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Abstract: Due to the limited penetration of visible bands, optical remote sensing images are inevitably
contaminated by clouds. Therefore, cloud detection or cloud mask products for optical image
processing is a very important step. Compared with conventional optical remote sensing satellites
(such as Landsat series and Sentinel-2), sustainable development science Satellite-1 (SDGSAT-1)
multi-spectral imager (MII) lacks a short-wave infrared (SWIR) band that can be used to effectively
distinguish cloud and snow. To solve the above problems, a cloud detection method based on spectral
and gradient features (SGF) for SDGSAT-1 multispectral images is proposed in this paper. According
to the differences in spectral features between cloud and other ground objects, the method combines
four features, namely, brightness, normalized difference water index (NDWI), normalized difference
vegetation index (NDVI), and haze-optimized transformation (HOT) to distinguish cloud and most
ground objects. Meanwhile, in order to adapt to different environments, the dynamic threshold
using Otsu’s method is adopted. In addition, it is worth mentioning that gradient features are used
to distinguish cloud and snow in this paper. With the test of SDGSAT-1 multispectral images and
comparison experiments, the results show that SGF has excellent performance. The overall accuracy
of images with snow surface can reach 90.80%, and the overall accuracy of images with other surfaces
is above 94%.

Keywords: cloud detection; SDGSAT-1; spectral features; gradient features

1. Introduction

Nowadays, remote sensing has advanced and plays an important role in many
fields [1–11]. However, optical remote sensing images are inevitably contaminated by
clouds [12,13] due to the limited penetration of visible bands [14].

SDGSAT-1 is the first satellite dedicated to serving “the UN 2030 Agenda for Sustain-
able Development” in the world, and it is also the first Earth science satellite developed by
the Chinese Academy of Sciences. It aims to provide data for research on human–nature in-
teractions and major breakthroughs in the scientific understanding of the Earth system [15].
Because SDGSAT-1 is an optical remote sensing satellite, the multispectral images are
contaminated by clouds, which affects fusion, target detection, and other processing for
images [16,17]. Therefore, cloud cover and cloud masks are necessary to be obtained. To
avoid the waste of computing resources, the images with substantial cloud cover need to
be removed. In addition, the cloud mask is beneficial to obtain values of the target objects
in images [18]. Therefore, the cloud detection for SDGSAT-1 multispectral images is an
essential process.

Until now, many cloud detection methods have been proposed. The spectral thresh-
old method designs different combinations of some bands and selects thresholds to de-
tect cloud according to the reflectance differences between cloud and other objects. The
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spectral threshold method is simple and efficient, and has a wide range of applications.
Irish et al. [19] proposed an automatic cloud cover assessment (ACCA) algorithm for Land-
sat 7 images. ACCA designs eight spectral combinations and uses temperature features of
the thermal-infrared (TIR) band to obtain cloud detection results. However, the SDGSAT-1
multi-spectral imager (MII) and some other satellite instruments lack a TIR band, so it
is difficult to detect cloud based on temperature features. Luo et al. [20] proposed the
Luo–Trishchenko–Khlopenkov (LTK) algorithm that designs combinations only using red
band, blue band, near-infrared (NIR) band, and SWIR band to detect cloud and it ob-
tains excellent cloud detection results without TIR band. However, due to the different
environments around the world, the fixed thresholds are difficult to fit all the images. There-
fore, researchers have proposed cloud detection methods based on dynamic thresholds.
Zhu et al. [21,22] proposed a function of the mask (Fmask) algorithm that is one of the most
widely used cloud detection methods for Landsat 7 and Sentinel-2 images. Fmask divides
images into potential cloud pixels (PCPs) and clear-sky pixels and calculates the cloud
probability of each pixel by using spectral and temperature features. Then, the potential
cloud pixels are detected using dynamic thresholds and the cloud pixels are obtained. From
the above analysis, temperature features are often used in cloud detection and the SWIR
band is used to distinguish cloud and snow. However, SDGSAT-1 MII lacks the TIR band
and SWIR band, so these methods are not fully suitable for multispectral images.

The spectral threshold method effectively uses spectral features of images, but it only
studies the reflectance of a single pixel and does not consider the relationship between
pixels. Therefore, researchers have proposed the texture analysis method. Dong et al. [23]
calculated thresholds according to the histogram of images to obtain initial results and
then the cloud results are obtained based on gray-scale values and angular second moment.
Li et al. [24] analyzed four statistical features of gray level co-occurrence matrix, and used
a support vector machine (SVM) to train; then, the cloud detection results are obtained.
The texture analysis method can effectively use space features, but it may have poor
performance for complex images.

In recent years, deep learning has developed rapidly and has been widely used in
the field of remote sensing. Hu et al. [25] proposed a light-weighted cloud detection
network, which optimizes the number of parameters and improves speed and accuracy.
Shao et al. [26] proposed a cloud detection method based on the multiscale feature convo-
lutional neural network, and the method had good performance for thick and thin clouds.
Although the deep learning method has high accuracy, it needs a lot of data to train, and
for the images outside the train set, the generalization performance may be poor.

To improve cloud detection speed, the deep learning method is not adopted. In
addition, it is difficult to distinguish cloud and snow only based on spectral features.
Because SDGSAT-1 was launched recently, there are few studies on SDGSAT-1 cloud
detection. Therefore, a cloud detection method based on spectral and gradient features for
SDGSAT-1 multispectral images is proposed in this paper. According to the differences
in spectral features between cloud and other ground objects, the method combines four
features, namely, brightness, NDWI, NDVI, and HOT, to distinguish cloud and most ground
objects. Meanwhile, in order to adapt to different environments and improve accuracy, the
dynamic threshold using Otsu’s method [27] is adopted. To distinguish cloud and snow,
the method uses gradient features, and then the cloud pixels are obtained.

The structure of this paper is as follows. Section 2 introduces SDGSAT-1 and describes
the method based on spectral and gradient features for SDGSAT-1 multispectral images.
Section 3 shows the experimental results with the comparison. Section 4 discusses the
advantages and disadvantages of the method. Section 5 summarizes the work of this paper
and considers future works.
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2. Materials and Methods
2.1. SDGSAT-1

In order to solve the problems of insufficient data and imperfect methods in imple-
menting “the UN 2030 Agenda for Sustainable Development”, SDGSAT-1 was developed
by the Chinese Academy of Sciences. It is the first satellite dedicated to this agenda in the
world, and the first Earth science satellite of the Chinese Academy of Sciences. Aiming to
achieve global sustainable development goals, SDGSAT-1 detects the parameters of the
Earth to accurately describe traces of human activities and provide data for the role of
human interaction with nature. It was successfully launched on 5 November 2021 and the
first images were published on 20 December 2021.

SDGSAT-1 is a sun-synchronous orbit satellite. The specific parameters of SDGSAT-1
are as follows: the orbit height is 505 km; the orbit inclination angle is 97.5◦; the descending
node is 9:30 am; the imaging range width is 300 km; the time to cover the Earth is about
11 days.

SDGSAT-1 is equipped with these payloads: MII, low-light-level imager (LLL), and
thermal infrared spectrometer (TIS). MII is mainly used in Earth environment observation;
LLL aims at observing the lamplight of urbanization on the Earth’s surface during night;
and TIS is applied to the Earth’s thermal radiation detection. Three payloads work inde-
pendently and cannot obtain images of the same area cooperatively. Therefore, the TIR
band cannot be used in cloud detection for SDGSAT-1 multispectral images.

MII has 7 bands and the band parameters are shown in Table 1. The spectral range of
MII is small, so it is difficult to detect some ground objects. For example, Zhu et al. [22] ap-
plied the newly added cirrus band (1.360–1.390 µm) of Landsat 8 to cloud detection, which
improved the detection accuracy of thin clouds. In addition, Salomonson et al. [28] pro-
posed the normalized difference snow index (NDSI) using the SWIR band (1.628–1.652 µm)
to detect snow. Both cloud and snow have high reflectance in the visible band, but the ab-
sorption ability of snow is strong in the SWIR band [29]. So the reflectance of cloud is higher
than that of snow, which can distinguish cloud and snow. However, it is difficult to distin-
guish cloud and snow only based on spectral features. Therefore, the method proposed
in this paper distinguishes cloud and most ground objects based on spectral features, and
then distinguishes cloud and snow with gradient features to improve detection accuracy.

Table 1. SDGSAT-1 MII bands.

Payload Bands Type Wavelength (µm) Resolution (m)

MII

B1 Deep blue 1 0.374–0.427

10

B2 Deep blue 2 0.410–0.467
B3 Blue 0.457–0.529
B4 Green 0.510–0.597
B5 Red 0.618–0.696
B6 Red edge 0.744–0.813
B7 Near infrared 0.798–0.911

2.2. Spectral Features

In the spectral discriminant, this paper chooses the top of atmosphere (TOA) re-
flectance as input. TOA reflectance can be calculated based on some parameters, such as
gain, bias, Earth–Sun distance and solar irradiancy at the mean Earth–Sun distance [30].
These parameters can be obtained in meta files of each image and some fixed parameters
are shown in Table 2.
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Table 2. Solar irradiancy, gain, and bias of SDGSAT-1 MII.

Bands Wavelength (µm) Solar Irradiancy (W/m2/µm) Gain Bias

B1 0.374–0.427 1532.0 0.051560133 0
B2 0.410–0.467 1893.1 0.036241353 0
B3 0.457–0.529 1978.4 0.023316835 0
B4 0.510–0.597 1883.4 0.015849666 0
B5 0.618–0.696 1613.0 0.016096381 0
B6 0.744–0.813 1224.6 0.019719039 0
B7 0.798–0.911 993.51 0.013811458 0

Due to the bright nature of cloud, TOA reflectance of cloud is high in all the bands,
and the brightness can be used as a feature to detect cloud. Analyzing all the bands, this
paper finds that TOA reflectance of cloud in band 1 and band 2 is slightly lower than
other bands. TOA reflectance of vegetation increases in band 6 and band 7, which lead
to misjudgment. Therefore, TOA reflectance of band 3, band 4, and band 5 is adopted.
Brightness discriminant is as follows:

Mean =
B3 + B4 + B5

3
> thresh_Mean (1)

where, Mean is average of TOA reflectance, B3, B4, and B5 are TOA reflectance of band 3,
band 4, and band 5, and thresh_Mean is threshold of Mean.

NDWI proposed by McFeeters [31] is an index to detect water. Because the reflectance
of visible bands is slightly higher than that of NIR, NDWI of water is a positive value,
while NDWI of cloud is a negative value. From experiments, this paper finds that band 4
can widen NDWI difference between cloud and water, which can improve the accuracy of
cloud detection. The NDWI discriminant is as follows:

NDWI =
(B4− B7)
(B4 + B7)

< thresh_NDWI (2)

where B7 is TOA reflectance of band 7, and thresh_NDWI is threshold of NDWI.
In Figure 1a, a multispectral image of SDGSAT-1 from the East China Sea is shown,

where the white area is cloud and the other is water, and NDWI is shown in Figure 1b. It
can be seen that cloud and water are roughly divided with NDWI by 0, which is an obvious
difference between cloud and water; therefore, NDWI can be well applied to the SDGSAT-1.
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Figure 1. An image from the East China Sea and NDWI (resolution: 10 m; size: 3000 × 3000 pixels):
(a) true color image; (b) NDWI.
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NDVI is an index to detect vegetation [32]. The reflectance of vegetation is low in
visible bands and there is a large increase from the red band to the NIR band, so the NDVI
of vegetation is high. While cloud has high reflectance in both the red band and the NIR
band, the NDVI of cloud is lower than that of vegetation. Band 5 and band 7 are selected to
calculate NDVI. The NDVI discriminant is as follows:

NDVI =
(B7− B5)
(B7 + B5)

< thresh_NDVI (3)

In Figure 2a, a multispectral image of SDGSAT-1 from southwestern Siberia is shown,
where the white area is cloud and the other is vegetation, and the NDVI is shown in
Figure 2b. From Figure 2, there is a difference between the NDVI of cloud and that of
vegetation. There is also the NDVI of thin cloud which lies in between thick cloud and
vegetation, and the thin cloud can also be detected using dynamic thresholds. Therefore,
cloud and vegetation can be distinguished with NDVI.
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(a) true color image; (b) NDVI.

Because the observation time, solar zenith angle, and local environment of each image
are different, the reflectance of the same ground objects in different images is also different.
Compared with the fixed thresholds which cannot be adapted to each image, dynamic
thresholds have an excellent advantage. Otsu’s method is a simple and efficient image
segmentation algorithm and has good performance. It divides images into foreground
and background based on gray-scale values. When the best threshold is selected, the
maximum variance between clusters is the largest. Therefore, thresh_Mean, thresh_NDWI,
and thresh_NDVI are obtained with Otsu’s method, which can improve cloud detection
accuracy. From the above analysis, there is a large difference between cloud and other
ground objects, and thresholds can be obtained quickly and efficiently with Otsu’s method.

HOT, proposed by Zhang et al. [33], is based on the idea that the visible bands for
most ground objects are highly correlated, but the spectral response to cloud is different
between the blue and red wavelengths. It can be used in detecting cloud, especially thin
cloud. HOT was also used in cloud detection by Vermote et al. [34] and Zhu et al. [21]
for Landsat 7, and results were successful. However, each band reflectance of SDGSAT-1
is lower than that of Landsat 7. Therefore, after experiments, parameters are changed to
adapt to SDGSAT-1. The HOT discriminant is as follows:

HOT = B3− 0.5× B5− 0.06 > 0 (4)

After the above detection with spectral features, most ground objects have been
removed and cloud-like pixels are obtained. However, cloud-like may include snow that is
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mistakenly detected as cloud. The method of how to distinguish cloud and snow will be
introduced in the next section.

2.3. Gradient Features

The spectral features of snow are similar to that of cloud. For example, cloud and snow
have a bright nature, so the reflectance of them is high in many bands. Due to the similar
spectral features, cloud and snow are difficult to be distinguished. In cloud detection, how
to remove snow is a long-standing problem. Due to the lack of the SWIR band in SDGSAT-1
MII, NDSI cannot be adopted. Therefore, this paper finds other methods to distinguish
cloud and snow.

Although cloud and snow are similar in spectral features, there are some differences
in gradient features [35]. The images of cloud and snow in band 5 are shown in Figure 3.
From Figure 3a, the gray values of the cloud center are large, and that of the thin cloud
at the boundary is small. In addition, the gray values of cloud decrease gradually from
the center to the boundary, and the edges of the cloud are smooth. It can be seen from
Figure 3b that the central area of snow is similar to cloud with large gray values, but the
boundary between bright (snow) and dark (no snow) areas is sharper.
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Figure 3. Comparison of cloud and snow images from western Norway (resolution: 10 m; size:
40 × 40 pixels): (a) cloud; (b) snow.

The degree of sharpness can be represented by the gradient. The sharper the edge, the
larger the gradient. Because digital images are discrete, the gradient is usually represented
by first-order difference. The Sobel operator is used in this paper, which is an edge detection
operator based on first-order difference. It has the advantages of obtaining gradient in the
diagonal direction and suppressing noise [36].

The Sobel operator convolution kernel is shown in Figure 4. The weighted average of
the gray-scale values for the 8 connected neighborhoods of each pixel f (x,y) is determined,
and the gradient in the x and y directions of the pixel are as follows:

gx = f (x + 1, y− 1) + 2 f (x + 1, y) + f (x + 1, y + 1)−
f (x− 1, y− 1)− 2 f (x− 1, y)− f (x− 1, y + 1)

gy = f (x− 1, y + 1) + 2 f (x, y + 1) + f (x + 1, y + 1)−
f (x− 1, y− 1)− 2 f (x, y− 1)− f (x + 1, y− 1)

(5)
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In image processing, in order to improve computational efficiency, the gradient is
as follows:

G = |gx|+
∣∣gy
∣∣ (6)

Band 5 images with the largest contrast are used in gradient calculation in this paper.
Firstly, to enhance the contrast of the images and details of ground object edges, histogram
equalization for band 5 images is performed. It changes the gray histogram of the original
images from a concentrated gray interval to a uniform distribution in the whole gray range.
In addition, using a function, the edge detection of cloud-like pixels is performed and edges
are obtained. Finally, the gradient average of each cloud-like pixel area is calculated and
the threshold judgment is performed; then, cloud pixels are obtained.

In order to obtain the gradient threshold, this paper separately selects some images
with cloud and snow, then counts the gradient average of cloud and snow. The histogram
of the gradient average of cloud and snow is shown in Figure 5a. From Figure 5a, it can
be seen that the gradient average of cloud mainly lies between 0 and 100, and only a few
clouds have gradient average above 100. However, the gradient average of most snow is
much larger than that of cloud, which mainly lies between 100 and 400, and some are even
above 400. This experiment shows that the gradient average of cloud is quite different from
that of snow. Although the histogram of cloud and snow have overlapping areas, cloud
and snow can be distinguished as much as possible. In Figure 5b, the graph obtained by
fitting the histogram of gradient average is shown. From Figure 5b, the intersection of the
two curves can be used as the gradient threshold. The gradient discriminant is as follows:

gradient < thresh_gradient (7)

where thresh_gradient is the threshold of the gradient.



Remote Sens. 2023, 15, 24 8 of 21Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

  

(a) (b) 

Figure 5. Gradient average of cloud and snow edges: (a) histogram; (b) fitting graph. 

In order to verify whether snow can be detected with gradient features, this paper 

selects images with cloud and snow to test. Cloud and snow are difficult to distinguish by 

the human eye and also based on the spectral features of SDGSAT-1 data. Therefore, the 

snow flag in the quality assurance band (QA) of Landsat-8 images [37] from the same area 

is used to distinguish cloud and snow. A multispectral image of SDGSAT-1 from western 

Norway is shown in Figure 6a, and a Landsat-8 image is shown in Figure 6c. From the QA 

band of the local zoomed image, it can be known that the white area on the left is cloud 

and that on the right is snow in Figure 6a. The result of snow detection is shown in Figure 

6b, where the white area is snow pixels using the gradient discriminant. It can be seen that 

most of the snow is successfully detected, and clouds are not mistakenly identified as 

snow. Therefore, cloud and snow can be effectively distinguished with gradient features, 

which solves the difficult problem of cloud detection for SDGSAT-1 multispectral images. 

  

(a) (b) 
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In order to verify whether snow can be detected with gradient features, this paper
selects images with cloud and snow to test. Cloud and snow are difficult to distinguish by
the human eye and also based on the spectral features of SDGSAT-1 data. Therefore, the
snow flag in the quality assurance band (QA) of Landsat-8 images [37] from the same area
is used to distinguish cloud and snow. A multispectral image of SDGSAT-1 from western
Norway is shown in Figure 6a, and a Landsat-8 image is shown in Figure 6c. From the QA
band of the local zoomed image, it can be known that the white area on the left is cloud and
that on the right is snow in Figure 6a. The result of snow detection is shown in Figure 6b,
where the white area is snow pixels using the gradient discriminant. It can be seen that
most of the snow is successfully detected, and clouds are not mistakenly identified as snow.
Therefore, cloud and snow can be effectively distinguished with gradient features, which
solves the difficult problem of cloud detection for SDGSAT-1 multispectral images.
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Figure 6. An SDGSAT-1 image from western Norway and snow detection results: (a) true color image
of SDGSAT-1 (data: 26 March 2022; resolution: 10 m; size: 3500 × 3500 pixels); (b) snow detection
results; (c) an image of Landsat-8 (left); local zoomed image (upper right); snow flag in the QA band
of local zoomed image (lower right) (data: 20 March 2022; path: 201; row: 017; resolution: 30 m; Size:
8011 × 8081 pixels).

There is a problem in gradient discrimination. Due to the overlapping areas of cloud
and snow in gradient histogram, a small part of cloud is missing by gradient discrimination
for images without snow. Therefore, it is necessary to detect whether there is snow in
images before performing gradient discrimination. From Figure 5, it can be seen that the
gradient of some snow is larger than 400, while the gradient of cloud is lower than 400. So
the gradient of the cloud-like pixels is counted. For each SDGSAT-1 multispectral image, if
there are many cloud-like pixels with a gradient above 400, the gradient discrimination
will be performed. Otherwise, cloud-like pixels are considered as cloud pixels.

In remote sensing images, cloud areas usually contain multiple pixels. In order to
eliminate the influence of bright and small ground objects in images, a filter that removes
areas less than 5 pixels is used.

The flowchart of the cloud detection method based on spectral and gradient features
is shown as Figure 7. Firstly, TOA reflectance is obtained after preprocessing. In addition,
brightness, NDWI, NDVI, and HOT are combined to remove most ground objects with
Otsu’s method and cloud-like pixels are obtained, which may contain snow pixels mistak-
enly identified. Then, snow detection is performed; if there is snow in the image, histogram
equalization and edge detection are used on cloud-like pixels. After gradient discriminant,
cloud pixels are obtained.
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3. Results
3.1. Comparison Experiments with Other Methods

In this section, in order to verify the cloud detection performance of SGF in this paper
for SDGSAT-1 multispectral images, the results are shown and compared with multispectral
scanner clear-view-mask (MSScvm) [38] and hybrid multispectral features (HMF) [39].
MSScvm is a cloud detection method for the MSS sensor of Landsat, which only uses red
and green bands and has good performance. HMF is proposed for Gaofen-1 (GF-1) satellite,
which uses three spectral threshold combinations and dynamic thresholds calculated
according to solar altitude angle. There are few cloud detection methods for SDGSAT-1,
and bands of MSS and GF-1 satellite are similar to that of SDGSAT-1 MII. Therefore, SGF is
compared with MSScvm and HMF applied to SDGSAT-1 multispectral images.

Images shown in this section are public SDGSAT-1 multispectral images. Due to
excessive pixels in images, a part of the images are selected to show. Meanwhile, in order
to verify the performance of SGF in different environments, various underlying surface
images are selected, such as vegetation, water, snow, and barren surface. Image information
is shown in Table 3.
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In Figure 8, cloud detection results for an image from southwestern Siberia are shown.
It can be seen that three methods exhibit good cloud detection performance. However, from
local images, their detection performance for thin cloud is different. Reflectance of thin
cloud is affected by underlying surfaces, but the thresholds of MSScvm are fixed. Therefore,
the thin clouds marked with red circles are missing, and detection performance for thin
cloud is the poorest. Both SGF and HMF use dynamic thresholds, so detection ability for
thin cloud is stronger. From local images, SGF detects more thin clouds than HMF at the
same position. Therefore, performance of SGF is better than the MSScvm and HMF.

In Figure 9, cloud detection results for an image with snow surface from western
Norway are shown. In Figure 9a, the white area in the bottom left is cloud and the white
area on the right is snow. It can be seen that MSScvm and HMF misjudge snow on the right
as cloud. This is because the SWIR band is not used in them. The spectral reflectance of
cloud and snow are similar in all bands, so MSScvm and HMF cannot distinguish cloud
and snow. From Figure 9d, snow is almost removed, and cloud is successfully detected, so
SGF has powerful performance for distinguishing cloud and snow. This is because SGF
uses gradient features to remove snow, in addition to spectral features, which solves the
difficulty of distinguishing cloud and snow for SDGSAT-1 multispectral images.

Table 3. Image information.

Scene Date Center Longitude Center Latitude Surface

Figure 8 10 August 2022 73.53 54.88 Vegetation
Figure 9 26 March 2022 4.24 60.82 Snow, vegetation, water

Figure 10 28 August 2022 81.34 46.27 Barren
Figure 11 8 February 2022 123.42 36.65 Water
Figure 12 17 June 2022 −118.79 64.38 Vegetation, water
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Figure 9. Cloud detection results for snow surface (resolution: 10 m; size: 7000× 7000 pixels): (a) true
color image; (b) MSScvm; (c) HMF; (d) SGF.
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Figure 12. Cloud detection results for vegetation and water surfaces (resolution: 10 m; size:
6000 × 6000 pixels): (a) true color image; (b) MSScvm; (c) HMF; (d) SGF.

In Figure 10, cloud detection results for an image from eastern Kazakhstan are shown.
MSScvm misjudges a barren surface with high reflectance as cloud because some barren
areas have high reflectance in red and green bands, which is similar to cloud. However,
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HOT is used in SGF and HMF and they have good performance for barren surface detection.
Cloud detection results for images from the Yellow Sea and northwestern Canada are shown
as Figures 11 and 12. It can be seen that the three methods have good performance for
vegetation and water surfaces.

In summary, MSScvm is a method with only two band combinations so it has poor
performance for images with barren and snow surfaces. HMF adopts HOT, so the ability
for thin clouds and barren surfaces is better. In SGF, four spectral combinations are used
in distinguishing most ground objects and thin cloud, and gradient features are used in
distinguishing cloud and snow. Therefore, SGF has excellent performance for SDGSAT-1
multispectral images.

3.2. Visual Interpretation

To evaluate cloud detection accuracy, the real cloud pixels of SDGSAT-1 images need
to be obtained and then they can be compared with the cloud detection results. There is
no QA band in the SDGSAT-1 images, so the paper combines manual techniques and the
QA band of Landsat-8 Level-1 products with similar time and the same area to recognize
real cloud pixels. Due to the high reflectance of cloud, a threshold is used and most of
the real cloud pixels are obtained. However, some thin cloud around thick cloud has a
lower reflectance and may be missing. So we also used manual judgments to recognize the
missing cloud.

In addition, the reflectance of snow is similar to that of cloud, so cloud and snow
may not be distinguished correctly by the human eye. The paper selects the QA band of
Landsat-8 Level-1 products with similar time and the same area to solve this question.
Snow pixels are identified by the snow flag in the QA band, so they can be removed from
real cloud pixels according to the comparison of SDGSAT-1 images and Landsat-8 images in
the same area. Meanwhile, the position of cloud changes quickly, but the position of snow
changes slowly. Therefore, cloud can be identified by the contrast of position. Through
visual interpretation, the real cloud pixels of SDGSAT-1 images can be obtained. An image
and the visual interpretation results are shown as Figure 13. It can be seen that the real
cloud pixels are identified.
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Figure 13. An image from the Indian Ocean and visual interpretation (resolution: 10 m; size:
300 × 300 pixels): (a) true color image; (b) visual interpretation.

3.3. Accuracy Evaluation

In order to quantitatively evaluate the cloud detection performance of three methods,
this paper uses the overall accuracy as the evaluation index [40]. Cloud detection results
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are compared with visual interpretation results, and overall accuracy of the method is
obtained. Due to the large workload of visual interpretation, 300 × 300 pixels in images
are randomly selected for visual interpretation, which are compared with cloud detection
results. The calculation formula of overall accuracy is as follows:

overall accuracy =
TP + TN

N
(8)

where TP is the number of cloud pixels that are correctly identified cloud pixels, TN is the
number of non-cloud pixels that are correctly identified non-cloud pixels, and N is the total
number of image pixels.

SGF overall accuracy based on 85 areas (300 × 300 pixels) that are randomly selected
from 10 images is shown as Figure 14, and the average of overall accuracy is 95.00%. Part
of the visual interpretation and SGF results are shown in Figure 15. Meanwhile, the overall
accuracy average of MSScvm is 83.55% and that of HMF is 90.79%. It can be seen that over
90% of the test images have high overall accuracy in Figure 14. Due to some missing thin
clouds, cloud detection overall accuracy decreases. In addition, there are still some test
images that have overall accuracy lower than 80%. From an analysis of these test images,
this paper finds that the surface of these images is snow. Due to the overlapping areas
of cloud and snow in the gradient histogram, some clouds that have a gradient larger
than the threshold are mistakenly identified as snow. However, there are also images with
snow surface that have an overall accuracy more than 90%, which shows that gradient
discriminant has excellent performance for distinguishing cloud and snow.
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Figure 15. Part of visual interpretation and SGF results (resolution: 10 m; size: 300 × 300 pix-
els): (a) an image from Hunan province; (b) an image from the Indian Ocean; (c) an image from
northwestern Canada.

Comparison of cloud cover between cloud detection methods and visual interpretation
is shown in Figure 16. With the linear fit of cloud cover between SGF and true values, the
error of SGF can be obtained. It can be seen that the R-square is 0.984, and the root mean
square error (RMSE) is 3.22%, which shows that cloud cover of SGF is close to true values
and SGF has excellent performance. The R-square of MSScvm and HMF is lower than that
of SGF, and the RMSE of MSScvm and HMF is higher than that of SGF, so the performance
of SGF is better than that of MSScvm and HMF.
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Figure 16. Comparison of cloud cover between cloud detection methods and visual interpretation:
(a) MSScvm; (b) HMF; (c) SGF.

In order to verify cloud detection performance of three methods for different surfaces,
images with vegetation, snow, barren, and water surfaces are selected in this section, and
over five images for each surface are selected. A total of 20 areas (300 × 300 pixels) in each
image were selected to verify. The overall accuracy of cloud detection methods is shown in
Table 4.

Table 4. Overall accuracy of cloud detection methods for different surfaces.

Surface MSScvm HMF SGF

Vegetation 93.93% 94.86% 95.76%
Snow 67.44% 77.48% 90.80%
Barren 70.54% 93.06% 96.53%
Water 94.45% 94.51% 94.87%

From cloud detection results and Table 4, MSScvm is only good at cloud detection
for vegetation and water surfaces and the overall accuracy is above 93%, while the overall
accuracy is only 67.44% and 70.54% for snow and barren surfaces. Because the number
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of threshold combinations is small, it is difficult to identify ground objects with similar
spectral features to cloud. Due to the addition of HOT, HMF can effectively detect cloud
with barren surface, and the overall accuracy reaches 93.06%. However, it is also difficult to
distinguish cloud and snow. The overall accuracy is only 77.48% for snow surface, which is
higher than MSScvm due to the stronger thin cloud detection. Compared with the other
two methods, SGF has outstanding advantages in cloud detection for snow surface. Due to
the addition of the gradient discrimination, the performance of distinguishing cloud and
snow is greatly improved. The overall accuracy for snow surface reaches 90.80%, which is
much higher than MSScvm and HMF and can meet the accuracy requirements of cloud
mask products. Meanwhile, the stability and accuracy of SGF are improved due to dynamic
thresholds, the overall accuracy for other surfaces of SGF is above 94%, which is also higher
than MSScvm and HMF.

4. Discussion

SDGSAT-1 can observe global regions and the environment and climate around the
world are complex. In order to adapt to images of different regions and improve cloud
detection performance, dynamic thresholds are used in the method proposed in this paper.
From experimental results, it can be seen that this method has excellent accuracy for images
with different surfaces, and the robustness is improved for the subsequent engineering
applications. In addition, it is difficult to distinguish cloud and snow with spectral features.
Therefore, this paper analyzes gradient features and discusses the difference of the edge
gradient between cloud and snow. Then, according to the gradient threshold, cloud and
snow are successfully distinguished.

However, there is still a certain error in the cloud detection results: (1) The gradient
of cloud and snow have overlapping areas in the gradient histogram, which means that
there is a certain error in gradient discrimination. (2) If there is no snow in the image and
gradient discrimination is still performed, a small part of cloud will be missing. Therefore,
before gradient discrimination, the cloud-like pixels are detected. If there is no snow in
the image, gradient discrimination will not be performed so that missing cloud pixels can
be avoided. From results for vegetation, water, and barren surfaces, the cloud detection
accuracy does not decrease. (3) Gradient features are used in distinguishing cloud and
snow, which is already a big improvement for SDGSAT-1. However, there is a situation that
cloud and snow overlap. Due to the lack of SWIR band in SDGSAT-1 MII, cloud and snow
are difficult to distinguish in this situation. This situation will be studied in our future
work. (4) Most thin cloud around thick cloud can be detected by the method, but due to the
lack of Cirrus band in SDGSAT-1 MII, some thin cirrus cloud areas are missed. The method
of improving thin cloud accuracy will be studied in our future work.

5. Conclusions

In this paper, according to the band characteristics of SDGSAT-1 MII, a cloud detec-
tion method based on spectral features and gradient features is proposed for SDGSAT-1
multispectral images. Through the analysis and experiments of spectral features, this
paper combines brightness, NDWI, NDVI, and HOT to distinguish cloud and most ground
objects. The dynamic threshold using Otsu’s method is adopted to adapt to images with
different surfaces and improve the cloud detection accuracy. In addition, this paper finds
that the gradient of gray values at the edge of snow areas is larger than that for cloud areas,
so the gradient features are used to distinguish cloud and snow.

In experiments, the method proposed in this paper is compared with MSScvm and
HMF. Images with different surfaces are selected to verify the cloud detection performance
and overall accuracy is used in accuracy evaluation. According to the experiment results,
the conclusions are as follows: (1) The method proposed in this paper has excellent perfor-
mance. The average of overall accuracy reaches 95.00%. From the linear fit of cloud cover
between the method and true values, R-square is 0.984 and RMSE is 3.22%. (2) Gradient
discriminant can effectively distinguish cloud and snow. It is difficult to remove snow only
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based on spectral features, so gradient discriminant is proposed in this paper to distinguish
cloud and snow, and the overall accuracy for snow surface reaches 90.80%. (3) With the
comparison experiments, the overall accuracy for four surfaces is higher than MSScvm
and HMF.

The main contributions of this work are as follows: (1) A cloud detection method with
excellent performance is proposed for SDGSAT-1 multispectral images. (2) This method
solves the difficulty of distinguishing cloud and snow for SDGSAT-1 MII without the SWIR
band. (3) Cloud masks and cloud cover can be obtained for subsequent engineering applica-
tions. In addition, we will improve snow detection and the dynamic threshold to improve
cloud detection accuracy in future works. In addition, images are also contaminated by
cloud shadows, so cloud shadow detection will be one of our future works.
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SDGSAT-1 Sustainable Development Science Satellite-1
MII Multi-spectral imager
SWIR Short-wave infrared
SGF Spectral and gradient features
NDWI Normalized difference water index
NDVI Normalized difference vegetation index
HOT Haze-optimized transformation
ACCA Automatic cloud cover assessment
TIR Thermal infrared
NIR Near infrared
Fmask Function of mask
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TOA Top of atmosphere
QA Quality assurance
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