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Abstract: The ionospheric total electron content (TEC) is susceptible to factors, such as solar and geo-
magnetic activities, resulting in the enhancement of its non-stationarity and nonlinear characteristics,
which aggravate the impact on radio communications. In this study, based on the NeuralProphet
hybrid prediction framework, a regional ionospheric TEC prediction model (multi-factor Neural-
Prophet model, MF-NPM) considering multiple factors was constructed by taking solar activity index,
geomagnetic activity index, geographic coordinates, and IGS GIM data as input parameters. Data
from 2009 to 2013 were used to train the model to achieve forecasts of regional ionospheric TEC
at different latitudes during the solar maximum phase (2014) and geomagnetic storms by sliding
1 day. In order to verify the prediction performance of the MF-NPM, the multi-factor long short-term
memory neural network (LSTMNN) model was also constructed for comparative analysis. At the
same time, the TEC prediction results of the two models were compared with the IGS GIM and
CODE 1-day predicted GIM products (COPG_P1). The results show that the MF-NPM achieves good
prediction performance effectively. The RMSE and relative accuracy (RA) of MF-NPM are 2.33 TECU
and 93.75%, respectively, which are 0.77 and 1.87 TECU and 1.91% and 6.68% better than LSTMNN
and COPG_P1 in the solar maximum phase (2014). During the geomagnetic storm, the RMSE and
RA of TEC prediction results based on the MF-NPM are 3.12 TECU and 92.86%, respectively, which
are improved by 1.25 and 2.30 TECU and 2.38% and 7.24% compared with LSTMNN and COPG_P1.
Furthermore, the MF-NPM also achieves better performance in low–mid latitudes.

Keywords: LSTMNN; multi-factor NeuralProphet; Ionospheric TEC forecast; solar maximum phase;
geomagnetic storms

1. Introduction

The ionosphere is an important part of the Earth’s atmosphere. Due to the high
density of ions and free electrons in the ionosphere, the propagation speed and phase of
radio signals are changed. Therefore, ionospheric delay is one of the most serious error
sources of GNSS (Global Navigation Satellite System) navigation and positioning services.
Moreover, the quantitative influence of the ionosphere manifests in the total electron
content (TEC), which is defined as the total number of electrons integrated per m2 along
the path from a satellite to a GNSS receiver. Accurate TEC prediction model is required to
establish what can effectively attenuate the delay effects caused by ionosphere in the radio
waves propagation to improve the precision of satellite navigation and positioning services
and also to further provide the scientific basis for exploring the spatiotemporal variation
mechanism of the ionosphere.

At present, many scholars have made great achievements in the field of establishing
an ionospheric TEC prediction model. The common empirical ionospheric models, such
as the International Reference Ionosphere (IRI) model [1], Klobuchar [2], Bent [3], and
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NeQuick [4], are widely used in GNSS ionospheric delay correction. Nevertheless, empirical
models are not updated frequently, and their correction accuracy is not ideal in the case
of ionospheric disturbance, especially on a regional scale. GNSS measurements, therefore,
are widely used to establish regional ionospheric function models based on mathematical
statistics to explore regional ionospheric disturbances and variation in spatiotemporal
characteristics [5–10]. In addition, time series models have also been applied to simulate the
spatiotemporal characteristics of ionospheric TEC in local areas with acceptable accuracy,
such as singular spectrum analysis (SSA) [11], autoregressive integrated moving average
model (ARIMA) [12] and autoregressive moving average model (ARMA) [13]. These kinds
of linear prediction models have the advantages of mature and perfect model theory and
analysis for time series data analysis with the characteristics of trend, periodicity, and
seasonality. However, the restrictive assumptions and parametric properties limit their
performance in practical applications.

With the development of artificial intelligence technology, neural network models
have been widely used in the field of ionospheric TEC prediction due to their advantages
of combining feature extraction with the learning and processing of nonlinear and high-
complexity time series data. Hernández-Pajares et al. have established the Kohonen neural
network model of the global ionospheric electron content by using GPS data [14]. Cander
used artificial neural networks (ANN) for short-term local prediction of TEC and critical
frequency foF2 one hour in advance [15]. Habarulema et al. used GPS data and the ANN
model to establish a multi-parameter SATECP model for spatiotemporal prediction of
ionospheric TEC in southern Africa, indicating that the ANN model’s prediction results
during the geomagnetic quiet period were better than those in the geomagnetic storm
period and could correctly identify geomagnetic storm effects [16]. Liu et al. established an
empirical prediction model of TEC based on machine learning (ML) for parts of Europe,
and the statistical results show that the monthly mean values of TEC predicted by its model
are highly consistent with the observed values curve of TEC [17]. In addition, an improved
radial basis function (RBF) [18] neural network model based on the Gaussian mixture
model, wavelet neural networks (WNNs) [19], and support vector machine (SVM) [20] has
also been applied to forecasting ionospheric TEC.

However, the ionosphere is a dynamically changing environment that is characterized
by disorder, as well as being randomized and nonlinear, in spatiotemporal dimension.
Moreover, the ionosphere is susceptible to varying degrees of perturbation of the interstellar
environment, especially during the period of geomagnetic storms and intense solar activity,
which leads to abnormal disturbance. In this case, the ionospheric non-stationary and
nonlinear characteristics are significantly enhanced compared to the geomagnetic and solar
quiet periods. In addition, the ionospheric TEC also shows significant spatiotemporal
variations in different geographic locations and times. Therefore, the deep neural network
(DNN) is adopted to construct the ionospheric TEC prediction model. Iluore and Lu
established three deep neural network models of LSTM, gated recurrent unit (GRU), and
multilayer perceptron (MLP) to predict VTEC based on the 6-year data of the 24th solar
cycle, proving that the prediction performance of the deep neural networks models is better
than that of the GIM and IRI-Plas2017 [21]. Shi et al. constructed the bidirectional long short-
term memory neural network (Bi-LSTM) model over China using GNSS observations [22].
In order to further improve the prediction accuracy of TEC based on the DNN model, the
multi-factor hybrid DNN model was proposed to predict TEC and also achieved good
prediction accuracy. Xiong et al. proposed a novel extended encoder-decoder long short-
term memory extended (ED-LSTME) neural network, which can predict ionospheric TEC,
proving that the prediction accuracy is better than the single LSTMNN model [23]. Srivani
et al. established a single-station local multi-factor long short-term memory network model
by considering the geomagnetic activity index and VTEC. The prediction results showed
better performance than the ANN model and the IRI-2016 model [24]. Lin et al. established
the spatiotemporal network model (ST-LSTM) based on LSTM neural network model
for global Ionospheric prediction, taking into account the spatiotemporal dimension and
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spatial autocorrelation information of TEC. The results have shown that the ST-LSTM
model can effectively improve the prediction accuracy of TEC [25]. Bi et al. used the
ionospheric foF2 observation data from Advanced Digital Ionosonde located in Brisbane,
Australia to propose a hybrid neural network composed of a convolutional neural network
(CNN) and BiLSTM to predict foF2 parameter variations; they ultimately found that the
hybrid model performs better than IRI-2016, LSTM, and BiLSTM ionospheric prediction
models [26]. Benoit and Petry constructed a time series prediction model of ionospheric
TEC based on the machine learning algorithm using the DCT frequency between sun
activity data and TEC and found that Elastic Net regularization reduced global error values
for linear regression [27]. Furthermore, the application of the DNN model in the field of
ionospheric TEC prediction also extends to the detection of ionospheric anomalies before
and after the earthquake. Saqib et al. employed ARIMA and LSTMNN models to detect
ionospheric anomalies using the TEC time series of the 7.0 Mw earthquake center in Haiti
and found that the LSTMNN model shows better performance in detecting anomalies than
ARIMA [28].

In this paper, a new hybrid framework NeuralProphet model is developed to con-
struct the ionospheric TEC prediction model considering multiple factors, including the
geomagnetic activity index, solar activity index, geographic coordinates, and other influ-
encing factors related to the spatiotemporal variation of TEC, which will be called the
multi-factor NeuralProphet model (MF-NPM). In order to verify the accuracy and con-
sistency of the regional ionospheric TEC prediction model proposed in this paper, the
multi-factor long short-term memory neural network (LSTMNN) model is also achieved.
The prediction results are analyzed and evaluated comprehensively by referencing IGS
GIM and CODE 1-day predicted GIM products (COPG_P1) during solar peak years and
geomagnetic storms.

2. Materials and Methods
2.1. Multi-Factor NeuralProphet Model (MF-NPM)

NeuralProphet is a neural network based on PyTorch implementation of a time series
forecasting tool and is heavily inspired by Prophet, which is the popular forecasting tool
developed by Facebook. In addition, it uses standard deep learning methods for training,
and local conditional variables can be introduced through autoregressive and covariable
modules. NeuralProphet model retains the same basic model components as Prophet
and can be configured as classical linear regression or neural network model, according
to requirements. Compared with the Prophet model, NeuralProphet uses PyTorch for
optimization, which speeds up the modeling process, and AR-NET is used to build the time
series autocorrelation model. In addition, NeuralProphet also has the advantages of the
customized loss function and the configurable nonlinear layer of the feedforward neural
network [29,30]. The complete composition formula of NeuralProphet can be expressed as:

ŷt = T(t) + S(t) + E(t) + F(t) + A(t) + L(t) (1)

where t is the time, ŷt is the predicted value, T(t) is the trend information, S(t) is the
seasonal effect, E(t) refers to the event and holiday effect, F(t) denotes the regression effect
for future-known exogenous variables, A(t) is the auto-regression effect based on past ob-
servations, and L(t) is the regression effect for lagged observations of exogenous variables.

As we have previously stated, this paper used the MF-NPM based on the Neural-
Prophet model with AR-Net and lagged regressors. Lagged regressors were used to
correlate the solar activity index, geomagnetic activity index, geographic coordinates, and
IGS GIM data variables to our TEC time series database.

2.2. Long Short-Term Memory Neural Network (LSTMNN) Model

In this study, the deep learning methods for LSTMNN were built on top of TensorFlow.
The LSTMNN model solves the shortcomings of recurrent neural networks in the process
of backpropagation, such as gradient explosion and disappearance, and can better learn
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the long-term dependence of TEC on time series information. The LSTMNN neurons add
the structure of three “gates” (input gate, forgetting gate, and output gate) to replace RNN
neurons to improve the long-term sequence prediction [31,32]. The gate unit of the network
neuron structure can be described by the following functions:

It = σ(wi[ht−1, Xt] + bi) (2)

ft = σ(w f [ht−1, Xt] + b f ) (3)

Ot = σ(wo[ht−1, Xt] + bo) (4)

Ct = ft ∗ Ct−1 + It ∗ tanh(wc[ht−1, Xt] + bc) (5)

ht = tanh(Ct) ∗ Ot (6)

where Xt is the time series of the input; ht−1 is the short-term memory of neurons; It, ft, and
Ot, respectively, represent the input gate, forgetting gate, and output gate; Ct−1 represents
the unit state at the last moment; Ct is the updated unit state; b is the bias term, w is the
weight matrix; ht is the output value; σ is the sigmoid activation function; the range is (0, 1);
and tanh is a hyperbolic tangent activation function that controls the state and output of
the unit.

3. Data Processing and Analysis
3.1. Data and Model Parameter Settings

In this study, the input parameters of the MF-NPM and LSTMNN models include
four parts: geographic coordinates, the solar activity index, the geomagnetic activity, and
historical TEC data. The ionospheric TEC time series database used for modeling is the IGS
GIM data from 2009–2014, obtained from CDDIS (https://cddis.nasa.gov/archive/gnss/
products/ionex/, accessed on 20 September 2022), with a spatiotemporal resolution of
2.5◦ × 5◦ × 2 h. These TEC data are divided into training and test subsets during the
operations of the modeling process, among which datasets for 2009–2013 are used to train
the MF-NPM and LSTMNN models, and the data from 2014 are selected as the test dataset
to validate the two models’ performance by sliding 1 day. The study area ranges from
70~140◦E and 5~60◦N, covering the whole region of China. In addition, as interplanetary
influence factors affect the spatiotemporal characteristics of TEC, the equatorial ring current
index Dst provided by ICSU-WDS Data Center (https://wdc.kugi.kyoto-u.ac.jp/wdc/
Sec3.html, accessed on 20 September 2022) and the solar activity index SSN provided by
German Geoscience Research Center GFZ (ftp://ftp.gfz-potsdam.de/pub/home/obs/,
accessed on 20 September 2022) are used as input parameters, together with ionospheric
TEC for participating in model construction. The levels of interplanetary influence factors
are shown in Table 1, and the geomagnetic and solar activities from 2008 to 2014 are shown
in Figure 1. Moreover, the relevant data refer to the Chinese Geomagnetic Violence Grade
Standard Document (GB/T 31160-2014) and the NOAA Space Weather Prediction Center.

Table 1. Classification of geomagnetic activity and solar activity.

Dst/nT Geomagnetic Activity SSN Solar Activity

−30 < Dst Quiet 0 ≤ SSN < 40 Low
−50 < Dst ≤ −30 Minor Storm 40 ≤ SSN < 80 Moderate
−100 <Dst ≤ −50 Moderate storm 80 ≤ SSN < 150 High
−200 < Dst ≤ −100 Major Storm 150 ≤ SSN < 250 Very High

Dst ≤ −200 Severe Storm 250 ≤ SSN Extreme

The period 2009–2014 belongs to the 24th solar cycle, and the solar activity peak was
reached in April 2014. Figure 1 indicates that the SSN values showed an overall upward
trend from 2009 to 2014 and reached a maximum of 220 on 27 February 2014. Therefore,
this paper studies the applicability and superiority of MF-NPM in predicting ionospheric

https://cddis.nasa.gov/archive/gnss/products/ionex/
https://cddis.nasa.gov/archive/gnss/products/ionex/
https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
ftp://ftp.gfz-potsdam.de/pub/home/obs/
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TEC in 2014, the peak year of the 24th solar activity cycle, and produces a comprehensive
comparison and analysis with the LSTMNN model.
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The specific parameter settings of the MF-NPM and LSTMNN model are illustrated in
Table 2. The default settings are used for other relevant parameters in the MF-NPM.

Table 2. Specific parameter settings of MF-NPM and LSTMNN model.

Model Parameters Setting

MF-NPM

weekly_seasonality FALSE
yearly_seasonality FALSE
daily_seasonality FALSE

n_lags 12
num_hidden_layers 48

d_hidden 4
batch_size 512

epochs 120
loss_func mean_squared_error
normalize “standardize”

seasonality_mode “multiplicative”
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Table 2. Cont.

Model Parameters Setting

LSTMNN

LSTM layer Units = 256, activation = ‘relu’, return_sequences = True
Dropout 0.2

LSTM layer 1 Units = 256, activation = ‘relu’,
return_sequences = True

Dropout1 0.2
LSTM layer 2 Units = 256

Dense 1

Compile Optimizer = ‘adam’,
Loss = ‘mean_squared_error’

batch_size 512
seq_len 12
epochs 120

3.2. Results and Discussion

In this paper, the mean bias, root mean square error (RMSE) of model residuals, relative
accuracy (RA), and mean TEC (MTEC) are used as metrics to evaluate the prediction
accuracy of TEC:

Bias =
1
n

n

∑
i=1

(
tecp,i − tecr,i

)
(7)

RMSE =

√
1
n

n

∑
i=1

(tecp,i − tecr,i)
2 (8)

RA =
1
n

n

∑
i=1

(1 −
∣∣tecp,i − tecr,i

∣∣
tecr,i

)× 100% (9)

MTEC =
n

∑
i=1

(teci· cos ϕ)/
n

∑
i=1

cos ϕ (10)

where tecp and tecr represent the TEC value of the ionospheric grid point (IGP) predicted
by the models and provided by IGS, respectively. ϕ is the geographic latitude of IGP, and n
is the length of the predicted TEC data. TEC is measured in the TEC Unit (TECU) where 1
TECU = 1016 el/m2.

3.2.1. Prediction Accuracy Analysis in the Peak Year of Solar Activity

The overall activity level of regional ionospheric TEC can be reflected by MTEC [10].
Figure 2 shows the comparison results of the daily MTEC and the MTEC difference
(DMTEC) of the MF-NPM, LSTMNN, and COPG_P1 with regard to IGS in 2014. Figure 2a
illustrates that the MF-NPM, LSTMNN, and COPG_P1 can describe the detailed diur-
nal variations of TEC. The overall MTEC dynamics of MF-NPM, LSTMNN, and COPG
are in good consistency with IGS GIMs, ranging from 19.0 to 53.5 TECU. Moreover, as
shown in Figure 2b, the DMTEC distribution of MF-NPM is the most concentrated and is
within 2.0 TECU, and the standard deviations of MF-NPM and LSTMNN are within 0.5
and 1.0 TECU, respectively, except that of COPG, which is up to 1.7 TECU. In conclusion,
MF-NPM can better reflect the variation of ionospheric TEC in the study region.

Figure 3 shows the histogram of prediction biases of MF-NPM, LSTMNN, and COPG_P1
in the peak year of solar activity (2014), e.g., the test data set. As illustrated in the subfigures,
the mean biases of MF-NPM, LSTMNN, and COPG_P1 are all within 1.0 TECU. The mean
bias of MF-NPM is −0.01 TECU, which is the closest to 0 represented in the first subfigure,
indicating that it is a more unbiased estimation than the latter two models. Furthermore,
the standard deviation (std) of MF-NPM prediction biases is 2.52 TECU, which is 0.77
and 2.04 TECU lower than that of LSTMNN and COPG_P1, respectively. As one can
see, MF-NPM shows the smallest error. The statistical bias distributions of the foresaid
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corresponding models are given in Table 3. The percentage of the interval [−2, 2] TECU
of the MF-NPM biases accounts for 69.70%, which is 10.53% and 27.03% higher than that
of LSTMNN and COPG_P1, respectively. Moreover, the percentage of interval [−5, 5]
TECU for the three models biases is 94.00%, 88.46%, and 78.59%; [−10, 10] TECU is 99.50%,
98.32%, and 95.54%, [−15, 15] TECU is 99.95%, 99.77%, and 98.94%; and [−20, 20] TECU is
99.99%, 99.97%, and 99.76%. Hence, we can see that most biases are within ±10 TECU for
MF-NPM. The synthesis statistic of biases suggests that MF-NPM yields a smaller error
and can provide better performance than LSTMNN and COPG_P1.
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and COPG_P1 relative to IGS in the peak year of solar activity (2014).

Table 3. Percentage of bias for MF-NPM, LSTMNN, and COPG_P1 in the peak year of solar activity
(2014).

Model
Percentage of Bias ∆/TECU

|∆| ≤ 2 |∆| ≤ 5 |∆| ≤ 10 |∆| ≤ 15 20 < |∆|

MF-NPM 69.70% 94.00% 99.50% 99.95% 0.01%
LSTMNN 59.17% 88.46% 98.32% 99.77% 0.03%
COPG_P1 42.67% 78.59% 95.54% 98.94% 0.24%
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Figure 3. Histogram for MF-NPM, LSTMNN, and COPG_P1 with reference to IGS GIM in the peak
year of solar activity (2014).

Figure 4 shows the 2014 bias, RMSE, and relative accuracy averaged by a 1-day
running average. As shown in Figure 4, the MF-NPM features minimal error and the errors
distribution of TEC prediction results of MF-NPM are more concentrated compared with
LSTMNN and COPG_P1. Furthermore, the upper Figure 4a shows the bias of MF-NPM
varying from −1.33 to 1.12 TECU with an average of −0.01 TECU. Nevertheless, the bias is
−3.60 to 1.53 TECU and −3.46 to 5.98 TECU for LSTMNN and COPG, respectively, with
mean values of −0.59 and 0.73 TECU. Figure 4b presents the RMSE of the MF-NPM model
as being 2.33 TECU, and the accuracy is 0.77 TECU and 1.87 TECU higher than that of
LSTMNN and COPG_P1. As shown in Figure 4c, the average annual RA of MF-NPM
is 93.75%, which is 1.91% and 6.68% higher than LSTMNN and COPG_P1, respectively.
Therefore, in terms of accuracy, MF-NPM also has a good performance, and its bias, RMSE,
and RA are better than LSTMNN and COPG_P1.

Table 4 lists the errors of ionospheric TEC predicted by MF-NPM, LSTMNN, and
COPG_P1 in the low latitude region (5~30◦N) and middle latitude region (30~60◦N). The
2D spatial distributions for respective RMSE and relative accuracy of forecasted TEC values
obtained from the three models with respect to IGS GIMs are illustrated in Figure 5 (top
and bottom panels). It can be seen that the TEC prediction errors of MF-NPM, LSTMNN,
and COPG_P1 are higher in the low latitude region than in the middle latitude region, and
the main trend is that RMSE increases and the RA decreases with the increase in latitudes,
combined with Table 4 and Figure 5. On the one hand, the RMSE of the MF-NPM model
is 3.24 TECU, the accuracy is 1.08 and 2.05 TECU higher than LSTMNN and COPG_P1,
and its RA is 93.33%, which is 2.12% and 4.2% higher than LSTMNN and COPG_P1, in
the low-latitude region, respectively. On the other hand, the RMSE of the MF-NPM is
1.70 TECU, the accuracy is 0.52 and 2.20 TECU higher than LSTMNN and COPG_P1, and
its RA is 94.06%, which is 1.73% and 8.59% higher than LSTMNN and COPG_P1, in the
mid-latitude region, respectively.

Table 4. RMSE and relative accuracy of the model outcomes (MF-NPM, LSTMNN, and COPG_P1)
from IGS GIMs in different latitude regions during the peak year of solar activity (2014).

Model Region
Evaluation Indicators

RMSE/TECU RA/%

MF-NPM
low 3.24 93.33
mid 1.70 94.06

LSTMNN
low 4.32 91.21
mid 2.22 92.33

COPG_P1
low 5.29 89.13
mid 3.90 85.47
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3.2.2. Accuracy Analysis during Geomagnetic Storm Period

The geomagnetic storm events that occurred during the geomagnetic storm period
(DOY049~060) in the peak year of solar activity (2014) were selected to further analysis
of the accuracy, reliability, and applicability of MF-NPM for predicting ionospheric TEC
in the study area. The variations of geomagnetic activity in terms of Dst and Kp indices
varied from DOY049 to 060 in 2014 is shown in Figure 6. During this period, the Dst varied
from 7 to −112 nT and reached two obvious peak values of −112 nT (DOY050) and −99 nT
(DOY059), indicating the major/strong and moderate geomagnetic storm events.



Remote Sens. 2023, 15, 195 10 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

MF-NPM is 1.70 TECU, the accuracy is 0.52 and 2.20 TECU higher than LSTMNN and 

COPG_P1, and its RA is 94.06%, which is 1.73% and 8.59% higher than LSTMNN and 

COPG_P1, in the mid-latitude region, respectively. 

Table 4. RMSE and relative accuracy of the model outcomes (MF-NPM, LSTMNN, and COPG_P1) 

from IGS GIMs in different latitude regions during the peak year of solar activity (2014). 

Model Region 
Evaluation Indicators 

RMSE/TECU RA/% 

MF-NPM, 
low 3.24 93.33 

mid 1.70 94.06 

LSTMNN 
low 4.32 91.21 

mid 2.22 92.33 

COPG_P1 
low 5.29 89.13 

mid 3.90 85.47 

 

Figure 5. The 2D spatial distributions of (a–c) RMSE and (d–f) relative accuracy for MF-NPM, 

LSTMNN, and COPG in the peak year of solar activity (2014). 

3.2.2. Accuracy Analysis during Geomagnetic Storm Period 

The geomagnetic storm events that occurred during the geomagnetic storm period 

(DOY049~060) in the peak year of solar activity (2014) were selected to further analysis of 

the accuracy, reliability, and applicability of MF-NPM for predicting ionospheric TEC in 

the study area. The variations of geomagnetic activity in terms of Dst and Kp indices var-

ied from DOY049 to 060 in 2014 is shown in Figure 6. During this period, the Dst varied 

from 7 to −112 nT and reached two obvious peak values of −112 nT (DOY050) and −99 nT 

(DOY059), indicating the major/strong and moderate geomagnetic storm events. 

Figure 5. The 2D spatial distributions of (a–c) RMSE and (d–f) relative accuracy for MF-NPM,
LSTMNN, and COPG in the peak year of solar activity (2014).

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 6. Geomagnetic activity during the geomagnetic storm period (DOY049~060). (Blue dashed 

lines (−30, −50, and −100 nT) represent the boundary between weak, moderate, and intense mag-

netic storms, respectively.)  

The DMTEC indicates the difference between TEC prediction and reference value 

(e.g., IGS GIM products). Figure 7 shows diurnal variations of MTEC and DMTEC in 

China from DOY049-060. It is observed from Figure 7a that the predicted TEC from the 

three models are following IGS-GIM patterns with overestimations and underestimations 

of IGS-GIM values in China. However, the overall TEC dynamics of MF-NPM, LSTMNN, 

and COPG_P1 are in good consistency with IGS GIMs, ranging from 12.7 to 80.7 TECU. 

As can be seen from the results in Figure 7b, the standard derivations of MF-NPM and 

LSTMNN is within 2 TECU, except that of COPG_P1, which is up to 3 TECU. In addition, 

two peaks reached in the variation of geomagnetic activity on DOY050 and 059 lead to an 

increase in the difference during the corresponding two days. As shown in Figure 7b, it 

can be seen that the DMTEC on the most disturbed day (DOY050) is pronounced, reaching 

the maximum −6.65, −7.14, and −16.93 TECU for MF-NPM, LSTMNN, and COPG_P1, re-

spectively. The geomagnetic storms contribute to the above bias characteristics. 

Moreover, the corresponding statistics of the biases predicted by MF-NPM, 

LSTMNN, and COPG_P1 are represented by Figure 8 and Table 5. As shown in the sub-

figures, the mean biases and standard derivations of TEC predicted by the selected models 

are −0.38, −1.61, and 0.09 TECU and 3.36, 4.39, and 6.04 TECU, respectively. Generally, an 

agreement is reached well across the whole area of China. The biases fulfill the Gaussian 

distribution well, meaning that biases comply with the random error distribution. How-

ever, the MF-NPM features minimal standard derivation, which is prominently lower by 

1.03 and 2.68 TECU than LSTMNN and COPG, respectively. By contrast, the mean bias 

(TECCOPG—TECIGS) for COPG_P1 is negative (i.e., −0.09 TECU), which means COPG_P1 

TEC was marginally smaller during the geomagnetic storm period. Conversely, the mean 

bias for NM-NPM and LSTMNN is positive. It is likely attributed to the influence of SSN 

and Dst as input parameters, which compensate for mismodelling to some extent due to 

the single layer model. Moreover, all standard deviations remain within 4.5 TECU during 

the period, except that of COPG_P1, which reaches 6.0 TECU. 

Figure 6. Geomagnetic activity during the geomagnetic storm period (DOY049~060). (Blue dashed
lines (−30, −50, and −100 nT) represent the boundary between weak, moderate, and intense magnetic
storms, respectively.)

The DMTEC indicates the difference between TEC prediction and reference value
(e.g., IGS GIM products). Figure 7 shows diurnal variations of MTEC and DMTEC in China
from DOY049-060. It is observed from Figure 7a that the predicted TEC from the three
models are following IGS-GIM patterns with overestimations and underestimations of
IGS-GIM values in China. However, the overall TEC dynamics of MF-NPM, LSTMNN,
and COPG_P1 are in good consistency with IGS GIMs, ranging from 12.7 to 80.7 TECU.
As can be seen from the results in Figure 7b, the standard derivations of MF-NPM and
LSTMNN is within 2 TECU, except that of COPG_P1, which is up to 3 TECU. In addition,
two peaks reached in the variation of geomagnetic activity on DOY050 and 059 lead to an
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increase in the difference during the corresponding two days. As shown in Figure 7b, it
can be seen that the DMTEC on the most disturbed day (DOY050) is pronounced, reaching
the maximum −6.65, −7.14, and −16.93 TECU for MF-NPM, LSTMNN, and COPG_P1,
respectively. The geomagnetic storms contribute to the above bias characteristics.
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period.

Moreover, the corresponding statistics of the biases predicted by MF-NPM, LSTMNN,
and COPG_P1 are represented by Figure 8 and Table 5. As shown in the subfigures,
the mean biases and standard derivations of TEC predicted by the selected models are
−0.38, −1.61, and 0.09 TECU and 3.36, 4.39, and 6.04 TECU, respectively. Generally, an
agreement is reached well across the whole area of China. The biases fulfill the Gaussian
distribution well, meaning that biases comply with the random error distribution. How-
ever, the MF-NPM features minimal standard derivation, which is prominently lower by
1.03 and 2.68 TECU than LSTMNN and COPG, respectively. By contrast, the mean bias
(TECCOPG—TECIGS) for COPG_P1 is negative (i.e., −0.09 TECU), which means COPG_P1
TEC was marginally smaller during the geomagnetic storm period. Conversely, the mean
bias for NM-NPM and LSTMNN is positive. It is likely attributed to the influence of SSN
and Dst as input parameters, which compensate for mismodelling to some extent due to
the single layer model. Moreover, all standard deviations remain within 4.5 TECU during
the period, except that of COPG_P1, which reaches 6.0 TECU.
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Figure 8. Histograms for MF-NPM, LSTMNN, and COPG_P1 with reference to IGS GIM during
geomagnetic storms period.

Table 5. Percentage of bias distributions of MF-NPM, LSTMNN, and COPG_P1.

Model
Percentage of Bias ∆/TECU

|∆| ≤ 2 |∆| ≤ 5 |∆| ≤ 10 |∆| ≤ 15 20 < |∆|

MF-NPM 59.18% 88.11% 98.08% 99.73% 0.01%
LSTMNN 47.53% 78.30% 94.51% 98.98% 0.12%
COPG_P1 34.77% 69.61% 90.41% 96.53% 0.98%

Additionally, Table 5 summarizes the prediction biases from DOY049~060 in 2014.
the percentage of the interval [−2, 2] for the MF-NPM biases is 59.18%, whereas that for
[−5, 5] is 88.11%, [−10, 10] is 98.08%, [−15, 15] is 99.73, and [−20, 20] is 99.99%. As we
can see from the statistics above, most of the biases are within ±10 TECU, which is more
concentrated than the other two models. Although the above comparison results indicated
that MF-NPM shows outperformance relative to LSMNN and COPG_P1, it still does not
fully reflect the complex changes brought by the geomagnetic storms, with respect to IGS.

The diurnal variations of RMSE and mean relative accuracy between the TEC predic-
tion results of the three models and IGS from DOY049~060 are shown in Figure 9. The
errors of three models exhibit significant deviations with regard to IGS on DOY050 and
059, respectively. The upper Figure 9a shows the bias of MF-NPM varying from −6.65 to
3.57 TECU with an average of −0.38 TECU. Moreover, the bias is −7.37 to 3.27 TECU and
−17.09 to 8.59 TECU for LSTMNN and COPG_P1, respectively, with mean values of −1.61
and 0.09 TECU. The results indicate that the mean biases of MF-NPM and COPG_P1 are
1.23 and 1.70 TECU higher than LSTMNN, respectively. According to Equations (8) and (9),
the smaller RMSE and relative error would mean better prediction effects. As can be seen
from the following two figures, the general trends are as expected within the results. The
performance of MF-NPM is usually better than LSTMNN and COPG_P1. Figure 9b presents
the RMSE of MF-NPM, varying from 0.96 to 8.67 TECU with an average of 3.12 TECU.
Nevertheless, the RMSE is 1.49 to 9.50 TECU and 1.59 to 18.34 TECU for LSTMNN and
COPG_P1, respectively, with mean values of 4.37 and 5.42 TECU. The results indicate that
the absolute accuracy (RMSE) of MF-NPM is 1.25 and 2.30 TECU higher than LSTMNN
and COPG_P1, respectively.
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The variations of statistical relative accuracy for the three models with respect to IGS
GIMs are displayed in the corresponding Figure 9c. The figure shows that MF-NPM, which
is represented by blue points, has better relative accuracy than LSTMNN and COPG_P1.
Taking a further examination of this subfigure, it is revealed that the relative accuracy of
MF-NPM is 92.86%, which is consistently higher than that of LSTMNN and COPG_P1,
indicating that MF-NPM has the smallest relative error. Moreover, two peaks are observed
on DOY050 and 059, which corresponded to the geomagnetic activities mentioned above.
Based on Figure 6, the geomagnetic activity was significantly enhanced on DOY050 and
059, and the maximum of Kp and Dst reached 6 and 112 nT and 6 and 99 nT, respectively.
Therefore, the accuracy of MF-NPM is reduced, but the relative accuracy remains above
90%, and the RMSE also keeps within 10.0 TECU, as can be seen from Figure 8. The
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experimental results demonstrate that the proposed MF-NPM achieve better performance
than the LSTMNN and COPG_P1 during geomagnetic storms period.

Table 6 shows the statistics of errors from various models with respect to IGS GIMs
in a low-latitude region (5~30◦N) and mid-latitude region (30~60◦N) during a period of
geomagnetic storms. The results of comparison with MF-NPM, LSTMNN, and COPG_P1
at different latitudes are summarized, which indicate that TEC prediction accuracy are high
for low- and mid-latitude even though daily TEC value is high. In general, the prediction
results in mid-latitude region are better than those in low-latitude region. As one can see in
this table, MF-NPM achieves high accuracy with RMSE and relative accuracy of 4.33 and
2.34 TECU and 92.62 and 93.04% in low- and mid-latitude regions, respectively. In contrast,
for LSTMNN, it is about 6.11 and 3.00 TECU and 90.02 and 90.82% and about 6.94 and
5.14 TECU and 89.07 and 82.96% for COPG_P1. Moreover, from these comparisons in low-
latitude regions, it is derived that the proposed model is 2.60% and 3.55% more accurate
than LSTMNN and COPG_P1 in terms of relative accuracy values, with a reduction of 1.8
and 2.6 TECU for RMSE, respectively. Similarly, in a mid-latitude region, the accuracy of
MF-NPM is 2.22% and 10.08% higher than LSTMNN and COPG_P1, and RMSE is reduced
by 0.7 and 2.8 TECU, respectively.

Table 6. RMSE and relative accuracy of the model outcomes (MF-NPM, LSTMNN, and COPG_P1)
from IGS GIMs in different latitudes during geomagnetic storms.

Model Region
Evaluation Indicators

RMSE/TECU RA/%

MF-NPM
low 4.33 92.62
mid 2.34 93.04

LSTMNN
low 6.11 90.02
mid 3.00 90.82

COPG_P1
low 6.94 89.07
mid 5.14 82.96

The spatial distributions for respective RMSE and relative accuracy of forecasted
TEC values obtained from the three models, with respect to IGS GIMs are illustrated in
Figure 10 (top and bottom panels). It is observed from the top panel of this figure that the
maximal error occurs in the low-latitude region for all the models. This is an expected result
because it is in the anomaly region with maximal TEC and prominent TEC daily variability,
which will lead to a larger difference in TEC values from different models. Moreover,
COPG_P1 shows a high error in the low-latitude region, with the error values ranging
between 7~9 TECU. Moreover, we note the obvious increases in local errors neighboring
20~35◦N, with the error values ranging between 5~7 TECU and 7~9 TECU for LSTMNN
and COPG_P1, but there are no such increments from MF-NPM. As shown in the bottom
panel, the relative accuracy of MF-NPM varies between 92~97%, which is significantly
higher than the other two models. Hence, the proposed technique of MF-NPM obtain a
better accuracy and has better performance in low- and mid-latitudes during geomagnetic
storm days.
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4. Discussion

In this paper, a novel multi-factor regional ionospheric TEC prediction model, MF-
NPM, has been constructed taking into account the solar activity index, geomagnetic
activity index, and geographic coordinates. The forecasting performance of MF-NPM,
trained using the dataset from 2009 to 2013, was evaluated using the test dataset (2014)
by sliding 1 day. Furthermore, MF-NPM was validated with the LSTMNN model and
CODE from the spatiotemporal perspective during the peak year of solar activity (2014)
and geomagnetic storm. With respect to the IGS GIM, results showed that the accuracy of
forecasting TEC can be improved by the MF-NPM based on AR-NET and lagged regressors
significantly, in terms of bias, RMSE, and relative accuracy.

In terms of temporal perspective, the MF-NPM outperformed CODE’s and LSTMNN
models in 2014 and its geomagnetic storms. In the peak year of solar activity (2014), the
variations of TEC predicted by MF-NPM are more consistent with IGS GIM, compared with
COPG_P1 and LSTMNN. The biases of the foresaid corresponding models are −0.01, −0.59,
and 0.73 TECU, with the distribution within ±10 TECU accounting for 95%. Moreover,
MF-NPM achieves the best performance with RMSE and RA of 2.33 TECU and 93.75%,
which are much smaller than 3.10 and 4.20 TECU and 91.84 and 87.07% of LSTMNN and
COPG_P1, respectively. Additionally, during geomagnetic storms, although the accuracy
of MF-NPM, LSTMNN, and COPG_P1 are all reduced to some extent due to the influence
of geomagnetic disturbances on the ionosphere, the performance of MF-NPM is still better
than that of LSTMNN and COPG_P1 and exhibits significant deviations with regard to
IGS on DOY050 and 059. The mean biases are −0.38, −1.61, and 0.09 TECU, respectively,
and most biases are within ±10 TECU with the percentage above 90%. Results suggest
that RMSE and RA of MF-NPM are 3.12 TECU and 92.86% which are lower than 4.37 and
5.42 TECU and 90.48 and 85.62% of LSTMNN and COPG_P1, respectively.

From the spatial perspective, MF-NPM and LSTMNN models outperform CODE in
low–middle latitudes with MF-NPM being the best. The main reason that the maximal
error occurs in the low-latitude region for all the models is because the anomaly region with
maximal TEC and prominent TEC daily variability will lead to a larger differential in TEC
values from different models. In 2014, the RMSE and RA of MF-NPM are 3.24 TECU and
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93.33%, which are better than LSTMNN (4.32 TECU, 91.21%) and COPG_P1 (5.29 TECU,
89.13%) in the low latitudes, respectively. In addition, MF-NPM also provide better perfor-
mance than LSTMNN and COPG_P1 in the mid-latitude region, with respect to the RMSE
and RA, which are improved by 0.52 and 2.20 TECU and 1.73 and 8.59%, respectively. Addi-
tionally, equatorial ionospheric anomaly (EIA) and electron density anomaly are enhanced
by geomagnetic storms. During geomagnetic storms, the RMSE and RA of MF-NPM are
4.33 TECU and 92.62%. In addition, the accuracy of mid latitudes is also higher than that of
low latitudes with improved accuracy of the average RMSE and RA of 0.70 and 2.80 TECU
and 2.22 and 10.08%, respectively.

In general, the new model, MF-NPM, can capture the variations of ionospheric TEC in
the high solar activity year and geomagnetic storms period. Moreover, the prediction effects
of MF-NPM are the best whether they are from a time or spatial perspective. It is noted
that the ionospheric TEC time series database used for the training model is the GIM data
covering China from 2009–2014. Therefore, future work will be focused on constructing
a global TEC prediction model using GNSS real-time or measurement data and further
optimizing and improving the model.

5. Conclusions

According to the analyzed results, it is recommended that MF-NPM would provide
a better accuracy level for the ionospheric correction in the regional area over China and
its neighborhood to improve the correction effect of ionospheric delay in the high solar
activity year and during the geomagnetic storm period.
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