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Abstract: The launch of the Haiyang-2 (HY-2) satellite constellation fosters the quick acquisition
of global sea surface vector winds from the perspective of remote sensing. This study intends to
develop a six-hourly mesoscale analysis of sea surface winds based on the microwave scatterometers
onboard the HY-2 satellite series, with the objective of meeting the considerable demand for accurate
and gap-free ocean wind forcing products. First, the accuracy of HY-2 scatterometers (HSCATs)
in measuring wind is evaluated. In particular, the standard deviation (SD) errors of HSCATs data
are assessed using the collocated buoy measurements with different temporal windows in order
to account for the temporal representativeness errors in the blending analysis. Afterwards, a two-
dimensional variational (2D-Var) method is implemented to blend the HSCATs measured winds
and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis winds over the
global ocean surface. This approach is different from existing methods in that it takes both wind error
and background error correlation into account. The results show that the blended wind product is of
a promising quality compared with independent wind references. Interestingly, the blended winds
derived from 2D-Var in combination with an empirical background error correlation show smaller
SD errors than those using a Gaussian error correlation function. Overall, the blended wind product
should be valuable for forcing global ocean models or describing air-sea interaction processes on a
scale close to the scatterometer measurements.

Keywords: HY-2 scatterometers; sea surface wind; 2D-Var method; error correlation

1. Introduction

Sea surface vector wind is an essential climate variable that influences many physical
processes over the air-sea interface [1–3]. There is a growing demand for accurate sea surface
wind products with higher resolution and, notably, more frequent coverage, for tracking
transient features and resolving air-sea interaction and its diurnal cycle, etc. For spaceborne
scatterometers, which are the most relevant sensors in sea surface wind observation, the
World Meteorological Organization (WMO) specifies a 25 km spatial resolution and six-
hourly temporal sampling as the operational goals [4]. However, a single scatterometer can
only acquire wind data with a temporal resolution of 12 h, covering less than 90% of the
global sea surface per day. Consequently, numerous methodologies have been developed
to blend the satellite wind in order to enhance the temporal coverage of ocean vector winds
without reducing the short-scale true variance resolved by the remote sensing technique.

In the early days, the number of operational scatterometers was too few for developing
a gap-free and high-temporal resolution (e.g., six-hourly) wind product only based on the
scatterometer-derived wind data. Consequently, the scatterometer data are usually blended
with ancillary wind data, such as buoy measurements, radiometer wind speeds, and numer-
ical weather prediction (NWP) winds. For instance, the Cross-Calibrated Multi-Platform
(CCMP) ocean vector wind analysis used a two-dimensional variational analysis (2D-Var)
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method to combine satellite scatterometer and radiometer winds, in-situ buoy observations,
and NWP background field to fill the sampling gaps [5–7]. A similar product was described
in ref. [8], which used the kriging technique instead of the 2D-Var. Moreover, there were
two other blended wind products with lower temporal resolution (daily), which were
developed in the context of the Objectively Analyzed air-sea Fluxes (OAFlux) project and
the merging of Advanced Scatterometer (ASCAT) winds with the NWP reanalysis [9,10],
respectively. These wind products extend more than 20 years and have made significant
contributions to the research on mesoscale air-sea interaction.

More recently, international collaboration is highlighted with the objective of develop-
ing a global virtual constellation of wind scatterometers for high-resolution ocean forcing.
Although the number of operational scatterometers is still insufficient to fully meet the
above WMO requirements [11], the attempt in ref. [12] shows that the spatial scale of global
winds can be effectively improved by blending the ASCATs data with the European Centre
for Medium-range Weather Forecasts (ECMWF) reanalysis. Later in 2021, more scatterome-
ter systems measuring at the different local times have been available. In particular, the
Haiyang-2 (HY-2) constellation, which consists of three satellites, has been successfully
developed by China. Notably, HY-2B is operated in a sun-synchronous orbit, while HY-2C
and -2D are operated in drifting orbits, such that the three HY-2 satellite scatterometers
(HSCATs) are able to provide unprecedented short revisit intervals over the global sea
surface [13–16].

This study aims at developing a six-hourly mesoscale wind product over the global
sea surface only based on the HSCATs wind data and the ECMWF reanalysis winds.
Section 2 describes the datasets and the methods used in this paper. Section 3 presents a
brief overview of the wind quality for the three HSCATs. In Section 4, the blended wind
product is verified comprehensively using buoy data as a reference. Finally, conclusions
are summarized in Section 5.

2. Data and Methods
2.1. Data

The main parameters of HY-2B, -2C and -2D satellites are summarized in Table 1. These
three satellites were launched in October 2018, September 2020, and May 2021, respectively.
Consequently, the overlapped period is not adequate for developing a long-term time series
of global sea surface vector wind products. The main objective of this paper is to verify
the proposed 2D-Var method for blending HY-2 satellite winds, and, thus, only six months
(December 2021–May 2022) of the HSCATs 25-km Level 2 (L2) wind data are used in the
study. Such data are provided by the National Satellite Ocean Application Service (NSOAS)
through the Ocean Satellite Data Distribution System (OSDDS). Note that, OSDDS provides
two types of HSCAT winds, namely “pwp” and “dps” separately. This paper uses the
HSCAT “pwp” data.

Table 1. Main parameters of the HY-2 satellites.

Satellite
Altitude

(km)
Inclination

(◦)
LTDN *

Repeat Cycle

The Early Stage The End Stage

HY-2B 971 99.3 6:00 am 14 days 168 days
HY-2C 957 66 Drifting 10 days 400 days
HY-2D 957 66 Drifting 10 days 400 days

* LTDN: Local time of the descending node.

Figure 1 illustrates the six-hourly coverage of the three HSCATs on 7 May 2022, at
UTC 00 h, 06 h, 12 h, and 18 h, respectively. Each panel shows the observations that are less
than 3 h distance in time to the above-mentioned hours. It is clear that the three HSCATs
are able to observe more than 70% of sea surface area in six hours, e.g., the coverage ratio
over the sea surface is about 70%, 75.2%, 74.6%, and 75.6% for Figure 1a–d, respectively.
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Figure 1. Six-hourly coverage of the three HSCATs on May 7, 2022, at (a) 00 h, (b) 06 h, (c) 12 h, and
(d) 18 h, respectively. Color bars indicate the wind speed.

The fifth generation of ECMWF atmospheric reanalysis (ERA5) winds is used as the
background data when blending the HSCATs data. This study uses the ERA5 neutral
wind vectors at a 10 m height with approximately 0.25◦ × 0.25◦ spatial resolution and
six-hourly temporal resolution. Before the data analysis, both ERA5 background and
HSCATs observations are interpolated bi-linearly to a regular latitude/longitude grid
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of 0.25◦ resolution. Consequently, one can collocate the HSCATs data with the ERA5
background winds easily by setting a temporal criterion of 3 h distance.

Finally, the moored buoy winds are used for verification purposes. Such data are dis-
seminated through the Global Telecommunications System (GTS) stream and, subsequently,
quality controlled and archived at the ECMWF Meteorological Archive and Retrieval Sys-
tem (MARS). Note that the buoy winds are reported hourly and segregated into 1 m/s
speed bins and 10◦ direction bins. The measured wind speed at a given anemometer height
is converted to 10 m equivalent neutral winds using the Liu-Katsaros-Businger (LKB) model
to make them comparable with the HSCATs and the ERA5 winds [17]. Eventually, the buoy
measurements that are 5 min distance in time and 0.125◦ distance in space from the ERA5
grids are used to verify both the HSCATs and the ERA5 winds.

2.2. 2D-Var Method

Following the basic assumptions in meteorological variational data assimilation, a
2D-Var method is applied to blend the HSCATs observations with the ERA5 background
wind field. Conceptually, given a set of scatterometer observations xk

o (x denotes a vector, k
denotes the kth satellite scatterometer) and a vector of background winds xb, the analyzed
wind vector x is obtained by minimizing the following objective function:

min
[

J
(

xk
o, x, xb

)]
= Jb(xb, x) + Jo

(
xk

o, x
)
=

1
2
(x − xb)

TR−1
b (x − xb) +

1
2

(
x − xk

o

)T
R−1

o

(
x − xk

o

)
(1)

where Jb and Jo denote the background (B) and the observational (O) terms, respectively.
Rb is the background error covariance matrix, and Ro is the observation error covariance
matrix. For computational convenience, the state vector x is replaced by the analysis
increment ∆x = x − xb. In practice, an alternative formulation of the observational term,
which was developed for the ambiguity removal of SeaWinds on QuikSCAT [18], is used in
this study. That is, the observation term Jo is written as:

Jo =
N1,N2

∑
i,j


Mij

∑
k


(

∆uij − ∆v(o)ij,k

)2

σ2
u

+

(
∆uij − ∆v(o)ij,k

)2

σ2
v

− 2 ln pk


−λ


−1/λ

(2)

with (i,j) the indices of the 2D-Var grid cell, N1 and N2 the number of 2D-Var grids along
the zonal and the meridional direction, Mij the number of HSCATs observations at point
(i,j). Moreover, ∆uij and ∆vij stand for the analysis wind component increments at grid (i,j),

∆u(o)
ij,k and ∆v(o)ij,k are the difference between the kth observation and the background wind

components, σu and σv denote the errors in the observed wind fields.
Note that, Equation (2) is similar to the cost function used in the scatterometer ambi-

guity removal scheme, such that λ = 4 is used without any adaption [19,20]. Furthermore,
note that the index k indicates the satellite number rather than the ambiguous solution.
Consequently, the a priori probability of the kth observation being the “true” wind is the
inverse of the number of observations within the grid (i,j), i.e., pk = 1/Mij, following the
assumption that the three HSCATs contribute equally to the cost function. As shown in
Figure 1, there is usually only one HSCAT observation in a grid cell (except for the grids at
high latitudes), such that the term 2lnpk is usually equal to zero. The background wind
term of Equation (1) is written as:

Jb(∆x) = (∆x)TB−1
u,v(∆x) (3)

where B−1
u,v denotes the background error covariance matrix. In the numerical implemen-

tation, Equation (3) is transformed to the frequency domain and is expressed in terms
of velocity potential (χ) and stream function (ψ) increments, and the background error
covariance is factorized into standard deviation (SD) errors and error correlations, which
both can be expressed as diagonal matrices.
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As described in ref. [21], the 2D-Var analysis field can be optimized by adjusting the
background error correlation function, and the background or observation error variances.
Consequently, on the one hand, the SD errors of HSCATs winds are estimated for different
collocation windows and then used to construct the observational error covariance matrix.
On the other hand, two different background error correlation functions (as shown in
Figure 2), namely the Gaussian structure function (GSF) and the empirical background
error correlation (EBEC), are evaluated in order to figure out an appropriate 2D-Var imple-
mentation. The exact formulas of GSF and EBEC can be found in refs. [21,22], such that
they are not reproduced here in order to keep the presentation concise. Note that the GSF
is with different length scales for the Tropics (solid thin curve, Lχ = Lψ = 212 km) and the
extratropics (solid bold curve, Lχ = Lψ = 424 km), while the EBEC is with the same length
scales (Lχ = 494 km, Lψ = 552 km) over the global region.
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Figure 2. The background error correlation functions used in the 2D-Var analysis. Gaussian structure
functions (GSF) are in solid curves (thin curve for Tropics and bold curve for extratropics), and
empirical background error correlation (EBEC) functions are in dashed curves (thin curve for velocity
potential and bold curve for stream function). Figure is adapted from ref. [19] with permission.

3. Data Verification

Before blending the HSCATs winds with the ERA5 background data based on the
2D-Var method, the differences among HSCATs, ERA5, and buoy winds are evaluated in
order to verify the consistency of the used data sources. In particular, the SD difference
between HSCATs and buoy winds is assessed for different collocation windows, with the
objective of accounting for the temporal representativeness errors in the blending analysis.

Figure 3 shows the contour plots of HSCATs versus ERA5 winds. Here, the time
difference between HSCATs and ERA5 is less than 30 min, and only the data accepted by
the quality control scheme are used in the analysis. The upper left corner of each panel
illustrates the correlation coefficient (cc), the bias, and the SD values of HSCATs with respect
to (with regards to) ERA5 winds. Compared with the ERA5 background field, the bias
of HSCATs winds is negligible, and the SD differences of wind speed and direction are
generally less than 0.95 m/s and 10◦, indicating that the observational data are of excellent
consistency with the background fields. In addition, winds derived from the three HSCATs
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are with similar statistical scores with regards to. ERA5, such that it is not necessary to
perform a bias correction before the 2D-Var analysis.
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Figure 3. Contour plots of HSCATs versus ERA5 winds. Left panels (a,c,e) and right panels (b,d,f)
show the comparison of wind speeds and directions separately. The upper, middle, and lower panels
correspond to HSCAT-B, -C and -D, respectively.

Figure 4 verifies the consistency between the ERA5 wind and the collocated buoy
winds. Note that the moored buoy data have been already assimilated into the ERA5
model, such that the verification is indeed not independent in terms of quality assessment.
Nonetheless, statistical scores of the ERA5 winds with respect to buoy measurements are
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shown in the upper-right corner of each panel, which indicates that the two wind data sets
are consistent with each other.
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Figure 4. The scatter plots of ERA5 wind components versus buoy measurements: (a) wind speed,
(b) direction, (c) u components and (d) v components.

Eventually, the collocated HSCAT-buoy data sets are segregated into six categories
according to the time difference between the two data sources, i.e., 0–0.5 h, 0.5–1.0 h, . . . ,
and 2.5–3.0 h. The statistical scores between HSCATs and buoy winds are evaluated for
each category and summarized in Tables 2 and 3. Note that, the bias of HSCATs winds
(with regards to. buoy) does not show a clear dependency on the temporal window (see
Table 2), while the SD difference does increase as the time difference increases (see Table 3).
Consequently, it is not necessary to do a time-dependent bias correction for the HSCATs
observations. However, the temporal representativeness errors, which are induced by the
time difference between O and B, should be considered in the 2D-Var cost function. In
practice, the ratio of observation to background error, rather than their absolute values,
impacts the 2D-Var cost function. Following the results of Figure 4 and Table 3, a time-
dependent observation-to-background error ratio is used in the following study, as shown
in Table 4. Regarding that the buoy observations are not independent for the verification of
ERA5 wind quality, the actual error ratio in Table 4 may be even smaller, which could be
tested further once an independent data source is available.
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Table 2. Biases of the HSCATs winds with regards to. buoy measurements for different time windows.

Scatterometer Wind Speed (m/s) Wind Direction (◦)

HSCAT-B HSCAT-C HSCAT-D HSCAT-B HSCAT-C HSCAT-D

Time
difference

0.0–0.5 h −0.28 −0.19 −0.18 0.5 1.6 0.3
0.5–1.0 h −0.26 −0.19 −0.16 0.5 0.9 1.3
1.0–1.5 h −0.28 −0.23 −0.15 0.8 1.5 1.2
1.5–2.0 h −0.31 −0.24 −0.20 0.3 0.1 0.2
2.0–2.5 h −0.30 −0.20 −0.18 1.0 0.9 0.8
2.5–3.0 h −0.25 −0.25 −0.18 1.3 1.0 1.1

Table 3. SD differences of the HSCATs winds with regards to. buoy measurements for different
time windows.

Scatterometer Wind Speed (m/s) Wind Direction (◦)

HSCAT-B HSCAT-C HSCAT-D HSCAT-B HSCAT-C HSCAT-D

Time
difference

0.0–0.5 h 1.11 1.05 1.20 17.7 17.9 18.1
0.5–1.0 h 1.20 1.06 1.21 16.6 18.0 17.4
1.0–1.5 h 1.18 1.16 1.13 17.1 16.6 17.0
1.5–2.0 h 1.24 1.28 1.38 17.0 18.1 17.6
2.0–2.5 h 1.40 1.45 1.42 18.7 19.9 19.3
2.5–3.0 h 1.39 1.53 1.55 20.3 21.1 22.1

u component (m/s) v component (m/s)

HSCAT-B HSCAT-C HSCAT-D HSCAT-B HSCAT-C HSCAT-D

Time
difference

0.0–0.5 h 1.65 1.69 1.75 1.85 2.22 2.19
0.5–1.0 h 1.70 1.65 1.71 1.76 2.05 2.22
1.0–1.5 h 1.62 1.64 1.60 2.01 1.96 1.77
1.5–2.0 h 1.75 1.82 1.67 1.77 2.10 1.89
2.0–2.5 h 1.95 1.93 1.96 2.08 2.21 2.49
2.5–3.0 h 2.00 2.06 2.23 2.28 2.33 2.45

Table 4. Time-dependent observation-to-background error ratio.

Scatterometer u Component v Component

HSCAT-B HSCAT-C HSCAT-D HSCAT-B HSCAT-C HSCAT-D

Time
difference

0.0–0.5 h 1.00 1.02 1.06 0.97 1.17 1.15
0.5–1.0 h 1.03 1.00 1.03 0.93 1.08 1.17
1.0–1.5 h 0.98 0.99 0.97 1.06 1.03 0.93
1.5–2.0 h 1.05 1.10 1.00 0.93 1.11 0.99
2.0–2.5 h 1.18 1.16 1.18 1.10 1.16 1.31
2.5–3.0 h 1.20 1.24 1.34 1.20 1.23 1.29

4. Results

In this section, the 2D-Var approaches with different background error correlation
functions are tested in order to look for an optimal configuration for blending the HSCATs
winds. Hereinafter, the results derived from different 2D-Var schemes are denoted by the
used error correlation functions, namely GSF and EBEC, respectively. Section 4.1 illustrates
a typical 2D-Var experiment with different settings, and then a general verification is
presented in Section 4.2.

4.1. Test Case

Figure 5a shows the HSCATs winds collocated with the ERA5 background wind field
(Figure 5b) on January 15th, 2022, at UTC 00:00. The 2D-Var analysis wind fields (i.e., the
blended winds), based on the configurations of GSF and EBEC, are shown in Figure 5c,d,
respectively. For the sake of comparison, the wind speed difference between the blended
winds and the background field is shown in Figure 5e,f. It is clear that the differences
are observed globally, notably over the tropics (e.g., the intertropical convergence zone,
ITCZ), the western boundary ocean current systems (WBC), and the high latitudes (e.g.,
lat < 55◦S). Such differences, on the one hand, are due to the misrepresented physical pro-
cesses in the ERA5 model (e.g, ITCZ and WBC). On the other hand, they may be attributed
to the persistent wind speed bias in the HSCATs data (e.g., high latitudes), because the
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current HSCATs wind inversion does not take the effects of sea surface temperature into
account [20]. Furthermore, Figure 5f contains more small-scale variance than Figure 5e,
probably due to that the used EBEC is with larger length scales than the GSF. Having differ-
ent correlation length scales means they are filtering different-scale analysis increments.
One could change the parameters of GSF, letting it have a similar length scale as EBEC in
order to produce a finer structure than Figure 5e, but this could be tested further.
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 Figure 5. (a) HSCATs wind fields on 15 January 2022 at UTC 00:00 ± 3 h; (b) ERA5 background wind
field on 15 January 2022 at UTC 00:00; (c) the 2D-Var analysis wind field based on the GSF; (e) the
wind speed difference between (b,c); (d,f) are similar to (c,e), but for the 2D-Var analysis with EBEC.
Color bars indicate the wind speed.

4.2. General Validation

The 2D-Var analysis results are further verified using the collocated buoy winds. The
total amount of collocations is about 50 k over the above-mentioned period. Figure 6
illustrates the blended winds versus the buoy measurements for the GSF and EBEC experi-
ments, respectively. Both results show good consistency with respect to the buoy references.
Compared with the GSF experiment, the blended winds derived from EBEC are closer to
both buoy measurements and ERA5 winds (see below Figure 7), which again demonstrates
the advantage of the proposed EBEC in the 2D-Var wind blending.
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To further validate the proposed method, Figure 7 shows the normalized histograms
of wind u (a) and v (b) differences for ERA5 versus buoys (black), GSF-derived results
versus buoys (red), and EBEC-derived results versus buoys (blue), respectively. The spread
of uERA5−ubuoy (vERA5−vbuoy) shows a smaller deviation than that of uGSF−ubuoy or uEBEC-
ubuoy (vGSF−vbuoy or vEBEC−vbuoy), which indicates assimilating HSCAT retrieved winds
actually leads to “degraded” winds with respect to the background winds. Figure 7c,d are
the same as the upper panels, but they used HSCAT winds as a reference. The spread of
uGSF−uHSCAT or uEBEC−uHSCAT is much smaller than that of uERA5−uHSCAT. This implies
that bias may persist in the input data sets (e.g., the HSCAT wind retrievals), and, as such,
bias correction should be carried out to further improve the blending of HSCAT winds
with ERA5 background data [23].

As shown in Figure 1, about 30% of sea surface area is actually not observed by the
HSCATs during the six-hourly 2D-Var analysis window. Therefore, a more comprehensive
study is needed to better understand the characteristics of the blended wind fields. Practi-
cally, the blended winds are separated into two categories according to the corresponding
inputs, i.e., the one with HSCATs observation(s) (denoted as ‘Obs’) and the other with-
out any observation (denoted as ‘no Obs’), and then verified against buoy measurements
separately. The statistical scores are summarized in Table 5.
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Table 5. SD scores of the blended winds with regards to. buoy measurements.

Statistical Scores Speed (m/s) Direction (◦) u (m/s) v (m/s)

GSF
Obs 1.20 15.6 1.61 1.89

No Obs 1.77 19.3 2.16 2.31
Overall 1.51 17.5 1.90 2.11

EBEC
Obs 1.17 15.8 1.62 1.89

No Obs 1.60 18.0 1.99 2.15
Overall 1.40 16.9 1.81 2.02

5. Conclusions

This paper examines the feasibility of developing a six-hourly global sea surface wind
product based on the scatterometers onboard the HY-2 satellite constellation. Benefiting
from the orbit configuration of HY-2 satellites, i.e., HY-2B operated in a sun-synchronous
orbit and HY-2C & -D operated in an inclined orbit; the three HSCATs together are able
to observe more than 70% of sea surface area within six hours, providing unprecedented
temporal coverage in the perspective of remote sensing. Moreover, the HSCATs vector
winds are verified using both buoy measurements and ERA5 background fields. The results
show that the winds derived from the three HSCATs are consistent with each other, and
they are in good agreement with both ERA5 and buoy winds. Consequently, it does not
need a bias correction for the wind blending procedure.

A 2D-Var approach, which is adapted from the ambiguity removal procedure for
spaceborne scatterometers, is proposed to blend HSCATs winds with the ERA5 background
fields. Two relevant aspects of the 2D-Var cost function are considered in this study.
On the one hand, the observation error is estimated as a function of the time difference
between O and B, and then a time-dependent observation-to-background error ratio is
implemented in the 2D-Var procedure. On the other hand, two different background error
correlation functions, namely GSF and EBEC, are tested in order to look for an appropriate
2D-Var setting for wind blending. A comprehensive verification against the buoy winds
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demonstrates that the use of EBEC generally leads to a better-blended wind product than
the GSF, probably due to the larger length scales used for EBEC than for GSF. As such, the
used EBEC adds more small-scale variance than GSF to the blended winds.

Furthermore, note that the quality of blended wind data degrades remarkably in case
where there is no HSCATs observation presented (see Table 5). Such cases occur over
~30% of the sea surface. Consequently, more scatterometer observations are demanded
to fill the HSCATs gaps in order to further improve the blended wind quality. Future
research activities will include the blending of HSCATs winds with ASCAT wind data or
the radiometer wind speed data.
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