated to pollution from the industrial areas
due to wind transport, as prevailing wind direction during the field campaign shows a
northerly flow from the south. Nonetheless, a similar report of higher concentration of
GHGs over neighbouring residential areas of industrial areas has long been made about
the city of Toronto [22] and 21 countries in Europe between 2007 and 2017 [23]. This calls
for a comprehensive look at all environmental components in sectoral land allocations
during land-use planning and highlights the need for a cursory look at the concentration of
GHGs over residential areas neighbouring industrial areas. Similarly, this study reveals
a diurnal temporal variability of GHGs concentrations as seen in Figure 7. This may
not be unrelated to the change in the pattern of activities in the respective factories that
run 24 h, but characterised by a slowdown of activities during certain times of the day,
particularly during labour shift hours. Additionally, our one-week campaign also showed
a gradual increase in the GHGs concentrations, though with slight variability in some days,
particularly on the fourth day of the campaign as presented on Table 8. However, we believe
a longer campaign period can reveal a better temporal pattern of GHGs concentration over
any industrial area. Finally, the established relationship between GHG concentration and
temperature within industrial activities in this study indicates that CO2 concentration is
the best indicator of GHG emissions from fuel burning in industrial areas.

The deployment of UAV for mapping GHG concentration in industrial areas is indeed
a step-up initiative towards effective monitoring of GHG emissions and their global warm-
ing potential, as well as the realisation of a low-carbon economy (LCE). Aside from the
obvious near-ground synoptic measurement, this approach can better detect concentration
changes that can be used to infer emission hotspots compared to the use of proxy data.
Relative to other approaches for measuring GHG emissions, such as the ground-based level
measurements at selected points, the UAV sniffer4D sensor-based approach provides rapid,
comprehensive, and yet very cost-effective wider area coverage of GHGs concentration
mapping. Thus, this work is very crucial and timely, particularly to Malaysia’s plan to
reduce carbon emissions by 45 percent by 2030. With this study’s approach, the baseline
and regular status of CO2 concentration for any specific industrial area with respect to time
and date are indeed timely. Similarly, the mapping of GHG concentration in industrial and
residential areas may be useful to several private and public sectors concerned about GHG
inventory and reduction initiatives, as it could also help individuals or industries gather
information that can be used as a reference to prepare a more detailed GHG inventory,
which can be used to make inferences about emissions. Nonetheless, industrial areas will
continue generating CO2, CH4, and NO2. Once the concentration of these GHGs can be
effectively mapped, strategies for their capture can more easily be developed. If this is
done, they can be used to make biogas, which will always be a useful source of energy.

5. Conclusions

Industrial manufacturing processes produce a large proportion of GHG emissions due
to fossil fuel burning. The Pasir Gudang industrial area, as the focal industrial area, has
been a source of pollution that affects the neighbouring areas, including residential areas,
resulting in several reported cases of mortality and health-related problems. This study
explores the capability of the UAV-based Sniffer4D sensor as a rapid mapping system to
characterise the spatial and temporal pattern of the concentration of GHGs (CO2, CH4,
O3, NO2, and SO2) with emphasis on industrial areas and adjacent residential areas, and
examine and analyse the GHG concentration range based on industry sectors, namely
chemical and petrochemical, chemical industry, clay products and refractory, electronics
industry, engineering construction, food and beverages, furniture and related products,
iron and steel, oil and gas refinery, and oil palm refinery. However, this initiative can speed
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up the accomplishment of the 2030 agenda on issues related to sustainable development
goal 13, which encourages taking urgent action to combat climate change and its impacts.
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