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Abstract: This paper presents a study on the effectiveness of texture analysis of remote sensing
imagery depending on the type and spatial resolution of the source image. The study used the
following image types: near-infrared band, red band, first principal component, second principal
component and normalized difference vegetation index images of pixel size from 2 m to 30 m, gener-
ated from a multispectral WorldView-2 image. The study evaluated the separability of the selected
pairs of the following land cover classes: bare soil, low vegetation, coniferous forest, deciduous forest,
water reservoirs, built-up areas. The tool used for texture analysis was granulometric analysis based
on morphological operations—one of less popular methods which, however, as demonstrated by
previous studies, shows high effectiveness in separating classes of different texture. The conducted
study enabled researchers to evaluate the significance of image type and resolution for visibility of
texture in the image and the possibility of using texture to differentiate between classes. The obtained
results showed that there is no single, universal combination of conditions of texture analysis, which
would be the best from the point of view of all classes. For most of the analyzed pairs of classes, the
best results were obtained for the highest spatial resolution of the image (2–3 m), but the class of
built-up areas stands out in this comparison—the best distinction was obtained with the average
spatial resolution (10–15 m). Research has also shown that there is no single type of image that is
universally the best basis for texture analysis. While for the majority of classes the image of the first
principal component was the best, for the class of built-up areas it was the image of the red channel.

Keywords: texture analysis; classification; granulometric analysis

1. Introduction

Texture is one of the most important spatial features of an image [1] and including it in the
classification process can improve (even significantly) its results. This is shown by numerous
examples of the spectral–textural approach to classification, the approach that uses the products
of various texture analysis methods [2–17]. Texture is also an important spatial feature to take
into account in the process of object-oriented image classification [5,9–11,18,19]. It is also
used in the analysis of other types of images, e.g., medical ones [20–22]. It should be noted
that it is also one of the easiest features to incorporate in image processing, because it does
not require prior segmentation of an image. While the size of an object or its shape is closely
related to the object, and as such requires the extraction of an object/segment in order to
determine its characteristics, texture tends to be defined in relation to the neighborhood of
a pixel (e.g., within a specific radius), regardless of the object to which the pixel would be
assigned. Thanks to this, and unlike other spatial features, texture can also be incorporated
in the pixel-based approach to classification because each pixel is assigned the texture
(neighborhood) feature individually.

The Cambridge Dictionary defines “texture” as “the degree to which something is rough
or smooth or soft or hard”. Referring to an image, “texture” is typically understood as
the type, size and mutual relation of elements constituting a given object or a land cover
class. However, there is no unambiguous mathematical definition of texture [23], which
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has led to the development of a multitude of approaches to texture analysis. The most
popular method used in image processing, particularly in remote sensing, appears to be
the Grey Level Co-occurrence Matrix and a series of measurements based on it, called
GLCM or Haralick statistics [2,3,24]. Other methods, like fractal analysis [4], discrete
wavelet transformation [25], Laplace filtration [26–28], random Markov fields [29,30] and
granulometric analysis [31,32], follow a different approach. It is also worth mentioning
Convolutional Neural Networks that can also be employed for analyzing the texture of
an image.

However, regardless of how we analyze “the degree to which something is rough or
smooth or soft or hard”, the image of an object’s, or a class of objects’, texture determines
to a large extent the effectiveness of the texture analysis. An important factor determining
the texture image, in turn, is the spatial resolution of the image itself [33] because it affects
whether and how specific elements potentially composing texture will be visible in the
image. It is commonly understood, and proving this fact is not the aim of the studies
presented below. Instead, it is a systematic analysis of how the type of image affects—
both in terms of spatial resolution and spectral type—the perception of texture and its
importance in identifying selected classes. The main purpose of this paper is to determine
the effect of an image’s spatial resolution on the significance of texture as a feature that
enables distinguishing between selected classes of land cover. The effectiveness of different
methods of texture analysis for various types of images (most often of high or very high
spatial resolution) has been widely studied and reported in the literature, but relatively
few studies have been devoted to the relationship between the texture of the image and its
resolution for different classes. This very relationship is examined in the study presented
below, and while it is quite understandable that texture gains in importance with the
increase in spatial resolution [11] (as shown in Figure 1), and this is confirmed by the
results of the spatio-spectral classification [34,35], the exact nature of this phenomenon is
not well researched.
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While examining this relationship, the study also examined the impact of the source
image type on the effectiveness of texture analysis. Texture is a spatial feature, so there is
no need to analyze it for each spectral band because all spectral bands present the same
arrangement of spatial features (depending on the spatial resolution of the image). It
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should be noted, however, that each image can display such pattern with different intensity:
certain features can be more visible in some spectral bands than in others. Therefore, from
the point of view of the effectiveness of texture analysis, it is important to properly select
the source image. The source image selection was also investigated in the study presented
in this paper. Here, it should be noted that the selection does not need to be limited to
spectral bands. A very common choice is the first principal component image [36–38] and
the NDVI (Normalized Difference Vegetation Index) [39] was also examined. There are also
publications proposing other solutions regarding the selection or creation of an appropriate
source image for texture analysis [34]. Comparable studies (limited only to assessing the
effect of the source image type on the accuracy of texture analysis, excluding other features
such as the resolution, which is the main topic investigated in the study reported here) are
presented in [40].

In the study reported in this paper, granulometric analysis was used as a tool for
texture analysis. It is a slightly less popular method of texture analysis, but it is very
effective when compared to other methods (e.g., GLCM) [41,42] due to several important
advantages, which are described below.

2. Brief Presentation of Texture Analysis Using Morphological Granulometry

Granulometric analysis is one of many methods of texture analysis. It is definitely
less popular than such methods as GLCM or wavelet transform. However, as comparative
studies show, it has significant advantages to which it owes its greater effectiveness in
the case of texture analysis used to identify selected classes of land cover [31,32]. These
advantages include resistance to the edge effect and natural multiscality. Before discussing
these advantages, basic information on granulometric analysis will be presented.

Granulometric analysis was developed by Haas et al. [31], giving rise to an entire
family of image processing methods called Mathematical Morphology. The technique
of mathematical morphology originally consisted in carrying out on a binary image a
sequence of morphological openings with a gradually increasing size of a structuring
element (SE), and then calculating the differences between the individual images: the
original one and the result of the first opening, the result of the first opening and the result
of the second opening, etc. Subsequent opening operations with increasing SE size remove
elements (brighter than the neighborhood) smaller than the SE from the image, while
elements which are not smaller are left unchanged. Based on these differential images,
the granulometric density function is calculated for the image. The function describes the
occurrence of texture grains in the analyzed image. Local granulometric analysis, consisting
of an analysis of a specific neighborhood of each pixel, was later proposed by Dougherty
et al. [29], while Vincent [43] presented granulometric analysis on grayscale images. An
analysis equivalent to the granulometric analysis, which is based on a series of openings,
is an analysis based on a series of closings (sometimes called the antigranulometry) [14].
Both versions of granulometry, based on opening and closing, provide the same type of
information (and with the same structure), with the significant difference that one of them
(based on opening) carries information on the presence of light grains—texture components,
while the other (based on closure)—about dark ones. Their meaning for determining the
texture of different classes of objects (and above all—for distinguishing them from each
other) may vary, depending on the nature of the texture of each class. Most often, however,
both versions of the analysis are used at the same time, treating the information derived
from them as complementary. For this reason, we decided to use an analysis based on these
two functions.

While the result of the global granulometric analysis is a function of granulometric
density characteristic of the entire image, the result of the local analysis is a set of functions
assigned to individual pixels, such functions being characteristic of their neighborhoods.
This type of information is presented as a set of images called granulometric maps.

The local granulometric analysis resembles the morphological profile proposed by
Mura et al. [44,45], with the difference that the morphological profile is based on changes
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only within the analyzed pixel, while the local granulometric analysis examines changes
occurring in a specific neighborhood. Thus, while granulometric analysis provides in-
formation about the size of texture grains in the entire neighborhood, the morphological
profile—about the size of the grain to which a given pixel belongs. This is a significant
difference from the point of view of texture analysis.

Other distinguishing features of granulometric analysis are its multi-scality and resis-
tance to the edge effect.

The edge effect, noticeable in other popular methods of texture analysis, results from
the fact that high texture is recognized through high spatial frequency. Places near the
edges of objects, even low-texture objects, will therefore be identified similarly as places
with high texture, due to high spatial frequency of the near edge. This can result in errors
of classification based on such textural information [42]. The granulometric analysis is,
as mentioned earlier, practically free of this type of effect because it does not analyze the
differences between pixels in a particular neighborhood, as in the case of other texture
analysis methods, but the number of removed image elements. Opening and closing
operations, which are the basis of this method, remove small (compared to the size of the
SE) image elements leaving the remaining ones mostly unchanged. Therefore, as long as an
object is not smaller than the SE (and thus not treated as an element of the analyzed texture),
the edge of the object will remain intact between successive opening or closing operations.
As a result, differential images will not show significant changes in these places.

The second important characteristic of this analysis, which can be called its natural
multi-scality, results from the very essence of the analysis which is the performance of a
sequence of opening or closing operations with the use of the SEs of increasing sizes. The
resulting granulometric maps contain information about the presence of texture elements of
different sizes assigned to individual maps. This enables an analysis of texture manifested
by different sizes of grains without changing the image resolution. It is worth noting that
successive steps of the sequence of openings or closings, and the resulting granulometric
maps, provide information about the elements of the image smaller than a given SE and
at the same time not smaller than the SE used in the previous step. For example, the
analysis made on the basis of images resulting from processing operations using an SE
of size 1—which, in simple terms, means the radius of a circle circumscribing a given SE,
e.g., a square 3 × 3 pixels—provides information about the presence of elements of a size
smaller than 3 pixels, while an analysis made in the next step using SE of size 2 (e.g., a
5 × 5 pixel square) provides information about the presence of elements with a size smaller
than 5 pixels but not smaller than 3 pixels.

A certain disadvantage of granulometric analysis, especially in comparison to GLCM,
is the inability to analyze the type of organization or distribution of texture grains. While
the GLCM analysis consists in calculating various statistics related to particular aspects of
the texture, the granulometric analysis only allows us to determine the number of grains of
different sizes and relative brightness. However, for the studies presented in this article,
this ability was considered less important because the purpose of the study was to analyze
the ability to detect texture in general, without referring to its various aspects.

3. Methodology

Two primary objectives of the study were identified. The first objective was to deter-
mine the impact of the spatial resolution of an image on the effectiveness of texture analysis
for distinguishing some selected (basic) land cover classes. For this purpose, a very high
resolution test image was taken and then its resolution was gradually reduced, creating
subsequent test images. The second objective of the study was to determine whether, and
in what manner, the type of a source image is significant for the effectiveness of texture
analysis. Texture, as a spatial feature, is to some extent independent of the spectral features
of objects, but it seems justified to put forward a thesis that in some images, e.g., spectral
bands or certain products of image processing (spectral indicators, images of principal
components, etc.), certain texture features may be more visible than in others. Determining
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the impact of the source image type on the effectiveness of texture analysis was the second
objective of the present study. The scheme of the research methodology is presented in
Figure 2.
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3.1. Source Image

The study used a multispectral WorldView-2 image, acquired on 4 August 2011, with a
pixel size of 1.8 m. All the eight spectral bands collected by the WorldView-2 multispectral
scanner were used (Coastal, Blue, Green, Yellow, Red, Red Edge and 2 Near-Infrared bands).
The scene covers the area of the southern part of Warsaw in the central–eastern part of
Poland. This area is characterized by a diverse land cover and use.

3.2. Selection of Analyzed Pairs of Land Cover Classes

The aim of the analysis was to compare the separability of selected LULC (land
use/land cover) classes. For this purpose, 6 land cover classes were selected:

• Bare soil—SOIL
• Low vegetation—VEG
• Coniferous forest—CFR
• Deciduous forest—DFR
• Water reservoirs—WTR
• Built-up areas—BUA

For each of the classes, 5 representative test fields were prepared, of sizes ranging from
about a thousand to tens of thousands of pixels.

Selected test fields with exemplary results of texture analysis using granulometric
processing are shown further in the text in Figure 3.
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results of granulometric analysis (where: R—result of the analysis using closing operation, SE size 1,
G—result of the analysis using closing operation SE size 2, B—result of the analysis using opening
operation, SE size 1. High pixel brightness means a high value of the granulometric analysis result,
i.e., the presence of a significant amount of texture grains of related sizes.

Subsequently, the selected classes were combined into pairs to be analyzed. Individual
pairs were selected mainly based on their, at least partial, spectral similarity. Pairs of classes
which are easily distinguishable by spectral analysis, therefore in their case texture analysis
is of secondary (or no) importance, were not analyzed. The following class pairs were
selected for further analysis:

• Deciduous forest/low vegetation;
• Coniferous forest/low vegetation;
• Coniferous forest/deciduous forest;
• Low vegetation/built-up area;
• Bare soil/built-up area;
• Coniferous forest/built-up area;
• Deciduous forest/built-up area;
• Water reservoirs/built-up areas.
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3.3. Preparation of Images for Analysis

The primary objective of the study was achieved by comparing the values of pixels
in selected images (which were the products of texture analysis obtained for individual
LULC classes) and then by determining the separability of values for these classes. The
preparation of the data was performed in several steps described below.

3.4. Images of Degraded Resolution

Based on the source image, a group of images was generated by degrading the spatial
resolution of the main source image. Decreasing the resolution was carried out using the
bilinear resampling technique.

These images, together with the main source image, were the basis for further analysis.
Individual pixel sizes were selected to correspond to the typical resolutions of satellite
images:

• 2 m;
• 3 m;
• 5 m;
• 10 m;
• 15 m;
• 20 m;
• 30 m.

3.5. Generating Types of Images for the Analysis

Next, 5 single-layer (grayscale) images were prepared for each of the multispectral
images (including images of decreased resolution). These images were used as source
images to examine the impact of the source image type on the effectiveness of texture
analysis from the point of view of separating selected classes of land cover (the second of
the above-described study objectives). The image types for the analysis are listed below:

• Near-infrared band (NIR) image;
• Red band (Red) image;
• First principal component (PC1) image;
• Second principal component (PC2) image;
• Normalized difference vegetation index (NDVI) image.

In this manner, 35 images (of 7 different pixel sizes and 5 different image types) were
created as the basis for the analyses which are described below.

The rationale for the above selection was to present diverse images/products that
can be obtained from multispectral data and was based on the experience gained from
previous studies [14]. These studies had shown i.a. high effectiveness of texture analysis
based on NIR images, the images that present high contrast between the areas covered with
vegetation and other areas, with very dark shadows which are the reason for a distinct
texture of the classes characterized by the occurrence of tall elements.

The Red image was selected mainly for comparison with the NIR image in order to
determine the significance of the spectral band selection for the effectiveness of texture
analysis. It is worth noting here that certain imagery may not contain the near infrared
spectral band at all (though this is true mainly for historical imagery), hence the attempt to
assess the effectiveness of texture analysis of one of the visible spectral bands.

Another image used in the study was the first principal component (PC1) that is
characterized by the largest possible global variance of an image, which may (but does not
have to) result in high local variances contributing to the distinct texture of certain LULC
classes. The second principal component (PC2) image was selected partly for comparison
with the PC1 image. It should be noted that in the second principal component (PC2) image
the vegetation cover is often emphasized [46–48], which may result in a distinct texture of
areas with vegetation. The last of the proposed images—NDVI—is by definition used to
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assess vegetation, and therefore it produces an image potentially useful for LULC classes
in which vegetation plays an important role.

We have not included other spectral bands such as shortwave infrared or red edge
channels, which may be important for the analysis of selected land cover classes, especially
vegetation. This was due to the potentially lower contrast between the illuminated and
shadowed areas (which results from the lower albedo in this range) and the fact that these
channels are less frequently available in remote sensing systems (satellite or airborne), and
in some systems (such as Sentinel-2) they have lower spatial resolution which makes them
less useful for texture analysis.

3.6. Texture Analysis of Images

The last step of preparing the source images for the analysis was processing of the
35 earlier generated images using granulometric analysis. It was performed based on
morphological opening and closing operations using the structuring elements (SEs) with
sizes from 1 to 3 pixels. The size of the SE means in this case a radius of a pseudocircle
(a circle according to the system of the pseudo-Euclidean distance). Hence, an SE of size
1 is a pseudocircle with the diameter of 3 pixels, an SE of size 2 is a pseudocircle with
the 5 pixel diameter, and an SE of size 3 is a pseudocircle measuring 7 pixels. Obviously,
the actual size of the structuring element (measured in meters) changes depending on the
image pixel size.

The sizes of the SEs were selected in such manner that even with the image having the
smallest pixel it was possible to analyze the essential elements of the texture of all analyzed
classes (size 3 of the structuring element with a pixel of 2 m means approx. 14 m).

Another parameter influencing the result of the texture analysis was the size of the
neighborhood of a single pixel in which the texture was analyzed. If the selected radius of
the neighborhood is large, then all the surrounding elements of the texture will be taken into
account, but the texture of the neighboring objects could be included as well. On the other
hand, a smaller neighborhood can make it difficult to take into account important features
of the texture. For this reason, several possible lengths of neighborhood radii (measured
in pixels) were proposed. The length of a proposed neighborhood radius depended on
the spatial resolution of the image: for images with a larger pixel size a smaller radius (in
pixels) was proposed. They are presented in Table 1.

Table 1. Neighborhood sizes depending on the image pixel size.

Analysis Neighborhood Radius (in Pixels)

Pixel Size Small Radius Medium Radius Large Radius

2 m, 3 m, 5 m, 10 m 5 pixels 7 pixels 10 pixels
15 m, 20 m, 30 m 3 pixels 5 pixels 7 pixels

Among the described classes it is possible to indicate pairs of classes which are
spectrally similar but have clearly different texture (such as low vegetation and forest or
built-up areas and bare soil). In such cases, the effectiveness of texture analysis becomes
important, even crucial, for the effective identification of these classes. However, the
difference in textural information can also be useful for spectrally different classes, also for
those with a theoretically similar texture, whether it is high (forests and built-up areas) or
low (bare soil and low vegetation).

Figure 3 presents the selected test fields with exemplary results of texture analysis
using granulometric processing.

4. Methodology of the Analysis

The main objective of the proposed methodology was to enable the measurement of
the separability of the result values of the texture analysis obtained for individual land
cover classes.
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For each class, 5 representative test fields were prepared. Then, the values obtained
for these areas in different test images were compared and the separability of the values
was determined. Jeffries–Matusita Distance was used as the measure for the assessment of
separability. This is a metric used in remote sensing usually for measuring the separability
of the values of training fields in the classification process and for selecting the optimal
bands [49]. The criterion of separability between two classes wi and wj—JMij can be
defined as follows [50,51]:

JMij = 2(1− e−dij)

where dij means the Bhattacharyya distance between two classes wj and wi , which can be
defined as follows [49,52]:

dij =
1
8
(
mj −mi

)T
[Σi + Σj

2

]−1(
mj −mi

)
+

1
2

ln

∣∣∣Σi+Σj
2

∣∣∣√
|Σi|

∣∣Σj
∣∣

where mi and mj denote the mean values and Σi and Σj denote the covariance matrices of
the two analyzed classes: respectively, wi and wj.

JM distance is limited to the 〈0; 2〉 range of values, with higher value denoting a better
separation of the sets. In classification practice it is assumed that two sets (two classes) are
completely separated from each other if J–M distance between the classes is larger than
1.8 [53].

In this manner, pairs of test fields were compared with each other in all possible
combinations of pairs of classes. The averaged results obtained for specific pairs of classes
in different source images were used to assess the effectiveness of texture analysis as a
tool enabling to assign individual pixels values allowing to separate specific classes of
land cover.

5. Results and Discussion

The results obtained for different pairs of land cover classes are presented and dis-
cussed in the subsections below. The section following the subsections presents the sum-
mary of all the results obtained for all the analyzed class pairs.

5.1. Deciduous Forest/Low Vegetation

The results obtained for this pair of classes are shown in Figure 4.
These two classes have relatively high spectral similarity but differ in texture, which is

why textural analysis is particularly important for their separation. This is confirmed by
the separability values obtained for the best combinations of analysis parameters. For these
combinations J–M distance reaches the maximum values which shows that full separability
is achieved only on the basis of texture data.

First of all, it is worth noting large differences between the results obtained for different
types of source images. Clearly the best results were obtained for the first principal
component (PCA1) image. Then, for the near-infrared (NIR) image and the second principal
component (PCA2) image. Slightly worse results were obtained for the red channel (Red)
image, while clearly the worst results were for the NDVI image. The NDVI is less useful
for classification because the NDVI compensates for differences in illumination within an
image, showing similar values for illuminated and shaded fragments of tree crowns and
thus weakening the image of texture.
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The importance of the pixel size for detecting texture is very clear. The best results
were obtained for images with the smallest pixel (2 and 3 m), in particular granulometric
maps with the lowest index value, which show a relatively small size of the texture grain
allowing it to distinguish classes. Conversely, granulometric maps obtained with larger
structuring elements (SEs) are characterized by lower separability of pixel values. On the
other hand, in the case of images of lower resolution, an increase in separability can be
observed which is associated with the increase in the size of analyzed elements. However,
taking into account the size of a given structuring element (SE) in comparison with the size
of the pixel (an SE of size 3 for an image having a pixel of 30 m equals a diameter of approx.
150 m), it can be stated that the result is related not to the texture of the object, but rather to
the size of the object.

No significant differences were observed in relation to the different sizes of the neigh-
borhoods. The results obtained for all three analyzed combinations were very similar. There
were also no significant differences between the results obtained for the analysis based on
opening or closing.

5.2. Coniferous Forest/Low Vegetation

The results obtained for this pair of classes are presented in Figure 5.
The texture of coniferous forests is characterized by less internal contrast than decid-

uous forests, which results from a lower contrast between illuminated and shaded tree
crowns in the case of coniferous forests. Considering the low texture of low vegetation, one
should expect less separability of the values obtained from the texture analysis. Indeed,
the J–M distance values for this pair of classes are clearly lower than for the deciduous
forest/low vegetation pair. Although it should be emphasized that for certain combinations
of parameters, these values are still satisfactory from the perspective of separating classes.

As in the case of the deciduous forest/low vegetation class pair, the importance of the
size of the structuring element (SE) can be clearly seen—granulometric maps obtained with
the SE of the smallest size provide the best separability of compared classes, which shows
that the texture grain itself is of small size.

Again, the impact of spatial resolution can be observed: in most analyzed cases, the
class separability decreases roughly in proportion to the spatial resolution of the source
images. This is best seen with NIR and PC2 source images, where this relationship is
exceptionally well visible and stable. A much smaller decrease can be observed in the case
of the analysis based on the PC1 image, which, as should be noted, again provides the best
overall results, although its advantage is not as clear as in the case of the pair of deciduous
forest/low vegetation classes.

The results obtained for operations based on opening and closing are very similar.
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5.3. Coniferous Forest/Deciduous Forest

The results obtained for this pair of classes are presented in Figure 6.
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The J–M distance values obtained for this pair of classes are relatively low and at the
same time inconclusive. In the case of granulometric maps obtained with SE of size 1 an
already observed relationship can be seen: separability decreases with the increase in the
pixel size. It is worth emphasizing, however, that this effect is visible primarily in the PC1
image, for which the best results were obtained; in other images (NIR, PC2) the opposite
effect can be observed, although it should be noted that the obtained values are low in this
case. The positive effect of increasing the size of the neighborhood is noticeable (although
this effect is not very significant).

Particularly interesting are the results obtained for granulometric maps with higher in-
dices: the class separability was noted to increase largely when the pixel size was increased,
and thus the opposite effect from what is observed in other cases. However, this effect is
caused not by the texture resulting from properties of the analyzed classes, but rather by
the structure of the object layout, which should not be generalized.

Once again, no significant differences were observed between the results obtained for
images based on opening and closing.

5.4. Low Vegetation/Built-Up Area

The results obtained for this pair of classes are shown in Figure 7.
For some combinations of texture analysis conditions, a very high separability of

values for these two classes was obtained. The best results were obtained for the Red
image, with better results obtained for a granulometric map generated with an SE of size 1
for lower resolution images than higher resolution images (with the best results achieved
for images with pixels of 10 and 15 m). This can be explained by the size of the grain of
the texture characteristic of the built-up areas class: in images with lower resolution the
grain size calculated in pixels is obviously larger, which means that the information on the
characteristic texture does not translate into values of granulometric maps obtained with
SEs of the smallest size. Interestingly, however, while in lower-resolution images increasing
the size of the structuring element (SE) brings a significant decrease in the separability
between classes, an SE increase in higher-resolution images does not cause an increase in
separability. Together with the observed positive impact of the size of the neighborhood on
the effectiveness of the analysis (for images with the highest resolution), this indicates—as
the cause of the observed phenomenon—the uneven nature of the texture of the built-up
area. Due to this unevenness of texture a small neighborhood of the analysis produces
varied results values, which translates into lower separability compared to other classes.

For the analysis based on closing, for images with the highest resolution and the index
2 (s2—size of the analyzed texture grain) worse results were obtained than for the analysis
based on opening. Interestingly, this applies mainly to the analysis performed on NDVI,
NIR and PC1. Considering that the operation based on opening analyzes the presence
of bright texture elements, it can be concluded that this effect is related to the presence
of bright objects (e.g., buildings, pavements, squares), allowing for a better distinction
between the textures of both classes. It should be pointed out that in the discussed cases
the effects obtained thanks to the opening—although better—are not fully satisfactory.
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5.5. Bare Soil/Built-Up Area

The results obtained for this pair of classes are presented in Figure 8.
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The results for this pair of classes are very similar to the results for the above-described
pair of low vegetation and built-up area classes, with the difference that the observed
separability is slightly lower. This similarity is understandable because the bare soil and
low vegetation classes show similar weak texture, therefore the more distinctive texture
of built-up areas is decisive. Hence, the best results were again obtained on the basis of
the analysis of the red image (Red), for images with higher resolution (10 and 15 m), i.e.,
for the analysis carried out on the largest neighborhood (calculated in meters). Similarly,
as in the previous low vegetation/built-up area class pair, the best results were obtained
for granulometric maps generated with a structuring element (SE) of size 1; however, it is
worth noting that while in the case of low vegetation the decrease in separability associated
with increasing the SE size was relatively small, in the bare soil/built-up area pair discussed
here this decrease is significant. This is caused by a greater heterogeneity of bare soils areas
(linked, for example, with their varied humidity) which is revealed in maps obtained with
larger SEs. This heterogeneity in combination with the high texture of built-up areas results
in a reduction in the mutual class separability.

5.6. Coniferous Forest/Built-Up Area

The results obtained for this pair of classes are shown in Figure 9.
For this pair of classes, the results are similar to those described above for other

pairs including built-up areas. This is primarily due to the previously described effect of
separability increasing along with increasing the pixel size (in fact, along with increasing
the area of analysis). As before, this probably results from the character of the texture
of the built-up areas. However, compared to the previously described pairs that include
built-up areas, in this pair the class separability is clearly lower, in particular in the case of
images with higher resolution in which it is very low. This is due to the relatively strong
texture of the coniferous forest class. It should be noted that in the case of the local analysis
with the largest area of analysis, for the images with the largest pixel size full separability
was obtained. The best results were obtained based on the analysis of the red image and
(slightly worse) of the NDVI image. The results for NIR and PC2 followed (as in other
cases the results for these two images are very similar). Once again, the worst results were
obtained for the analysis of the PC1 image. In this case, however, the differences are quite
significant: the results obtained for this image type indicate a very low separability of these
two classes.

Again, the difference between the results obtained for the opening and closing for the
analysis with the index s2 (the average size of the structuring element) can be seen. This
time, however, better results were obtained based on closing. It should be noted, however,
that we are dealing here with two classes with a distinct texture—hence the apparently
different nature of the important features of this texture that distinguish these classes.
The greater importance of closure (an operation analyzing the presence of dark texture
elements) may indicate the importance of shadows of own forest areas.
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5.7. Deciduous Forest/Built-Up Areas

The results obtained for this pair of classes are presented in Figure 10.
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The results obtained for this pair of classes are very similar to those obtained in the
case of the pair of coniferous forest/built-up area classes, with the difference that here the
separability values are slightly lower than in the previous case. This is probably due to the
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clearer texture of the deciduous forest, which to a certain extent makes this class similar to
built-up areas also characterized by high texture.

5.8. Water/Built-Up Areas

The results obtained for this pair of classes are shown in Figure 11.
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The last of the compared pairs of classes shows similarity to the previously analyzed
classes that include built-up areas. Due to the heterogeneous texture of built-up areas,
images with the smallest pixel (and therefore effectively the smallest neighborhood of
the analysis) show worse separability results. The best results were obtained for images
with a pixel size of 10–15 m. Among the types of source images, the best results were
obtained based on the red image, as in the case of other pairs of classes that include built-up
areas. Again, the use of NIR and PC2 images leads to worse results (and very similar for
both image types). The results are clearly worse than in the case of the red image, but in
certain combinations of analysis conditions high values were still obtained indicating high
separability. Unlike in previous cases, the worst results were obtained for the NDVI image.
Better results were obtained for the analysis based on closure, which indicates a greater
importance of dark elements in the texture of built-up areas in this case.

6. Conclusions

The obtained results showed that there is no single, universal combination of condi-
tions of texture analysis which would be the best from the point of view of all classes (pairs
of classes). Depending on the analyzed classes, the best results were obtained for different
types of source images. However, the following generalization may be offered.

First of all, among the studied pairs of classes, those including built-up areas clearly
stand out from other pairs. Better results were obtained for images with a larger pixel size
(10–15 m), although it was not the size of the pixel itself that determined the effectiveness
of the analysis but the associated size of the neighborhood. The results obtained for the
class of built-up areas indicate, therefore, that the highest effectiveness was achieved for
the analysis neighborhood having a larger radius. This is due to the widely varied texture
of built-up areas (resulting from the presence of various elements: trees, buildings, their
shadows, etc.), which, with a small area of analysis, results in a wide range of values, and,
as a result, a difficulty in distinguishing these values from the values obtained for other
LULC classes. Interestingly, the best results for this class were obtained on the basis of
the products of red image analysis, which is also exceptional compared to other pairs of
LULC classes. In summary, for separating built-up areas the best results were obtained
based on the texture analysis of Red image with 10–15 m resolution with a large analysis
neighborhood.

For the remaining pairs of classes, however, the relationship between the effectiveness
of texture analysis and the spatial resolution of the image is unambiguous: images with
higher resolution enable a more effective texture analysis. The effectiveness of the anal-
ysis may vary, but in all cases—with the exception of a pair of forest classes (deciduous
forest/coniferous forest)—full separability of the analyzed test fields was obtained for
images with the smallest pixel. The specific relationship between image resolution and
effectiveness of the analysis varies depending on the pair of images analyzed, but it can be
concluded that the effectiveness clearly decreases for images having a pixel size of 10–15 m.
Moreover, the best image to be used for the studied classes as the basis for textural analysis
(except for the class of built-up areas) is clearly the first main component (PC1) image. The
analysis carried out on the basis of this type of image allowed us to obtain the greatest
separability of pixel values for different compared classes. Interestingly, the worst image
in terms of separability was the red image, which, in turn, offered the highest separability
when the class of built-up areas was compared with other classes.

In almost all the analyzed cases it can be noticed that the best results were obtained
on the basis of granulometric maps generated with SEs of the smallest sizes, even in the
case of the highest resolution images. This indicates a small size of the grain of the texture
characteristic of individual classes. It can also be seen that the class separability decreases in
granulometric maps obtained with larger SEs. However, this does not necessarily show the
uselessness of multi-scale analysis, as even partially useful data can be a valuable addition
to the data set (in certain cases, granulometric maps obtained with higher SE sizes also
produced decent separability).
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In conclusion, for separating most of the classes, except for built-up areas, the best
results were obtained based on the analysis of PC1 image of the highest resolution (2–5 m,
with a noticeable decrease in the analysis effectiveness for images with 10 m and lower
resolution) and the smallest size of the structuring element (size 1). No significant impact
of the neighborhood size on the effectiveness of the analysis was observed.

The conducted analyses have not allowed us to conclude that either of the two types
of granulometric analysis (opening- or closing-based) is more effective. Naturally, in certain
cases, differences can be observed between the results of the analysis based on opening
and closing, which is understandable due to the fact that in various cases light or dark
grains of texture may be of different sizes, which may lead to higher or lower separability.
However, no significant, constant differences were observed. For greater effectiveness of
texture analysis, it may thus be useful to take products of both types of granulometric
analysis as the basis for the processing.

The conducted research relates to the generally understood texture, as it is “seen” by
granulometric analysis. However, since there is no unambiguous mathematical definition
of texture, different methods may estimate it differently. While it can be expected that the
general trend would be similar in most cases, the analysis of the impact of the features
studied here on selected texture aspects represented by selected GLCM metrics may be an
interesting field of further exploration.
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