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Abstract: The Gajevo landslide is located in a hilly area of northern Croatia, where numerous land-
slides endanger and damage houses, roads, water systems, and power lines. Nevertheless, available
landslide data are relatively scarce. Therefore, the Gajevo landslide location was chosen for detailed
research and the development of a typical landslide model for this area. During initial research,
the geographical and geological settings were reviewed and historical orthophotos were analysed.
Due to the complexity and vulnerability of the area, the location required detailed investigations
and the integration of multi-level data: remote (based on high-resolution LiDAR data) and field
landslide mapping were performed and a map of the landslide area was developed. Precipitation
data were reviewed, while shallow boreholes with material sampling and geophysical measurements
provided information on material characteristics and 3D (depth) insight. As a result, knowledge was
gained about material resistivity and composition along with the depth of sliding surfaces, and an
engineering geological map of the Gajevo landslide area with the landslide and directly endangered
areas marked was developed to be used by the local community in landslide risk assessment. As it
is reasonable to expect that an extreme rainfall event will occur in combination with snowmelt in
the coming years, resulting in the reactivation of Gajevo landslide, further research and continuous
landslide monitoring are recommended.

Keywords: multi-level data; landslide research; remote sensing; geophysical data; engineering
geology; precipitation trends

1. Introduction

Landslides can be described as the movement of a mass of rock, earth, or debris down a
slope [1,2]. Slope movements are subdivided into six categories (falls, topples, slides, lateral
spreads, flows, and composites) given their wide difference in mechanical behaviour [3–8].
The analysis and determination of the relationship between high precipitation events and
the appearance of instabilities together with the review and comparison of the evolution of
landslides locally and regionally aided by a multidisciplinary approach is also the object of
important research worldwide [9–11]. The relationship between high precipitation events
and the appearance of landslides has been discussed by various authors [12–14]. The higher
the intensity of rain, the higher the pore pressure in the soil, resulting in a decrease in shear
resistance [15]. As slides in the soil, i.e., clay/silt rotational, planar, or compound slides or
gravel/sand debris slides [16], are most common in northern Croatia precipitation trends
have a considerable impact on landslide activation [14,15].

The research area (Figure 1) of Gajevo landslide is located in northern Croatia
(Figure 1a) in Zagreb County (ZgC), south of Zagreb city (Zg), within a hilly area that is
prone to landslides (Figure 1b) [17]. There are many landslides in the wider area and as a
result of these movements, houses, roads, water systems, and power lines have been endan-
gered and damaged [18]. As the available landslide data for the hilly area of Vukomeričke
Gorice are scarce, but landslides are relatively common [19], the Gajevo landslide location
was chosen for detailed research and the development of a typical landslide model for
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this area. The developed model could be used in mitigation processes, as it provides a
better understanding of landslide mechanisms in the wider area in the same or similar
conditions. The current trend in landslide investigations is a multi-level approach with
data integration [20–24], and examples with results obtained via the synergy between the
usage of remote sensing data, geophysical data, and geographical information systems are
encouraging [15,25–29].
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Figure 1. Research area location: (a) in northern Croatia south of Zagreb city (Zg) in Zagreb County
(ZgC); (b) Landslide susceptibility map of Zagreb County, where the research area is found within
the zones with medium to high landslide susceptibility [17].

Initial research into the Gajevo landslide location was performed based on pre-existing
data: geographical and geological settings were reviewed, and historical orthophotos
and available precipitation data were analysed [30]. In addition, remote (based on high
resolution LiDAR data) and field landslide mapping were performed and an initial en-
gineering geological map of the landslide area with cross-sections was developed [31].
In this initial research, an analysis of precipitation and temperature data helped to deter-
mine the time and cause of landslide activation, and a preliminary geological model with
engineering–geological units and the definition of directly endangered area for households
was presented [31].

However, due to the complexity and vulnerability of the area, the location required
more detailed investigation. Thus, the goal of the research presented here was to prove
the initial hypotheses with more detailed and concrete evidence from shallow boreholes
with material sampling (3D data, in depth, vertical component), to upgrade and update the
engineering geological map/cross-sections/model of the Gajevo landslide (in accordance
with the available detailed remote sensing data) with geophysical measurement results,
reach conclusions from a laboratory analysis of the borehole samples and to establish the
monitoring of rainfall (collected data) with a pluviometer installed in the landslide area.

2. Materials and Methods
2.1. Engineering Geological Mapping—Integrating Multi-Level Data

The detailed geological setting for the wider area is described in [31]; however, it
is still important to mention that the Gajevo landslide is located within informal Vrbova
fm. [18], in which three major units can most often be differentiated: (i) sands with silts; (ii)
clays with silts; and (iii) sands with gravels. Often, these units interchange and a “clean”
boundary between them is hard to determine in the field due to the different ratios of
“sandy” and “clayish” materials, i.e., their mixtures. Nevertheless, the material properties
dictate water permeability, i.e., the engineering geological conditions: “It is often the case
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that the sand/clay contact is a water-permeable/water-impermeable zone where, due to
high pore-water pressures, the slide surface occurs and this is also the case with the Gajevo
landslide [31]”. This thesis was confirmed in the field by mapping (the landslide occurred
on a sand/clay contact that was distinguishable on field) and historical orthophotos, and
a precipitation analysis revealed that a high amount of precipitation in combination with
snowmelt in February 2014 was the landslide’s main triggering factor [31].

For the Gajevo landslide, an initial engineering geological map was developed based
on available high-resolution remote sensing data and field mapping (described in detail
in [31]); however, due to the complexity of the location, more detailed investigations
were required, involving additional mapping with shallow boreholes (up to 5 m in depth,
borehole locations are shown in Figure 2) and material sampling. In addition, for better 3D
insight (in depth, vertical component) geophysical measurements were applied and three
electrical resistivity tomography (ERT) cross-sections were developed. The ERT1-3 locations
are shown in Figure 2. These investigations aimed to increase our knowledge of material
properties, collect information about the depth/vertical component, and integrate the
acquired multi-level data for the development/upgrade of the Gajevo landslide engineering
geological map/landslide model.
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Figure 2. Gajevo landslide area overview with marked landslide features on high-resolution terrain
slope model (0.5 × 0.5 m) with visible terrain morphology and locations of the ERT1–3 cross-sections
(cross-section markings are placed at cross-sections starting points), boreholes (B1–5), installed
pluviometer (PLM), field points (T1–24) used in mapping and houses “above” the landslide (house
numbers 15–31 and 39). Multiple smaller landslides/deformations/cracks within the area of the
initial landslide are also marked by thin red dashed lines.
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2.2. Geophysical Measurements—ERT in Landslide Research

In comparison to other geophysical methods, ERT has a wide range of resistivity
values, has a high correlation between electrical resistivity and lithology, provides the
required depth of exploration, and evaluates the subsurface in 2D, 2.5D, and 3D [32,33].
This makes ERT applicable in geotechnical and geological research [25,26,34,35]. The ERT
method, in addition to other near-surface geophysical methods, is widely used for the
assessment and forecasting of landslide processes [36–39].

ERT measures the subsurface resistivity distribution via measurements made at the
surface [26,40,41]. Soil resistivity varies as moisture content changes and/or when materials
differ [15,42,43]. In theory, sands and clays can be differentiated, and the difference in
resistivity between a dry soil and a saturated soil is significant [26,44,45]. In some cases,
ERT measurements can provide data on the geometry of the landslide, and the depth of the
sliding can be assessed [15,26,33,44].

With these assumptions in mind, three ERT cross-sections were developed in the
Gajevo landslide area: one parallel to the movement (ERT1), one perpendicular to the
movement (ERT2), and one in close vicinity of the landslide (ERT3), Figure 2. The aim was
to obtain relevant data with field measurements (Figure 3), including the geometry of the
landslide and the depth of the sliding from ERT1 and ERT2 and the “undisturbed/real” soil
parameters from ERT3 (Figure 3a,b) and the shallow boreholes placed outside the landslide
area (Figure 3c,d).

The ERT measurements were carried out using a multi-electrode resistivity system.
Field measurements were performed using a POLARES 2.0 electrical imaging system
(P.A.S.I. srl), which uses a sinusoidal alternate current with an adjustable frequency. This
system was connected to 48 stainless steel electrodes, which were laid out in a straight
line with a constant spacing of 5 m via a multi-core cable for ERT1 and ERT2. For ERT3
64 stainless steel electrodes with a constant spacing of 1.5 m were used. Surveys were
conducted using the Wenner–Schlumberger array at a frequency of 1.79 Hz and a maximum
phase of 20◦ between the voltage signal and the current signal. During the field measure-
ments, the frequency was lowered until the number of incorrect measurements was below
10%. The RES2DINV resistivity inversion software [46] was used to automatically invert
the apparent resistivity data from the field into resistivity subsurface models to provide
information about the depth/vertical component. The absolute RMS error, which provides
a measure of convergence between the measured and calculated data and thus indicates
the reliability of the final result, was 3.3% for ERT1, 3.0% for ERT2, and 3.4% for ERT3. The
resistivity datasets collected in the field were converted to ERT cross-sections, which were
used for the interpretation of subsurface conditions: for ERT1 and ERT2, the length of a
cross-section was ~235 m with an exploration depth of ~40 m, while for ERT3, the length of
a cross-section was ~94.5 m with an exploration depth of ~20 m.

2.3. Laboratory Analysis

Although material characteristics were determined in the field, 18 samples from five
boreholes were collected with the intention of choosing representative samples for further
laboratory analysis (Figure 3e). Six samples were chosen for particle size distribution
analysis (granulometry) to determine the ratios of sand/silt/clay and six samples were
chosen for X-ray diffraction on powder (XRDP) to determine the presence and type of
clay minerals: the results of three XRDP sample analysis are presented in this paper
(see Section 3.3).
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Figure 3. Overview of some field activities in Gajevo landslide area: (a) location of ERT3 cross-section
outside landslide area; (b) measurement in progress on ERT3; (c) shallow borehole development;
(d) borehole core determination; (e) borehole core sampling; (f) installed on-site pluviometer.
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2.4. Precipitation Data

In the already-performed initial research, an analysis of precipitation data from the
relevant surrounding meteorological stations (Pisarovina, Zagreb, Sisak, and Kravarsko)
helped to determine the time and cause of landslide activation [31]. However, as the
water content in the landslide body greatly affects its stability, on-site precipitation data
monitoring was established at Gajevo landslide with a fixed pluviometer for further moni-
toring/research (Figure 3f). In addition, the available precipitation data from Kravarsko
Meteorological Station were updated and reviewed once more, and new insights were
reached (see Sections 3.4 and 4.4).

3. Results
3.1. Updated Engineering Geological Map

The engineering geological map of the Gajevo landslide area is presented in Figure 4.
It is based on available existing geological data [47–52], high-resolution remote sensing
data [31], data collected in the field, and laboratory analysis results.
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cross-sections starting points.
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In the Gajevo landslide area, the Upper Pliocene sediments of the informal Vrbova
formation are present and can be divided into three engineering geological (EG) units based
in on-site material characteristics (Figure 4): (i) sands, sands with some clays and silts (S);
(ii) sands, slits, clays (mixtures, SMC); and (iii) clays, clays with silts (CM). The presented
differentiation of units the in informal Vrbova fm. is somewhat different from the standard
(see Section 2.1) due to the actual conditions present in the field. To vindicate the “used”
EG units for the Gajevo area, samples were taken from shallow boreholes and a laboratory
analysis was conducted (see Section 3.3) and the resulting map (Figure 4) is somewhat
different/modified/updated than the map presented in [31].

From an engineering point of the view, the stability of the area is important, and for
the Gajevo landslide area, this stability mostly depends on the water content in the “soil”.
All superficial water “appearances” were marked/mapped, and from these data, the most
important was the position of the well (208 m above sea level) on the contact of “mixtures”
and “clayish” materials right below the head scarp area. Within the well, the water level
was found on the terrain surface, indicating the groundwater level, i.e., the landslide body
downslope is probably still (mostly) saturated.

The landslide area is ~19,500 m2 with a height difference of ~35 m. The head scarp
height varies between ~5 and 10 m and extends along the road for ~225 m. The land-
slide is located on the northern side of the slope, where the main movement direction
is northeast [31]. The landslide is considered as a composite [4], with multiple smaller
landslides/deformations/cracks within the area of the initial landslide (Figure 2).

Considering all of the available data (and newly recorded minor deformations and
cracks developed during the period/process of field mapping from 2019 to 2022), future
movements are expected in the Gajevo landslide area and a directly endangered area
(critical zone) can be defined as the area in the vicinity of the existing head scarp, where the
road and five houses are in the critical zone (house numbers 23–31). This endangered area
is ~11,000 m2 and encompasses both areas that are already in movement (landslide area)
and the area without (major) signs of instabilities (landslide crown area).

3.2. Developed ERT Cross-Sections with Borehole Data

For the Gajevo landslide area, the 3D (depth/vertical component) data are scarce thus,
the ERT cross-sections developed here provide valuable information. From ERT1 (Figure 5)
and ERT2 (Figure 6), it can be seen that the material in movement (colluvial material) is
relatively close to the surface: with lower resistivity values up to ~40–50 Ωm and generally
speaking, as the depth increases the resistivity is higher. On the “western” side of ERT2
(around boreholes B4 and B5), there is a zone near the surface with lower resistivity values,
which could indicate a weakened zone/fault area. This zone can be identified on the terrain
by geomorphological/topographical indicators (V-shaped valley with stream, changes in
contour lines, and also indicative is the landslide border position, Figure 4) but was not
visible in the material (changes) from the shallow boreholes: the material in boreholes B4
and B5 was mostly a heterogeneous mixture of sands, silts, and clays.

ERT3 (Figure 7) was placed outside the landslide area with the intention of obtaining
“undisturbed/real” soil parameters; however, the cross-section was complex to interpret as
its resistivity values changed “irregularly”. Still, it could be explained in the following way:
(i) sandy layers had a greater resistivity value (>70 Ωm) with “purer” sandy layers having
higher resistivity values (>100 Ωm); (ii) relatively low resistivity values were observed at
the middle part of the cross-section at a depth of ~10 m (<20 Ωm, Figure 7, which could
be an indication of the influence of a weakened zone/fault area and/or the presence of
“clayish” materials and/or high water content; and (iii) material interchanges (sands vs.
silts vs. clays) were irregular and common for a relatively small area/depth.
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From the interpreted ERT1 and ERT2 information about material resistivity and sliding
surfaces depth can be gained: ~5 m at the middle part of the landslide and ~10 m at the
upper part of the landslide (Figures 5 and 6). From the ERT2 and ERT3 data, a possible
weakened zone/fault area could be interpreted where the material resistivity values are
low (Figures 6 and 7).

In boreholes B1–B5 (Figures 5–7), there was a shallow weathered zone (up to ~0.8 m
of depth, described as “top soil with roots”), after which material mixtures (sands, slits,
clays) followed (up to ~2 m of depth for B1–B3 and greater for B4 and B5). Sandy layers
were present at a depth of ~2 m in B1, B2, and B4 and below a depth of ~4 m in B3 and B5.
Clayish layers were more pronounced in B1 and B3 at a depth below ~2.3 m, and there
was a relatively thin clayish layer in B2 at a depth of 0.6–1.1 m. The possible weakened
zone/fault area is in the vicinity of the B4 and B5 (Figures 6 and 7), which could be the
reason why “only” material mixtures were recorded in the B4 and B5 core samples (with
some thin sandy layers), while in B1, B2, and B3 more “rhythmic” material interchanges
were present (Figures 5–7).

3.3. Laboratory Analysis Results

Samples for laboratory analysis were taken from the shallow boreholes to clarify and
verify the material characteristics determined in the field, i.e., the EG units used.

The particle size distribution (granulometry) of six samples was analysed to determine
the ratios of sand vs. silt vs. clay. The laboratory analysis for these six samples was
carried out in accordance with field material determination/classification, and the actual
ratios (laboratory test results [53]) are shown in Table 1. Samples B1–S1 and B3–S4 can
be considered as “typical” sand-silt-clay mixtures where more than 20% of one material
type but less than 50% of the “dominant” material type was present in the sample [54].
Sample B1–S2 was “typical” silt-clay, almost “pure”. Samples B2–S3, B3–S5, and B5–S6
were variants of sandy materials with an “emphasized coarse grain component” (~60%
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or more), and with ~30% of silt and some clay (up to ~10%). For each EG unit used, a
representative sample was analysed (Figure 4): (i) sands, sands with some clays and silts
(S), represented by samples B2–S3, B3–S5, and B5–S6; (ii) sands, slits, clays (mixtures SMC),
represented by samples B1–S1 and B3–S4; and (iii) clays, clays with silts (CM), represented
by sample B1–S2, as shown in Table 1. It should be pointed out that sands, silts, and clays
were present in all six analysed samples; however, the sand ratios varied from 363%, silts
ratios varied from 32–59% and clays ratios varied from 5–38%. The particle size distribution
analysis was performed according to the ASTM-D422-63 norm [55].

Table 1. Particle size distribution with classification for the six analysed samples.

Sample Depth (m) Gravel, G (%) Sand, S (%) Silt, M (%) Clay, C (%) Classification

B1–S1 1.65–1.75 0.0 37.9 34.1 28.0 SMC
B1–S2 2.65–2.75 0.0 3.1 58.7 38.3 CM
B2–S3 2.85–2.95 0.0 62.5 32.8 4.7 S with M
B3–S4 1.80–1.90 0.0 23.9 47.1 29.0 SMC
B3–S5 4.70–4.80 0.0 59.3 33.6 7.1 S with M
B5–S6 4.30–4.40 13.3 44.4 32.1 10.2 S with M

An additional analysis was performed on samples with larger “silty” and “clayish”
components (samples B1–S1, B1–S2, and B3–S4). The analysis was performed according to
the ASTM-D-2216-19 norm [56] to determine water content (W0) and the ASTM-D4318-17
norm [57] to determine the liquid limit (WL), plastic limit (WP), plasticity index (IP) and
consistency index (IC), as shown in Table 2. According to the classification presented in
Table 2, samples B1–S1 and B3–S4 are medium plastic clays (CI), while sample B1–S2 is
a highly plastic clay (CH). The presented material classifications differ slightly between
Tables 1 and 2 as different laboratory tests were used; however, the results/material
properties indicate the same—the presence of clay: in the B1–S1 (SMC) sample there was
28% clay and in the B3–S4 (SMC) sample there was 29% clay, and those clays were medium
plastic, while in the B1-S2 (CM) sample there was 38% clay and that clay is highly plastic.
The presence of high shrink-swell capacity clay was also confirmed by the X-ray diffraction
on powder (XRDP) analysis results [58].

Table 2. Water content, Atterberg limits, and plasticity and consistency indexes with classification for
three analysed samples.

Sample Depth (m) W0 (%) WL (%) WP (%) IP (%) IC (-) Classification

B1–S1 1.65–1.75 24.8 46 23 23 0.92 Cl
B1–S2 2.65–2.75 24.2 53 27 26 1.10 CH
B3–S4 1.80–1.90 22.4 47 23 24 1.02 Cl

X-ray diffraction on powder (XRDP) analysis was performed for three samples [58].
The samples were taken from borehole B1 at a depth of 4.70 m, B2 at a depth of 0.75 m,
and B3 at a depth of 2.95 m. The results showed the presence of quartz, calcite, muscovite,
chlorite, and clay minerals (vermiculite, montmorillonite, kaolinite, and illite) in all three
samples [58]. These findings are in accordance with those of previously conducted research
in the Viviparus beds/Vrbova fm., where the mineral composition of the <2 µm fraction
(“clay size minerals”) included chlorite, illite/muscovite, and kaolinite [59]. However,
vermiculite and montmorillonite clay minerals were additionally identified in the analysed
samples from the Gajevo landslide area [58]. Montmorillonite is a characteristic component
of “swelling/expansive soil”, i.e., it is a clay with a high shrink–swell capacity.
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3.4. Analysis of Precipitation Data from Kravarsko Meteorological Station

Initial precipitation data are described in [31], where February 2014 was determined as
the date of Gajevo landslide activation. The landslide was activated due to a combination
of temperature increases (from −2 ◦C on the 1 February to 11 ◦C on the 16 February), which
caused snowmelt, accompanied by heavy rains (240 mm of precipitation in February, of
which 85 mm fell on the 12 February 2014).

As precipitation was the main landslide trigger [31] in this case (in combination
with snowmelt), available precipitation data from Kravarsko Meteorological Station for
2000–2021 (the last 22 years, Table 3) were further reviewed in the context of ongoing
climate changes [12,60]. From the precipitation data (Table 3), the following interpreta-
tions could be made: (i) yearly precipitation values showed a general increasing trend
(Figure 8), especially if periods 2000–2012 and 2013–2021, with average precipitation values
of 765 mm and 1087 mm are compared); (ii) there were extremes in the period of 2000–2021,
with the “dry” year corresponding to 2011 and the “wet” year represented by 2014 (when
the landslide occurred); and (iii) precipitation minimum and maximum values (months)
varied widely through the year(s). As these precipitation amounts (values) changed, the
general trend (for this part of continental Croatia) with “drier” (from March to August)
and “wetter” (from September to February) parts of the year is hard to follow (Figure 8);
however, this trend was still visible for 2000, 2001, 2003, 2007, 2009, and 2010 and for the
period of 2012–2021 (except 2018). For 2002, 2004, 2005, 2006, and 2011, there was a higher
amount of precipitation in the period from March to August, similar to that observed in
2008 and 2018 but with less pronounced differences.

Table 3. Precipitation data from Kravarsko Meteorological Station for the period of 2000–2021.

Year Precipitation
(mm/year) 1

Precipitation Minimum
(Monthly Values)

Precipitation Maximum
(Monthly Values)

2000 638 9 mm in August 119 mm in December
2001 973 22 mm in October 216 mm in September
2002 952 21 mm in January 149 mm in April
2003 578 3 mm in March 116 mm in October
2004 903 42 mm in January 190 mm in April
2005 954 28 mm in January 169 mm in August
2006 750 5 mm in October 171 mm in August
2007 797 4 mm in April 156 mm in October
2008 613 13 mm in May 99 mm in March
2009 614 14 mm in September 89 mm in June
2010 973 41 mm in December 167 mm in September
2011 478 2 1 mm in November 93 mm in June
2012 728 5 mm in March 125 mm in December
2013 966 23 mm in July 163 mm in January
2014 1601 3 43 mm in March 265 mm in September
2015 1047 4 mm in December 216 mm in October
2016 1107 2 mm in December 169 mm in February
2017 1001 37 mm in July 237 mm in September
2018 980 18 mm in August 177 mm in February
2019 1234 31 mm in February 215 mm in May
2020 917 7 mm in January 189 mm in October
2021 930 2 mm in June 138 mm in October

1 Average (yearly) precipitation for Kravarsko Meteorological Station for 2000–2021 is 897 mm. 2 2011 was an
extremely “dry” year. 3 2014 was an extremely “wet” year.
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The need for continuous monitoring is apparent as: (i) precipitation minimums and
maximums varied in their amounts and time of occurrence; (ii) yearly precipitation val-
ues increased (general increasing trend, that became more pronounced from 2013 on-
wards, which we consider as evidence of ongoing climate changes); and (iii) more ex-
treme events are expected (“dry” and “wet” years), and with them the reactivation of the
Gajevo landslide.

4. Discussion

Landslides can be devastating and fatal [61]. To avoid these scenarios and to minimize
the negative effects of landslides, multidisciplinary research into landslides is carried
out: (i) determine the spatiotemporal evolution of landslides [62]; (ii) measure landslide
morphometry and areal changes by remote sensing [63]; (iii) develop ground models [64];
and (iv) develop remedial measures [65].

A recent landslide that resulted in the endangerment of safety and extensive property
damage in Croatia was the Hrvatska Kostajnica landslide in 2018. In that case, a multi-level
approach to landslide research provided valuable insights [15] and guidelines on how to
proceed when previous landslide data were practically non-existent.

As available landslide data for the wider research area (the Vukomeričke Gorice
hilly area [18]) and landslide locality (Gajevo [30]) are scarce, multi-level data analyses
were carried out for the Gajevo landslide research area as follows: (i) with the usage
of field mapping and remote sensing data, a preliminary map of Gajevo landslide area
was developed [30] and updated (Figure 4); (ii) with ERT measurements, knowledge
about material resistivity and sliding surface depth was gained (Figures 5–7); (iii) material
characteristics determined in the field were confirmed by laboratory analysis [53,58]; and
(iv) an analysis of precipitation trends showed that more extreme events are expected
(Tables 3 and 4, Figure 8). All of these findings are valuable novelty for the Gajevo landslide
area. It is important to note that as the reactivation of the Gajevo landslide due to extreme
events (rainfall with snowmelt) is possible in the future, the landslide map provided
here (Figure 4) can be used in the development of mitigation plans for the endangered
area/critical zone.
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Table 4. Precipitation values of ≥40 mm per heavy rainfall event (h.r.e.) at Kravarsko Meteorological
Station for the period of January 2000–September 2022.

Year February March April May June July August September October November December No. of
h.r.e. 1

2001 41 1
2006 41 1
2010 42 1
2014 85 43 49 47 40 64 6
2015 67 69 52 3
2016 82 1
2017 40, 60 48 3
2018 40 48 73 3
2019 46, 53 97 53 4
2020 57, 58 45 58 4
2021 41 40 2
2022 46 49 no data no data no data 2

1 Years (2000, 2002–2005, 2007–2009, and 2011–2013) and months (January) without heavy rainfall events are not
presented in the table (there were only three h.r.e. in the period of 2000–2012, these values are marked in italics).
For the period of January 2000–September 2022, there were 31 h.r.e. with five events having ≥60 mm of rainfall
(bolded values) and three extreme events with ≥80 mm of rainfall (2014, 2016, and 2019, red bolded values).

4.1. Comments on the Developed Engineering Geological Map of the Gajevo Landslide Area

Informal Vrbova fm. sediments are present in the Gajevo landslide area. Within this
area three EG units could be differentiated on site (Figure 4): (i) “sandy sediments” (S);
(ii) “clayish sediments” (CM); and (iii) their mixtures (SMC) [46,47]. These units interchange
and vary both laterally and vertically, thus, it is hard to map them. The used EG units were
somewhat different than the standard units used for the informal Vrbova fm. (“sandy”,
“clayish”, and “gravely” [45]); however, they were site-appropriate and backed up by
laboratory analysis results (see Section 3.3) [46,47].

The presented map (Figure 4) is simplified in comparison with the initial map pre-
sented in [24] with respect to EG units, and in addition, the area directly endangered by the
Gajevo landslide was modified (enlarged), as additional field mapping was carried out and
new data were acquired (ERT and borehole data with laboratory analysis results).

The developed engineering geological map of the Gajevo landslide area with the land-
slide and directly endangered areas marked is already in a form that the local community
can use in landslide risk assessment [66]: the road and five houses are directly endangered,
and three more houses are near the landslide area (Figure 4).

4.2. Gajevo Landslide Area 3D Data Review

New ERT and borehole data provided “vertical” (3D, depth) information about the
Gajevo landslide area. Information about material resistivity and sliding surface depth
was gained from ERT1 and ERT2 [18,22,26]: ~5 m at the middle part of the landslide and
~10 m at the upper part of the landslide (Figures 5 and 6). In ERT2 and ERT3, a possible
weakened zone/fault area could be interpreted where material resistivity values are low
(Figures 6 and 7) [25,26]. In general, the material resistivity values were low for the Gajevo
landslide area, and it was hard to distinguish different layers (EG units) in the ERT cross-
sections; however, the landslide features (sliding surface depth) could be interpreted, which
represent an information of great value in landslide research.

The shallow boreholes were placed outside the landslide area on purpose (Figure 4)
to obtain as much information as possible about the “undisturbed” sediment distribution
and to try to identify the mapped EG units for the area in the borehole core(s), Figures 5–7.
This was accomplished as the distinct EG units for the area were identified in the shallow
borehole core samples. As mentioned earlier, even though the EG units interchange and
vary both laterally and vertically, the previously mapped data (2D) are in accordance
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with the acquired borehole data (3D) and as such provide a valuable verification for the
developed map.

4.3. Gajevo Landslide Area Material Properties Findings

The Gajevo landslide area materials can be described as sands, silts, and clays (see
Section 3.3). The site-specific location characteristics depend on material ratios: sand vs. silt
vs. clay. These ratios are hard to determine in the field, samples and laboratory analysis are
needed. As “sandy” materials are more permeable than “clayish” materials upon contact
between these layers sliding often occurs in Vrbova fm. [11], just as it occurred at the Gajevo
landslide location.

It is worth mentioning that in some cases, the presence of highly plastic expansive
clays can “influence” the behaviour of the “rest” of the silty-clayish component, where
the whole sample “acts unfavourable” from the aspect of stability [47,67]. In addition, the
material’s water content is important with respect to stability and can be correlated with
electrical conductivity/resistivity. Higher water content indicates a low resistivity value
and high conductive zone, while lower water content indicates high resistivity and low
conductivity value [68]. The resistivity values of “sandy” materials are generally higher
than those of “clayish” materials. However, they are influenced by water content: “sandy”
materials with water can have resistivities in the range of 100–150 Ωm [69] and “clayish”
materials with water can have resistivities lower than 100 Ωm [70].

As mentioned previously, the effect of water content and the degree of saturation [71],
soil structure [72] and pore fluid [73] can affect material resistivity values. However, for
the Gajevo landslide area, the following general interpretations can be made: (i) with
increasing depth, material resistivity values also increase; (ii) materials with resistivity
values > 100 Ωm can be interpreted as predominantly “sandy” materials; and (iii) near-
surface materials within landslide area with resistivity values < 40 Ωm can be interpreted
as colluvial material.

Due to the material properties present in the Gajevo landslide area (sediment character-
istics presented in Tables 1 and 2), the determination of EG units is not possible solely based
on ERT even in undisturbed materials. For these types of complex sediments/mixtures, de-
tailed field mapping and laboratory analysis are needed [46,51]. If available, high-resolution
remote sensing data (high-resolution DEMs and orthophotos) can also help, as on it, distinct
geomorphological and landslide features can be identified, which in some cases can also
indicate a change in material properties.

4.4. Importance of Heavy Rainfall Events

As heavy rainfall events (h.r.e.) are the most common trigger of landslides in northern
Croatia [11,74], daily h.r.e. were singled out for the period of January 2000–September 2022
from the available (daily) data of Kravarsko Meteorological Station (Table 4). A threshold
value for h.r.e. precipitation of ≥40 mm cumulative rainfall per day was set. The data
showed that for the period of 2000–2012, only three h.r.e. were recorded (with relatively
low values for daily precipitation of 41, 41, and 42 mm of rain, Table 4). For the period of
2013–2022, there were 28 h.r.e. with five daily precipitation values ≥ 60 mm (60, 64, 67,
69 and 73 mm of rain, Table 4) and three extreme events with >80 mm of precipitation
in one day (82, 85, and 97 mm of rain, Table 4). Generally, yearly precipitation values
increased (period of 2013–2022, Table 3) and there were more months with a higher amount
of (cumulative) rainfall and more “critical” heavy rainfall events [35,53]. As these events are
spread throughout the year without a visible pattern, continuous precipitation monitoring
is needed.

The h.r.e. from February 2014 with 85 mm of rain (in combination with snowmelt)
was the main triggering factor of the Gajevo landslide. It is indicative that the other two
extremes occurred when snow cover was not present, in the summer of 2016 (June, 85 mm
of rain) and in the autumn of 2019 (September, 97 mm of rain), and “only” caused minor
movements in the Gajevo landslide body: the measured deformations on houses on Gajevo
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Street were within centimetres range [23]. From the available data, it can be concluded
that: (i) the frequency of h.r.e. and the amount of precipitation per event has increased,
and extreme events are continuing to happen; (ii) the intensity and timing of these events
cannotbe predicted; (iii) from the aspect of slope stability, extreme events are important;
and (iv) it is reasonable to expect an extreme event to occur in combination with snowmelt
in the coming years, i.e., the reactivation of the Gajevo landslide. The authors consider the
presented data interpretation as evidence of ongoing climate changes and from the aspect
of slope stability these trends are negative.

4.5. Landslide Mitigation Plan Guidelines

As a first step, “water control” must be established in the critical zone to minimize
the entrance of water into the landslide body, with the development and establishment
of adequate road and houses drainage systems as follows: (i) gutters should be checked,
cleaned, or installed; (ii) shallow channel systems with material replacements should be
developed around houses; and (iii) deeper drainage pipes with geo-textiles should be
developed in the landslide body, for example, the “fishbone” construction type could
be applied. As a result, the water can be gathered and steered away to the existing
stream downslope in a controlled way. However, further detailed research with landslide
monitoring is recommended for the development of an efficient mitigation plan that can
be put in place. The installation of an on-site pluviometer can be considered as step taken
towards continuous landslide monitoring.

5. Conclusions

The presented Gajevo landslide can be considered as a typical simplified landslide
model in the Vrbova fm. The landslide occurred on sand/clay contact due to an increase
in pore water pressures. It was triggered by a heavy rainfall event (85 mm of rain), which
coincided with a temperature change from −2 ◦C to 11 ◦C and snowmelt in February
2014. It is a relatively large composite landslide with an area of ~19,500 m2 and a height
difference of ~35 m. The head scarp height varies between 5 and 10 m, and it extends along
the road for ~225 m. The landslide is located on the northern side of the slope, where its
main movement is in the northeast direction, and it is still directly endangering the road at
the top of the slope and five houses.

The sliding surface depth was interpreted from the ERT cross-sections of the landslide
area as ~5 m at the middle part of the landslide and ~10 m at the upper part of the
landslide. Overall, the material resistivity values from the ERT’s were low and it was hard
to distinguish the different layers (engineering geological units) as the materials (sand vs.
silt vs. clay) interchange and vary both laterally and vertically, therefore field mapping
was performed and samples were collected for laboratory analysis from shallow boreholes
outside the landslide area. Based on the available data, three engineering geological units
were differentiated on site: (i) “sandy sediments”; (ii) “clayish sediments”; and (iii) their
mixtures, as presented on the developed engineering geological map of the Gajevo landslide
area. The developed map, with the landslide and directly endangered areas marked, is
already in a form that the local community can use for landslide risk assessment and urban
planning. The establishment of water drainage systems along the road, on and around
houses with gutters and shallow channels is recommended as an urgent mitigation measure
in the critical zone.

As the authors interpret it, the precipitation trends for the Kravarsko area are be-
ing influenced by the ongoing climate changes: (i) Yearly precipitation values showed a
general increasing trend, especially when the periods of 2000–2012 and 2013–2020 with
average precipitation values of 765 mm and 1107 mm are compared); (ii) there were ex-
tremes in the period of 2000–2020, with a “dry” year in 2011 (with 478 mm of precipitation)
and a “wet” year in 2014, when landslide occurred (with 1601 mm of precipitation); and
(iii) precipitation minimum and maximum values (months) varied widely through the
year(s). In addition, for the period of 2000–2012, only three heavy rainfall events were
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recorded, while for the period of 2013–2020, there were 28 heavy rainfall events, with
5 rainfalls having ≥60 mm of precipitation and three extreme events with >80 mm of
precipitation. As these trends are negative from the perspective of slope stability (precipita-
tion values are increasing), it is reasonable to expect an extreme rainfall event to occur in
combination with snowmelt in the coming years, resulting in the reactivation of the Gajevo
landslide, which could endanger the properties and the safety of residents.

The need for further research is imperative along with continuous landslide monitor-
ing in order to develop successful forecasting and early warning systems.
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52. Kurečić, T. Sedimentologija i Paleoekologija Pliocenskih Viviparus Slojeva Vukomeričkih Gorica a [Sedimentology and Paleoecol-
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