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Abstract: Change detection methods using hyperspectral remote sensing can precisely identify
differences of the same area at different observing times. However, due to massive spectral bands,
current change detection methods are vulnerable to unrelatedspectral and spatial information in
hyperspectral images with the stagewise calculation of attention maps. Besides, current change
methods arrange hidden change features in a random distribution form, which cannot express a
class-oriented discrimination in advance. Moreover, existent deep change methods have not fully
considered the hierarchical features’ reuse and the fusion of the encoder–decoder framework. To better
handle the mentioned existent problems, the parallel spectral–spatial attention network with feature
redistribution loss (TFR-PS2ANet) is proposed. The contributions of this article are summarized as
follows: (1) a parallel spectral–spatial attention module (PS2A) is introduced to enhance relevant
information and suppress irrelevant information in parallel using spectral and spatial attention maps
extracted from the original hyperspectral image patches; (2) the feature redistribution loss function
(FRL) is introduced to construct the class-oriented feature distribution, which organizes the change
features in advance and improves the discriminative abilities; (3) a two-branch encoder–decoder
framework is developed to optimize the hierarchical transfer and change features’ fusion; Extensive
experiments were carried out on several real datasets. The results show that the proposed PS2A
can enhance significant information effectively and the FRL can optimize the class-oriented feature
distribution. The proposed method outperforms most existent change detection methods.

Keywords: change detection; hyperspectral image; deep learning; attention mechanism

1. Introduction

Hyperspectral remote sensing can capture subtle changes on the Earth’s surface
because of its characteristic of high spectral resolution [1]. At present, technologies of
hyperspectral change detection have been extensively applied in various domains, such
as vegetation inspection, urban planning, and disaster monitoring [2–5]. Usually, change
detection methods need plenty of training samples for effective and stable model results in
different application scenes. The more training samples there are, the more stability the
model can obtain. However, current change detection approaches are mostly designed
for optical or multi-spectral images, which is a domain in which a model can be fed with
sufficient training samples. This situation is in sharp contrast with the predicament of
inadequate training samples in hyperspectral imaging. Furthermore, the data redundancy
in both spectral and spatial information, mixed pixels caused by low spatial resolution, and
the expensive change labeling for hyperspectral datasets make it difficult for multi-spectral
change detection technologies to be transferred to hyperspectral images’ analysis [6].

Usually, the procedure of existent hyperspectral change detection methods can be
divided into three different steps: the preprocessing of hyperspectral data, the usage of an
appropriate change detection method, and the evaluation of the predicted change results:

Remote Sens. 2023, 15, 246. https://doi.org/10.3390/rs15010246 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15010246
https://doi.org/10.3390/rs15010246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3533-9966
https://orcid.org/0000-0001-7872-5587
https://doi.org/10.3390/rs15010246
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010246?type=check_update&version=2


Remote Sens. 2023, 15, 246 2 of 22

(1) Data preprocessing: The preprocessing of hyperspectral images is the basic step
for later change detection methods and greatly influences the effectiveness of the change
detection results. A typical preprocessing includes registering of dual-temporal images
and radiation correction to remove the effects of sunlight and the atmosphere.

(2) Change detection methods: An appropriate change detection method plays a criti-
cal role in the whole hyperspectral change detection procedure, which can directly influence
the final performance indices. The selection or design of change detection methods needs
to take the data structure of the preprocessed hyperspectral images into consideration, such
as the remaining band number after noisy bands have been removed.

(3) Evaluation of the predicted change results: The prediction evaluation is the last step.
Different evaluation indices can describe the performances of change detection methods
from different viewpoints, such as the inference ability in the situation of imbalanced
change types.

According to the order of appearance of change detection technologies, they can be
categorized as traditional change detection methods and deep learning methods. In tradi-
tional change detection methods, based on the different procedures of the data processing,
they can be further categorized as transformation-based approaches, algebra-based ap-
proaches, and independent image classification approaches. Basically, the main idea of
transformation-based approaches is transforming temporal variants into another character-
istic space to deal with information redundancy, but this makes it difficult for the model
to decide on a proper threshold to precisely detect the changes, such as for change vector
analysis (CVA) [7,8] and the similarity measure [9]. As for the algebra-based methods,
they must handle the great computational cost due to the high-dimensional data structure.
Regarding independent image classification, because the detection result is generated by
processing two independent classification maps to produce a single change map, the result
may be affected by the error propagation of both images’ classification results, which leads
to bad performance.

The rapid development of deep learning methods has stimulated the evolution of
hyperspectral change detection technologies. Compared to the traditional methods, the
successful performance of deep learning models from other domains makes it possible to
solve high-dimensional problems and extract extensive information more effectively. From
the recent literature, deep learning methods can be roughly categorized into pixel-based
methods and spatial–spectral-information-based methods. For pixel-wide scale analysis,
researchers have contributed semi-supervised change detection frameworks, which are
often composed of an encoder and a decoder to reconstruct the hyperspectral images by
pixel spectral mapping. Then, the reconstructed images are distributed to downstream
transformation methods and specific threshold segmentation methods, such as PCA and
Otsu, to obtain the change map [10]. In this situation, the current methods consider deep
learning as a preprocessing and compression step, but studies have not integrated the
end-to-end change detection performance into a complete model, which results in the
wasting of time and memory resources. Regarding the literature on feature extractors for
both spectral and spatial information, existing methods propose the convolutional neural
network to aggregate multi-direction information, by simply applying the conventional
2D spatial convolution on the compressed images or a direct 3D network to aggregate the
two kinds of information at the same time [11–13]. Although these methods acknowledge
that hyperspectral images themselves are equipped with various information, they still
encounter bottlenecks that result from ignoring the spectral similarity in spatial areas
and due to the insufficiency of hierarchical feature propagation. Furthermore, the local
information usually can be distinguished by the relation to the global information, but
current deep methods lack the ability to focus on the resemblance of spectral and spatial
information simultaneously. The encoder–decoder framework in the literature was typically
trained in a semi-supervised manner, which cannot hierarchically pass and fuse the features
into deeper weight presentation to benefit change classification. Moreover, random features
are distributed in fully connected layers, which are optimized by the later classification loss
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function and cannot be assigned for class judgment in advance. Therefore, these models’
drawbacks deeply hinder the improvement of current hyperspectral change detection
methods’ performance.

To address these drawbacks of existing methods, in this paper, a parallel spectral–
spatial attention network with feature redistribution loss in a supervised two-branch
encoder–decoder framework is proposed for hyperspectral change detection. The proposed
model rectifies the inner structure of the encoder–decoder framework so that it can be
adopted in the proposed end-to-end model for transfer its original deep feature perfor-
mance. Moreover, a weighted-in-parallel spectral–spatial attention module is constructed to
focus on the long-range spectral and spatial dependencies within a patch’s input. To ensure
that the fluent information flow can be fed into the classification function, an intensive
module with multiple skip connections is applied. Furthermore, due to the unclear feature
distribution’s influence in classification tasks [14], the feature redistribution loss function is
developed here to provide better fused features for class-oriented loss computation.

The contributions of this paper are as follows:
(i) A parallel spectral–spatial attention module (PS2A) is proposed, which can provide

the long-range dependenciesin the spectral domain and the local spatial region. Moreover, it
fuses the separate stages of weighting the input data into a one-stage procedure, which can
preserve the original data dependenciesand provide an enhancement in both the spectral
and spatial domains at the same time.

(ii) The feature redistribution loss function (FRL) is developed for better feature
arrangement. By maximizing the intra-group correlation and minimizing the extra-group
correlation, a rectified loss function is developed, which helps the fused features form an
enhanced distribution for class-oriented pattern recognition in advance. To ensure that
fluent feature information for redistribution can be received, an intensive connected block
(ICB) is applied with multiple skip connections between the convolutional submodules.

(iii) The encoder–decoder framework in a two-branch configuration is constructed in
the end-to-end supervised change detection task. Although the decoder was not designed
for pixel-level alignment, we found it quite effective to reuse its hierarchically transferred
featuresfor change class prediction. This can largely contribute to the feature transfer by the
skip connection and the fusion with the expanded feature reconstruction at a different scale.

Extensive experiments prove the effective and efficient performance of the presented
method. The rest of this article is arranged as follows: Section 2 presents the related
works on hyperspectral change detection methods. Section 3 introduces the proposed
method. Section 4 gives the comparison result and ablation analysis of the proposed
method. Section 5 is the conclusion of this study.

2. Related Works
2.1. Attention Mechanism

The attention mechanism was initially presented in the natural language process-
ing domain, which is used to address the sequence-to-sequence transformation problem
and is able to aggregate all the related information from the entire sequential input [15].
Along with the potential novelty and value of transferring the attention mechanism to
computer vision applications, many works have created variants of the attention-based
model for better effects in specific natural image analysis tasks. Among them, ViT is a
prominent one, which reshapes the image patches into sequences and uses the attention
mechanism in image classification [16]. Regarding object detection, DETR is another model
that successfully explains the relation between the detected object and the global context
to predict the final set of outputs in parallel [17]. Swin Transformer V2 is a model de-
signed for semantic segmentation and uses the residual post-norm method to improve
the training stability [18]. In the remote sensing change detection domain, Gong et al.
proposed a spectral–spatial attention block to extract relevant information [11]. However,
the generation of the attention map does not follow the standard weighting procedure,
which may lead to inaccurate similarity computation. Qu et al. composed a dual-domain
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network to detect the change area from SAR images, which is based on the CNN architec-
ture, and it can extract features at two different scales [19]. Wang et al. created a pyramid
self-attention network to concentrate on features from different layers, but the training
procedure followed a two-phrase auto-encoder framework and only applied dependency
checks in the spatial domain [20]. Moreover, SSA-SiamNet, proposed by Wang et al., is an
end-to-end model with a spectral–spatial attention mechanism. It uses a two-branch CNN
feature extractor to generate gradually decreasing features for classification with a fully
connected layer [21]. Applying the attention mechanism makes the extant models effective
by emphasizing the spectral band and location relations while suppressing the unrelated
information. Therefore, it is meaningful to take full advantage of the effectiveness of the
attention mechanism in both the spectral and spatial domain.

2.2. Encoder–Decoder Framework

The encoder–decoder framework is a general method that generates an output se-
quence corresponding to an input sequence, and currently, it is being adopted in a variety
of tasks such as semantic segmentation [22,23] and natural language processing [24,25]. In
hyperspectral image analysis, most extant methods are designed according to the CNN or
a dense prediction structure, such as GETNET and DSFANet [26,27], but there are still few
studies on the supervised encoder–decoder framework. For hyperspectral classification,
Zhu et al. created a spectral–spatial-dependent global learning framework, which utilizes
the encoder–decoder structure to construct a pixel-level segmentation map [28]. For hy-
perspectral image reconstruction, Miao et al. developed a dual-stage generative model to
reconstruct the desired 3D signal in snapshot compressive-spectral imaging. By applying
U-Net to design a generative model, the 3D spectral cube can be directly reconstructed
from the measurements and masks [29]. Huang et al. introduced a 3D filter generator,
which can generate the spatially variant filters, into a lightweight U-Net for hyperspectral
image reconstruction [30]. With the aim to address the conflicts of the dense sample tokens
of the conventional Transformer model and the spatially sparse nature of hyperspectral
image signals, Cai et al. developed a sparse Transformer (CST) model embedding HSI
sparsity into deep learning for hyperspectral image reconstruction [31]. With respect to
the application of the encoder–decoder structure in hyperspectral change detection, Lei
et al. used the auto-encoder structure to learn the unsupervised patterns in the spectral
pixel information by the definition of the reconstruction loss, then the reconstructed image
was input into the later threshold segmentation procedure [10]. Due to the structure of
hyperspectral images, the dimensionality reduction and data argumentation are usually
used for the initial processing, and Li et al. adopted a two-branch U-Net network with
feature fusion to achieve end-to-end change information detection automatically [32]. By
adopting the encoder–decoder model in hyperspectral image analysis, current models can
extend their potential to every specific research interest area. Therefore, it is necessary to
improve the hierarchical feature transfer and fusion in the encoder–decoder networks for
better application performances.

3. Proposed Method

To address these problems and challenges mentioned above and strengthen the ro-
bustness and accuracy of model performance, a two-branch feature redistribution network
based on the parallel spectral–spatial attention mechanism (TFR-PS2ANet) is proposed.
The overall architecture and module designation are shown in Figure 1.

The hyperspectral image dataset for change detection contains dual-temporal images,
which can be described as T1 and T2. First, two parallel spectral–spatial attention modules
(PS2A) are inserted at the start of the whole model to obtain long-range dependencies from
both the spectral and spatial domain. Second, weighted feature maps are input into the
encoder–decoder framework for a further fused and transformed feature representation.
Finally, an intensive connection block is applied to distribute the features into the redistribution
loss function and the classification loss function to have a better training procedure.
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Figure 1. The overall architecture of the proposed TFR-PS2ANet. TFR-PS2ANet consists of four
components: PS2A module, two-branch encoder–decoder architecture, ICB module, and feature
redistribution loss function.

In this section, the proposed method is presented in four parts to give the detailed
information of the design of each, which are the parallel spectral–spatial attention module,
the two-branch encoder–decoder framework, the intensive connection block, and the
feature redistribution loss function.

3.1. Parallel Spectral–Spatial Attention Module

The parallel spectral–spatial attention module (PS2A) is inserted in the first stage to
aggregate the long-range dependencies from the original hyperspectral images as much
as possible. As the module name implies, PS2A is composed of spectral attention and
spatial attention, but each attention map is computed in parallel. The design details of the
proposed PS2A module are shown in Figure 2.
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Figure 2. The detailed design of the proposed PS2A module. The top part denotes the generation
procedure of the spectral attention map, and the bottom part denotes the generation procedure of the
spatial attention map.
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For a hyperspectral image input patch xori in the shape of RH×W×D, the parallel
spectral and spatial attention module is introduced. Regarding the processing of the
spectral attention mechanism, the query vector is defined as vspec

q , which is used as a
reassignment factor for the attention map along with the key vector vspec

k . A convolutional
layer with a 1× 1 kernel size is introduced to decrease the spectral channel of the input
patch xori, followed by two adjacent fully connected layers with the SoftMax activation
function to make the query vector vspec

q eventually. In reference to the key vector vspec
k , it is

computed by a convolutional layer with 2 dilation rates, which can expand receptive field,
followed by a reshape operation to change the features into a size of RHW×D/2. After vspec

q

and vspec
k are generated, the matrix multiplication operation ⊗ is inserted between them to

obtain the attention map vspec
qk along with a fully connected layer and a SoftMax activation.

All the process steps of the spectral attention module can be formulated as follows:

vspec
q = Fso f tmax(F2

f c(FR(F1×1
conv(xori)))) ∈ R1×HW , (1)

vspec
k = FR(F3×3

dilation(xori)) ∈ RHW×D/2, (2)

vspec
qk = Fso f tmax(Ff c(v

spec
q ⊗ vspec

k )) ∈ R1×D, (3)

where F1×1
conv(·) denotes the convolution operation with a kernel size of 1 ×1 and Ff c(·)

denotes the fully connected layer used to squeeze and expand the middle hidden features.
The SoftMax activation function is represented as Fso f tmax(·). The dilation convolution
operation with a kernel size of 3× 3 is formulated as F3×3

dilation(·), and the reshape operation
FR(·) is applied in the computation of vspec

q and vspec
k . Then, the spectral attention map can

be obtained by the matrix multiplication operation ⊗ to have vv weighted, which is also
xori here.

With reference to spatial feature extraction, it has a similar process as for spectral fea-
ture extraction. The query vector of the spatial domain vspa

q is calculated by a convolutional
layer with a kernel size of 3× 3, followed by an adaptive average pooling operation to
compress the spatial size to 1× 1 pixels. Then, the fully connected layer and the SoftMax
activation function are applied to halve the number of features. As for the vector of spatial
key vector vspa

k , it is calculated by dilation convolution with a kernel size of 3 × 3 and
a dilation rate of 2, followed by the reshape operation to change the feature map size to
RD/2×HW . Then, the same matrix multiplication operation ⊗ is applied between vspa

q and
vspa

k , followed by the fully connected layer and SoftMax activation function. For the spatial
weighting process, the attention map vspa

qk is reshaped to the same resolution size of RH×W .
The detailed calculations are formulated as follows:

vspa
q = Fso f tmax(Ff c(FAAP(F3×3

conv(xori)))) ∈ R1×D/2, (4)

vspa
k = FR(F3×3

dilation(xori)) ∈ RD/2×HW , (5)

vspa
qk = FR(Fso f tmax(Ff c(v

spa
q ⊗ vspa

k ))) ∈ RH×W , (6)

With the obtained attention maps of vspec
qk and vspa

qk by Equations (3)and (6), the value
vector vv can be parallelly weighted to achieve the spectral and spatial dependency model-
ing. The local patch-level perception for hyperspectral images can be defined as:

xatt
out = vspa

qk � vv � vspec
qk ∈ RH×W×D, (7)
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where � indicates pointwise production for every band and pixel and vv represents the
value vector, which here indicates the original patch input xori. xatt

out is the output feature
map after weighting.

3.2. Two-Branch Encoder–Decoder Framework

Different from the traditional classification backbone following the pyramid structure,
here, the proposed feature extractor is guided by the encoder–decoder structure, which is
common in the semantic segmentation of natural or biomedical images. Due to the fact
that the dual-temporal images may have different local spectral and spatial information at
the same pixel location, the feature extractor based on the encoder–decoder framework is
constructed and assembled in the proposed method in a parallel manner. The two-branch
design of the rectified encoder–decoder feature extractor is shown in Figure 3.

Encoder

DecoderMax 
pooling

copy & concat

Encoder

DecoderMax 
pooling

copy & concat
up sampling 
& conv

+

Figure 3. The two-branch backbone based on the rectified encoder–decoder structure. The encoder is
on the left side, and the decoder is on the right side.

As the left side of Figure 3 shows, the proposed encoder generates internal feature
maps using independent convolutional layers with a kernel size of 3× 3. The patch size
decreases gradually from 9× 9 to 1× 1. Take the first layer of the encoder network as
an example: feature weighted by the attention map in the shape of R9×9×D is input into
a convolutional block with three successive convolutional layers, and then, the output
feature map e0 ∈ R9×9×256 is calculated and temporarily saved. By a max pooling layer
with a kernel size of 2× 2, the output features from the last layer are downsampled into
the shape of R7×7×256. Therefore, the components of the encoder are made up of the same
and stacked convolutions and max pooling operations. As the right side of Figure 3 shows,
the decoder is responsible for processing and expanding the output features generated
from the encoder components. Take the last output layer in the encoder as an example:
the spatial resolution of e4 ∈ R1×1×16 is expanded by the upsampling operation, while the
channel number is enlarged by a convolutional layer. The built feature map is defined as
d3 ∈ R3×3×32, which has the same shape as the corresponding encoder e3. Both e3 and d3
are concatenated, and hence, the channel dimension is doubled as well. Then, the features
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are processed by a convolutional block with three successive convolutional layers, which
have the same definition as that in the encoder.

Given an input patch xi
en, a single convolutional layer FCL(·) can be defined as follows,

which is constructed with a convolution, a batch normalization, and a SELU activation function:

FCL(xi
en) = FSELU(FBN(F3×3

conv(xi
en))), i = 0, 1, · · · , 4, (8)

In (8), FBN(·) indicates batch normalization and FSELU(·) denotes the SELU activation
function. The three successive convolutions are represented as F3

CL(·), and i corresponds to
the i-th block of the encoder. Therefore, the relation between the features from the front
and back block can be written as follows:

xi+1
en = Fmaxpool(F3

CL(xi
en)), (9)

where Fmaxpool(·) indicates the max pooling operation used to squeeze the spatial resolution
in the encoder part. For the decoder part, the input for every decoder block xi

de is processed
by the following formula:

Fup
conv(xi

de) = FReLU(FBN(F3×3
conv(Fup

sample(xi
de)))), (10)

xi
de = F3

CL(Fconcat(Fup
conv(xi+1

de ) + xi
en)), i = 0, 1, 2, 3, (11)

The definition of the upsampling with the convolutionis represented in (10), where
Fup

sample(·) indicates the upsampling operation using the nearest interpolation and FReLU(·)
indicates the ReLU activation function. Then, the output features of the upsampling with
the convolutionis concatenated along with the corresponding copy xi

en from the encoder
and computed by sequential convolutional layers F3

CL(·).

3.3. Intensive Connected Block

To keep the information flow fluent and to pass the hierarchical features, the intensive
connected block is constructed. Compared to the residual skip connection, three bottle-
neck layers with intensive skip connections here were applied to make the model have
a low computation cost while keeping a similar time complexity, which was inspired by
DenseNet [33].

The input features xin
ICB ∈ RH×W×64 are concatenated by two output feature sets

generated from two-branch encoder–decoder framework. Then, it is processed by the stem
layer to reduce the channel number to avoid overfittingin the intensive skip connections.
When feature maps arrive at the last skip connection, the channel number is expanded
by three bottleneck layers. Therefore, a transition layer is introduced to avoid the burden
of too many features. The process in the intensive connected block can be formulated
as follows:

x0 = Fstem(xin
ICB) = F3×3

conv(xin
ICB) ∈ RH×W×32, (12)

xl = β(Fconcat(x0 + x1 + · · · xl−1)), l = 1, 2, 3, (13)

xout
ICB = Ftransition(x3) = F1×1

conv(FReLU(FBN(x3))) ∈ RH×W×16, (14)

where Fstem(·) indicates a stem convolutional layer with a 3× 3 kernel size to decrease fea-
ture channel number and β(·) indicates the bottleneck layer shown in Figure 4. Ftransition(·)
denotes the transition layer for the computation of the feature output xout

ICB.
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Figure 4. The structure of the proposed intensive connected block.

3.4. Feature Redistribution Loss Function

To obtain a better class-oriented feature expression, the feature redistribution loss
function (FRL) was developed to distribute the features more properly. The feature redis-
tribution can provide enhanced and fused features for pattern recognition [14]. Inspired
by this work and due to the procedure of the conventional loss computation lacking class
distribution information for change detection, the FRL is proposed and can enhance the
independence of the feature representation. The structure of the FRL is shown in Figure 5.

...

Gc

G1

9 × 9

c

conv

... FC 64

SoftM
ax

C
ELoss

G2

Figure 5. Structure of the proposed feature redistribution loss function using the maximized inter-
group relation and minimized extra-group relation. Hidden features are divided into c groups.

After the process of the ICB, the output features xout
ICB are convoluted to xin

FRL ∈ R9×9×16,
followed by a fully connected layer to change the features to xG ∈ R1×1×64. Then, the
features xG are divided into a set of vectors of length m. Therefore, the defined feature
number of vectors is calculated as:

n = 64/m. (15)

The number of divided groups is the same as the number of land cover change cate-
gories c, and the covariance matrix C corresponding to the variants n can be calculated as:



Remote Sens. 2023, 15, 246 10 of 22

C =
1
m

m

∑
i=1

(xi − µ)(xi − µ)T ∈ Rn×n, (16)

µ =
1
m

m

∑
i=1

xi, (17)

where µ ∈ Rn×1 indicates the mean vector of vector length m. All defined n features can
be represented as V and grouped into c categories {G1, G2, · · · , Gc}. Every group contains
s = n/c defined features. With the constructed covariance matrix C, the correlation matrix
can be represented as Re, where the correlation coefficient between the indices of i and j is
calculated as:

Reij =
|Cij|√
CiiC jj

, (18)

To maximize the correlation between extra-groups γextra and minimize the correlation
in inter-groups γinter, both correlations can be defined as follows:

γextra =
c

∑
k=1

∑i∈Gk ,j∈V−Gk
Reij

∑i∈Gk ,j∈V Reij
, (19)

γinter =
c

∑
k=1

∑i,j∈Gk
Reij

∑i∈Gk ,j∈V Reij
, (20)

Considering a simple and convenient representation of the formula in (19), the part
that represents the correlation for the k-th group can be defined as:

µk =
∑i∈Gk ,j∈V−Gk

Reij

∑i∈Gk ,j∈V Reij
, (21)

According to the correlation matrix Re and the relation of the indices in µk, the interval
of µk can be calculated and γextra can be simplified as well:

µk ∈ [0,
c− 1

c
], (22)

γextra =
c

∑
k=1

µk, (23)

Therefore, the normalized loss between the extra-groups can be represented as:

Lossextra =
c

c(c− 1)

c

∑
k=1

µk ∈ [0, 1], (24)

Maximizing the internal correlation γinter is equivalent to minimizing 1
γinter

. The
definition is as follows:

σk =
∑i∈Gk ,j∈V Reij

∑i,j∈Gk
Reij

∈ [1, c], (25)

Therefore, the normalized loss of the internal correlation can be calculated with:

Lossinter =
1

c(c− 1)

c

∑
k=1

σk − 1 ∈ [0, 1], (26)

With the calculated extra-loss and inter-loss, it can be assembled together by the
weights’ distribution. The whole loss function can be represented as below:

Loss = λ2(λ1Lossextra + (1− λ1)Lossinter) + (1− λ2)CELoss, (27)
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where λ1, λ2 ∈ (0, 1) indicate the weight coefficients to adjust the sizeof every loss. CELoss
indicates the cross-entropy loss. The effectiveness of the proposed loss function is discussed
in the later ablation experiments, and the impacts of the hyperparameters are analyzed
as well.

After the redistribution loss is applied, the features are sent to the fully connected
layer, followed by SoftMax activation function, which links the cross-entropy loss function.
This prediction procedure can be formulated as:

ypred = Fso f tmax(Ff c(xG)). (28)

4. Experiments
4.1. Description of Dataset

In this paper, three public dual-temporal datasets for hyperspectral change detection
were chosen for model testing, which were all captured by the Earth Observing-1 (EO-
1) satellite with the Hyperion sensor. It provides a spectral range of 0.4–2.5 um with
242 spectral bands and a spectral resolution of 10 nm approximately, as well as a spatial
resolution of 30 m. In the experiments, spectral bands with a low signal-to-noise ratio (SNR)
were removed. To distinguish whether the land cover area had changed or not, the binary
ground truth maps were obtained by visually analyzing extensive studies and on-the-spot
investigation. The first hyperspectral image dataset is the Irrigated Agriculture Dataset [34]
captured on 1 May 2004 and 8 May 2007, which illustrates an irrigated agricultural area
of Hermiston City in Umatilla County, Oregon, USA. It contains 307 × 241 pixels and
156 bands after omitting no-data bands and removing the noise. The training rate followed
the original work, which was 9.7% approximately. This dataset is shown in Figure 6. The
second dataset is the Wetland Agriculture Dataset [34], which contains images captured on
3 May 2006 and 23 April 2007. This dataset illustrates a farmland area of Yuncheng City,
Zhejiang Province, China. It contains 450 × 140 pixels and 156 bands after removing noise.
Referring to the training rate of the Irrigated Agriculture Dataset, the training samples
for the Wetland Agriculture Dataset were further decreased compared to the original
work, which was set to about 9.7% as well. The T1 image, T2 image, and ground truth
are shown Figure 7. The last change detection dataset is the River Dataset [26], which
contains images captured on 3 May 2013 and 31 December 2013. This dataset illustrates
a river area in Jiangsu Province, China. It contains 463 × 241 pixels and 198 bands after
noise removal. The false color image for the River Dataset is shown in Figure 8. Every
dataset was divided into a training set, validation set, and test set. The training samples
of the Irrigated Agriculture Dataset and Wetland Agriculture Dataset occupied 9.7% of
the total samples approximately using stratified random sampling. For the River Dataset,
to consider the problem of class imbalance, the proportion of the unchanged samples to
the changed samples was 2:1, which followed the rule of original work. Eventually, the
training rate for the River Dataset was 4.03%. For all three public datasets, stratified random
sampling was used to generate the random training samples. The details of every dataset
are shown in Table 1.

Table 1. Details of the selected datasets.

Dataset Spatial Size Band Date 1 Date 2 Training Rate Training
Samples

Irrigated 307× 241 156 May 1st, 2004 May 8th, 2007 9.7% 7250
Wetland 450× 140 156 May 3rd, 2006 Apr. 23rd, 2007 9.7% 6173

River 463× 241 198 May 3rd, 2013 Dec. 31st, 2013 4.03% 4500



Remote Sens. 2023, 15, 246 12 of 22

1.5km

Figure 6. Irrigated Agriculture Dataset with false color map (Bands 134, 90m and 75 as RGB). (a) U.S.
farmland image captured on 1 May 2004. (b) U.S. farmland image captured on 8 May 2007. (c) Binary
ground truth for the Irrigated Agriculture Dataset.

2.0km

Figure 7. Wetland Agriculture Dataset with false color map (Bands 134, 90, and 75 as RGB). (a) Chinese
farmland image captured on 3 May 2006. (b) Chinese farmland image captured on 23 April 2007.
(c) Binary ground truth for the Wetland Agriculture Dataset.
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2.5km

Figure 8. River Dataset with false color map (Band 134, 90, and 75 as RGB). (a) Chinese river image
captured on 3 May 2013. (b) Chinese river image captured on 31 December 2013. (c) Binary ground
truth for the River Dataset.

4.2. Experimental Setup

All experiments were performed on an NVIDIA RTX 3060 with 12G of video memory.
Due to the model structure, it can handle different patch input sizes without any spatial
resolution restriction. In the training set procedure, the batch size was chosen as 64 patch
inputs by default and the learning rate as 10−5 with a corresponding 10−4 weight decay
applied to exhibit better convergence. The Adagrad optimizer was used here to train the
proposed TFR-PS2ANet. The united loss function with the cross-entropy loss and the
feature redistribution loss were chosen for the model training procedure, and the formula
of the cross-entropy loss is shown below:

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yiclog(pic), (29)

where M indicates the number of categories and yic is an indicator for which the value is
equal to 1 or 0 depending on whether it is the true category of sample i. The prediction
probability belonging to c of sample i is expressed as pic.

4.3. Evaluation Metrics

For a fair and convenient performance comparison among the three hyperspectral
change detection datasets, the accuracy (ACC), kappa coefficient (kappa), F1-score, pre-
cision, and recall were selected to evaluate and quantized model’s performance. Every
index was calculated based on a confusion matrix, and the larger the value, the better the
performance is.

Accuracy (ACC): Regarding pixel-level classification tasks, accuracy is a relatively sim-
ple, but effective metric to weigh the model’s performance. The formula for the calculation
of the accuracy is:

ACC =
∑c

i=0 TPi

∑c
i=0(TPi + FPi)

. (30)

Kappa coefficient (kappa): The kappa coefficient is another metric usually used for
pixel-level classification. According to the formula of the kappa coefficient, it takes the
class imbalance into consideration and can measure the model’s performance on different
datasets fairly. The formula for the calculation of the kappa coefficient is:

k =
po − pe

1− pe
. (31)
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F1-score: The F1-score (also known as the F1-measure) is designed to evaluate the per-
formance of a pixel-level binary classification model. It can be considered as the harmonic
mean of the precision and recall. The F1-score is calculated as:

F1 = 2 · precision× recall
precision + recall

. (32)

Precision and recall: The precision indicates the true positives in the sum of the true
positive and false positive samples. The recall indicates the true positives in the sum of the
true positive and false negative samples. The formulae are, respectively:

Precision =
TP

TP + FP
, (33)

Recall =
TP

TP + FN
. (34)

4.4. Experimental Results

In this section, five methods in the change detection domain were chosen to make
comparisons with the proposed TFR-PS2ANet. Two of them are traditional methods based
on supervised or unsupervised learning, and the rest are SOTA deep learning methods.
CVA is a traditional method using difference maps and unsupervised segmentation, which
was Otsu here [35]. The second traditional method for pattern recognition is SVM, which is
extensively used in land cover change detection [36]. As for the deep learning methods,
GETNET [26] based on the LSConvolution architecture and DSFANet [27] following the
principle of semi-supervised learning were chosen as the comparison methods. For the
CNN architecture in two-domain learning, the patch-based WCRN model [19] was chosen
as the comparison model. For the mentioned deep-learning-based methods, the same
default parameter settings introduced in the corresponding works were selected. Extensive
experiments were conducted on all three hyperspectral change detection datasets. The
detailed model comparison results are described below. The overall accuracy and F1-
score comparison is shown in Figure 9, which indicates that the proposed TFR-PS2ANet is
superior to most of the other methods.

(a) (b)

Figure 9. Overall accuracy (a) and F1-score (b) comparison.

4.4.1. Experiments on the Irrigated Agriculture Dataset

The model comparison results can be seen in Table 2. The proposed TFR-PS2ANet
was able to achieve the best results on the ACC, kappa coefficient, F1-score, and recall.
The best precision was achieved by CVA, while this model had the worst recall result,
which is less than about 0.29 compared to that of TFR-PS2ANet. The best competitor was
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the SVM method. As a traditional method, it outperformed most of the selected deep
learning methods. Among them, the unsupervised DSFANet showed the worst change
detection results. GETNET showed the best recall in comparison to the other methods,
but its precision was lower than that of TFR-PS2ANet, which resulted in an inferior F1-
score result. DSFANet is an unsupervised method just like CVA, but it detects too many
unchanged pixels wrongly according to its poor precision performance, which may be a
result of the complex scenes of the agriculture images.

In the last three rows of Table 2, the comparisons of TFR-PS2ANet, TFR-PS2ANet
without redistribution loss, and TFR-PS2ANet without PS2A are given. The accuracy
and kappa coefficient performance of TFR-PS2ANet without redistribution loss showed
a clear drop compared to TFR-PS2ANet. TFR-PS2ANet without PS2A showed a slight
accuracy decrease, while the kappa coefficient had an obvious disparity. Although the two
ablation studies of the models demonstrated weaker results than TFR-PS2ANet, they still
outperformed the other competitors, which implies that the encoder–decoder framework
can effectively extract the change features. In conclusion, the proposed TFR-PS2ANet had
the best performance on most of the metrics compared to the other methods.

Table 2. Model comparison results and module ablation study results on the Irrigated Agriculture
Dataset (repeated 3 times).

Models ACC Kappa F1-Score Precision Recall

CVA 0.9286 0.7704 0.8127 0.9953 0.6867
SVM 0.9614 ± 0.0021 0.8868 ± 0.0117 0.9754 ± 0.0008 0.9657 ± 0.0193 0.9854 ± 0.0184

GETNET 0.9456 ± 0.0080 0.8466 ± 0.0172 0.9646 ± 0.0057 0.9690 ± 0.0091 0.9608 ± 0.0203
DSFANet 0.8208 ± 0.0073 0.5449 ± 0.0023 0.6631 ± 0.0154 0.5754 ± 0.0114 0.7823 ± 0.0219
WCRN 0.9113 ± 0.0060 0.7516 ± 0.0164 0.9422 ± 0.0039 0.9509 ± 0.0033 0.9336 ± 0.0045

Without FRL 0.9652 ± 0.0054 0.9039 ± 0.0133 0.9772 ± 0.0037 0.9920 ± 0.0051 0.9629 ± 0.0122
Without PS2A 0.9709 ± 0.0014 0.9159 ± 0.0050 0.9813 ± 0.0009 0.9765 ± 0.0050 0.9862 ± 0.0033
TFR-PS2ANet 0.9763 ± 0.0009 0.9324 ± 0.0028 0.9846 ± 0.0005 0.9862 ± 0.0029 0.9831 ± 0.0019

The change detection maps for the Irrigated Agriculture Dataset are shown in Figure 10.
Using the ground truth map as a reference, the proposed TFR-PS2ANet showed the closest
visual effects, and the border pixels were visually distinct like the ground truth map,
while the change maps detected by CVA, GETNET, and WCRN failed to distinguish
the subtle changes in the border pixels. Although SVM showed great visual effects, it
detected unrelated subtle changes of the border pixels mistakenly, which led to inferior
accuracy and precision. Regarding DSFANet, it showed scattered points in the change
result map, which caused a false detection and led to lower accuracy and kappa indices.
The reason for this situation could be that the unsupervised DSFANet is not suitable for
complex land cover spectral information. Regarding the ablation results of the models
TFR-PS2ANet without redistribution loss or PS2A, it can be seen from the visual effects
that TFR-PS2ANet without redistribution loss would detect some border pixels mistakenly,
while TFR-PS2ANet without PS2A would detect border pixels as a large spot, which would
affect the detection result.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 10. The change map results of different methods on the Irrigated Agriculture Dataset. (a) CVA.
(b) SVM. (c) GETNET. (d) DSFANet. (e) WCRN. (f) Without FRL. (g) Without PS2A. (h) TFR-PS2ANet.
(i) Ground truth.
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4.4.2. Experiments on the Wetland Agriculture Dataset

The comparison results of the models on the Wetland Agriculture Dataset are shown
in Table 3. For this dataset, the proposed method TFR-PS2ANet outperformed the other
methods in all indices as well. The best competitor was GETNET, which achieved the
highest accuracy in comparison the other models, but it was inferior to TFR-PS2ANet by
a slight worse accuracy and kappa coefficient. CVA and SVM were still stable models,
achieving very similar accuracy and kappa coefficient performance. DSFANet showed the
worst performance and almost could not detect the main farm change region, which can be
concluded from the kappa coefficient result. WCRN could achieve an acceptable accuracy
result, but the kappa coefficient remained low.

The last three rows of Table 3 show the comparison among TFR-PS2ANet, TFR-
PS2ANet without redistribution loss, and TFR-PS2ANet without PS2A. Compared to
TFR-PS2ANet, the ablation results of the model TFR-PS2ANet without redistribution loss
were inferior on every metric. The performance of TFR-PS2ANet without PS2A was worse
than TFR-PS2ANet without redistribution loss, which may indicate that long-range depen-
dencies are very necessary in areas with much crop spectral information. In conclusion, the
proposed TFR-PS2ANet showed the best performance on the Wetland Agriculture Dataset.

Table 3. Model comparison results and module ablation study results on the Wetland Agriculture
Dataset (repeated 3 times).

Models ACC Kappa F1-Score Precision Recall

CVA 0.9525 0.8859 0.9196 0.9032 0.9366
SVM 0.9525 ± 0.0015 0.8851 ± 0.0045 0.9185 ± 0.0035 0.9150 ± 0.0072 0.9223 ± 0.0144

GETNET 0.9543 ± 0.0128 0.8926 ± 0.0274 0.9253 ± 0.0177 0.8926 ± 0.0548 0.9644 ± 0.0255
DSFANet 0.6043 ± 0.0025 −0.1127 ± 0.0060 0.7452 ± 0.0032 0.6861 ± 0.0007 0.8157 ± 0.0088
WCRN 0.9003 ± 0.0362 0.7643 ± 0.0802 0.8355 ± 0.0535 0.8170 ± 0.0354 0.8579 ± 0.0179

Without FRL 0.9760 ± 0.0025 0.9419 ± 0.0063 0.9589 ± 0.0045 0.9538 ± 0.0026 0.9640 ± 0.0119
Without PS2A 0.9743 ± 0.0044 0.9380 ± 0.0016 0.9561 ± 0.0075 0.9490 ± 0.0075 0.9633 ± 0.0075
TFR-PS2ANet 0.9827 ± 0.0004 0.9580 ± 0.0008 0.9701 ± 0.0005 0.9754 ± 0.0081 0.9648 ± 0.0072

The detected change maps of these methods for the Wetland Agriculture Dataset are
shown in Figure 11. The proposed TFR-PS2ANet showed the most similarity to the ground
truth map in visual effects, which kept the detailed change information while suppressing
unrelated subtle information. The two traditional methods, CVA and SVM, could detect the
main agriculture change area, but too many scattered points were also detected mistakenly,
which influenced the accuracy and precision indices. GETNET successfully detected most
of the change area, but there was a loss of subtle farmland change information as well.
DSFANet showed the worst performance, which basically only detected the border of
change areas. This may have resulted from its insufficient capacity to process complex
scenes. WCRN could detect most of the change area, but the main drawbacks were that it
lost the detailed information and farmland edge change information. Furthermore, in the
top area of the WCRN change map, it detected some unrelated points, which decreased the
accuracy and precision results. Regarding the last three change maps, it can be observed
that they basically had similar visual effects except several wrong pixels detected by
mistake, and they all showed the best similarity to the ground truth map compared to the
other methods.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 11. The change map results of different methods on the Irrigated Agriculture Dataset. (a) CVA.
(b) SVM. (c) GETNET. (d) DSFANet. (e) WCRN. (f) Without FRL. (g) Without PS2A. (h) TFR-PS2ANet.
(i) Ground truth.

4.4.3. Experiments on the River Dataset

The comparison results of different methods on the River Dataset are shown in Table 4.
Our proposed TFR-PS2ANet achieved the best ACC, kappa, F1-score, and precision. WCRN
was the best competitor, which was designed in the original work on the River Dataset,
and showed the best accuracy performance (0.9284) among the compared deep learning
methods, followed by the deep leaning GETNET method, having a 0.9260 accuracy. SVM
and DSFANet had a 0.9198 and 0.8883 accuracy, respectively. The unsupervised DSFANet
did not perform well, which could be a result of its insufficient feature learning under
class imbalance.

In the same way, the last three rows give the ablation results of the models. Compared
to TFR-PS2ANet, the model TFR-PS2ANet without redistribution loss showed a consider-
able accuracy drop by around 0.01, while the model without PS2A showed a slight accuracy
decrease. Therefore, it is necessary for change detection to adopt the class-oriented feature
redistribution in the second to last layerfor the River Dataset. In conclusion, the proposed
TFR-PS2ANet can perform best among these methods while handling with class imbalance.

Table 4. Model comparison results and module ablation study results on the River Dataset (repeated
3 times).

Models ACC Kappa F1-Score Precision Recall

CVA 0.9280 0.6617 0.6992 0.5492 0.9617
SVM 0.9198 ± 0.0008 0.5850 ± 0.0477 0.6278 ± 0.0469 0.5266 ± 0.0092 0.7876 ± 0.0624

GETNET 0.9260 ± 0.0104 0.6508 ± 0.0314 0.6893 ± 0.0267 0.5467 ± 0.0390 0.9368 ± 0.0164
DSFANet 0.8883 ± 0.0067 0.4610 ± 0.0253 0.5196 ± 0.0022 0.4154 ± 0.0212 0.6940 ± 0.0192
WCRN 0.9284 ± 0.0111 0.6544 ± 0.0346 0.6919 ± 0.0295 0.5579 ± 0.0246 0.9158 ± 0.0175

Without FRL 0.9519 ± 0.0019 0.7439 ± 0.0050 0.7699 ± 0.0041 0.6594 ± 0.0310 0.9250 ± 0.0143
Without PS2A 0.9566 ± 0.0087 0.7649 ± 0.0052 0.7884 ± 0.0037 0.6850 ± 0.0489 0.9286 ± 0.0081
TFR-PS2ANet 0.9602 ± 0.0003 0.7803 ± 0.0082 0.8019 ± 0.0074 0.7068 ± 0.0038 0.9267 ± 0.0134

The change detection maps for the River Dataset are shown in Figure 12. It can be
observed that TFR-PS2ANet showed the closest similarity to the ground truth map from
the visual effects. The first result map generated by the unsupervised CVA showed many
unrelated pixels detectedto the left. On the contrary, the second SVM result map showed
a failure to detect change pixels to the left. GETNET, as the best competitor, could detect
distinct change areas, but they were expanded slightly. DSFANet showed many points
and gaps due to it insufficient unsupervised post-processing. For the visual effects, the
change map from WCRN showed rough boundaries, which caused a low-precision result.
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With reference to the change map generated by TFR-PS2ANet without redistribution loss
or PS2A, both could detect some noise-like pixels shown ot the top of the change map,
which influenced the final accuracy and F1-score, while they still outperformed the other
compared methods.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 12. The change map results of different methods on the Irrigated Agriculture Dataset. (a) CVA.
(b) SVM. (c) GETNET. (d) DSFANet. (e) WCRN. (f) Without FRL. (g) Without PS2A. (h) TFR-PS2ANet.
(i) Ground truth.

4.4.4. Impact of Hyperparameters

In this section, the influence by both hyperparameters for the redistribution loss and
the cross-entropy loss, which are the weights λ1, λ2 ∈ [0.2, 0.4, 0.5, 0.6, 0.8] in Formula (27),
were analyzed. The hyperparameter λ1 is responsible for the adjustment for the extra-loss
in the redistribution loss function, while 1− λ1 is responsible for the inter-loss. With the
hyperparameter λ1 selected, the influence of the distribution of the features can be analyzed.
The hyperparameter λ2 was utilized to adjust the influence of redistribution loss, while
1−λ2 worked as the weight for the cross-entropy loss. As Figure 13 shows, the performance
impacts for the accuracy, Kappa, and F1-score were analyzed on all three datasets.

Figure 13. Impacts of hyperparameters λ1 and λ2 on all three datasets. The first row indicates the
influence on the accuracy, the second row the influence on the kappa coefficient, and the last row the
influence on the F1-score.

The first row shows the accuracy change influenced by hyperparameters λ1 and λ2.
When λ1 = 0.2, the best accuracy performance on the River Dataset was achieved at
λ2 = 0.6, while that on the Irrigated Agriculture Dataset was achieved at λ2 = 0.8. The best
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accuracy performance on the Wetland Agriculture Dataset was achieved at λ2 = 0.6 as well.
When λ1 = 0.4, the two best accuracies on Wetland Agriculture and River Datasets were
both achieved at λ2 = 0.6, while on the Irrigated Agriculture Dataset, the proposed method
achieved the best performance at λ2 = 0.5. Along with the increase of λ1, the proposed
TFR-PS2ANet could achieve the best accuracy on the three datasets at λ2 = 0.6.

The influence on the kappa index is shown in the second row of Figure 13. It had
a similar trend to the accuracy change. From the first figure of the second row, it can be
observed that the proposed method could achieve the highest kappa results at λ2 = 0.6 on
the Wetland Agriculture Dataset and the River Dataset, while on the Irrigated Agriculture
Dataset, it performed best at λ2 = 0.8. When λ1 = 0.4, the best results of the kappa index
on the Wetland Agriculture and River Datasets were achieved at λ2 = 0.6 as well. However,
the highest performance on the Irrigated Agriculture Dataset was achieved at λ2 = 0.5.
According to the last three figures, the proposed TFR-PS2ANet achieved the highest kappa
results when λ2 = 0.6 at the same time.

The last row shows the influence on the F1-score index. From the overall visual
effects, TFR-PS2ANet performed stably on both the Irrigated and Wetland Agriculture
Datasets. Regarding the analysis of the Irrigated Agriculture Dataset, except the results
at λ1 = 0.2, 0.4, the rest of the figures show that the best F1-score results were achieved at
λ2 = 0.6 as well. The results on the Wetland Agriculture Dataset showed similar stable
trends as those on the Irrigated Agriculture Dataset, which mostly achieved the highest
F1-score results at λ2 = 0.6. The trends on the River Dataset increased their fluctuation and
stopped at λ2 = 0.6 to obtain the best performance.

In other words, from the optimal analysis results of the accuracy, kappa coefficient,
and F1-score on all three datasets, the proposed model could obtain the best performance
when λ1 = 0.5, 0.6, 0.8 and λ2 = 0.6. Due to the hyperparameter λ1 being able to influence
the extra- and inter-loss balance, the model hyperparameters were set as λ1 = 0.5 and
λ2 = 0.6 finally.

4.5. Discussion

The advantage in terms of the accuracy of the proposed TFR-PS2ANet method over the
benchmark methods was due mainly to the application of the PS2A module, which contains
the parallel spectral–spatial attention mechanism. Moreover, the proposed TFR-PS2ANet
method is assisted by the FRL, which can reassign the features to a class-oriented distribu-
tion. According to the extensive experiments conducted above, CVA, as the conventional
unsupervised method, performed stably on the three datasets. However, the change detec-
tion results largely relied on the determination of a threshold. The inadequate extraction of
spectral information led to inferior detection results compared to our proposed method.
As a conventional supervised method, SVM needs training samples. Practically, it can be
difficult for SVM to handle local spatial information while finding a proper discriminative
property for spectral information. On the contrary, the proposed method extracts features
from both the spectral and spatial domain, which led to better discriminative abilities of
change detection.

For the deep learning methods, GETNET is based on the supervised LSConvolution
architecture. It extracts features from the input patch without considering internal spectral
and spatial dependencies. Our proposed method can adaptively obtain long-range depen-
dencies using the parallel attention mechanism, while the FRL assists in arranging the fea-
tures properly. DSFANet is performed in a semi-supervised manner. However, this method
showed the worst results on all the change detection datasets, which implies its weakness
in dealing with complex spectral information using unsupervised post-processing. In terms
of the comparison between WCRN and TFR-PS2ANet, the proposed method using the
attention mechanism showed the better effectiveness of the adaptive two-domain feature
learning compared to the CNN-based architecture.

However, there are also some limitations of the proposed method. First, the three
change detection datasets have different time intervals. This leads to the problem of the
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continuous change amount during different periods being hard to compare. The design
of the proposed method regarding the dual-temporal images as a pair of independent
moments indicates that the change monitoring needs the support of data with the same
or higher time resolution. To address this issue, it is worthwhile to extend the current
TFR-PS2ANet to time series analysis. Nevertheless, in most situations, a time series change
detection method can only be driven by dual-temporal images from satellites with different
spectral and spatial resolutions. Therefore, reliable change monitoring results would
largely depend on the accurate match between image pairs with different spatial and
spectral resolutions. Furthermore, anthropogenic effects may influence the agriculture
change results. However, the proposed supervised method based on the binary change
ground truth detects changes in the agricultural area without distinguishing whether
these changes are caused by human activities. The performance of the supervised change
method is largely influenced by the available ground reference labels. Therefore, to detect
changes from one labelto another using the change method, more attention should be
paid to constructing multiple change ground truths with more informative on-the-spot
investigation.

5. Conclusions

In this article, a general network named TFR-PS2ANet was proposed to detect land
cover changes in dual-temporal hyperspectral images. First, the proposed method, which
integrates the PS2A module, adaptively extracts spectral and spatial features from input
patch pairs. The extracted features enhance the relevant long-range dependencies and
suppress the irrelevant information in both the spectral and spatial domain simultaneously.
Second, the FRL was added to reassign hidden features to a class-oriented distribution,
which can enhance the discriminative ability for changed and unchanged pixels. More-
over, a general two-branch encoder–decoder framework was designed to transform and
fuse the high-dimensional information to another characteristic space while keeping the
hierarchically transferred features.

We implemented our algorithm and performed experiments on three public hyper-
spectral change detection datasets. The visual and quantitative results both showed that
the proposed method outperformed most of the state-of-the-art methods including conven-
tional and deep network algorithms.

When dealing with different change detection tasks, the proposed TFR-PS2ANet can be
seen as a benchmark method with an adaptive one-stage spectral–spatial feature extraction
module. The FRL can provide a reference for various loss functions that accelerate the
convergence of the network, as well. In the future, using representation information in
self-supervised learning will be considered to improve the performance.
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